Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Oct 17;65(Pt 11):o2759. doi: 10.1107/S1600536809041403

2,4-Dichloro-6-((1R)-1-{[(R)-(2-chloro­phen­yl)(cyclo­pent­yl)meth­yl]amino}eth­yl)phenol

Guang-You Zhang a, Di-Juan Chen a,*, Shu-Hong Wang a, Ting Yang b, Jian-Guo Chang c
PMCID: PMC2971355  PMID: 21578353

Abstract

In the title compound, C20H22Cl3NO, the five-membered ring adopts an envelope conformation, and the two benzene rings are oriented at a dihedral angle of 40.44 (9)°. Intra­molecular O—H⋯N and N—H⋯Cl hydrogen bonding is present. In the crystal, the mol­ecules are linked via weak inter­molecular C—H⋯O hydrogen bonds.

Related literature

For amino­phenols, see: Li et al. (2004); Puigjaner et al. (1999); Cimarelli et al. (2002); Joshi & Malhotra (2003); Zhang et al. (2003); Watts et al. (2005). For the synthesis, see: Yang et al. (2005).graphic file with name e-65-o2759-scheme1.jpg

Experimental

Crystal data

  • C20H22Cl3NO

  • M r = 398.74

  • Orthorhombic, Inline graphic

  • a = 8.4132 (7) Å

  • b = 13.6767 (10) Å

  • c = 17.0018 (14) Å

  • V = 1956.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.48 mm−1

  • T = 298 K

  • 0.21 × 0.16 × 0.12 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.907, T max = 0.945

  • 10361 measured reflections

  • 3453 independent reflections

  • 3005 reflections with I > 2σ(I)

  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.096

  • S = 1.04

  • 3453 reflections

  • 227 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.18 e Å−3

  • Absolute structure: Flack (1983), 1464 Friedel pairs

  • Flack parameter: 0.00 (7)

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809041403/xu2619sup1.cif

e-65-o2759-sup1.cif (21.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809041403/xu2619Isup2.hkl

e-65-o2759-Isup2.hkl (172.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N1 0.96 1.74 2.622 (3) 151
N1—H1N⋯Cl3 0.84 2.68 3.260 (2) 127
C13—H13⋯O1i 0.93 2.56 3.422 (3) 154

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors are grateful to the Natural Science Foundation of Shandong Province, China (grant No. G0231) and the Foundation of the Education Ministry of China for Returned Students (grant No. G0220) for financial support. The X-ray data were collected at Taishan University, China.

supplementary crystallographic information

Comment

The chiral aminophenols containing some O and N atoms are of great interests due to their widespread application in asymmetric synthesis such as chiral bases, auxiliaries and ligands (Li et al., 2004; Puigjaner et al., 1999; Cimarelli et al., 2002). Recently, the synthesis of chiral aminophenols with a varity of functionalities has attracted increasing attention (Zhang et al., 2003; Watts et al., 2005). Herein, we present the molecular structure of the title aminophenol (I), which was initially prepared to test its catalytic activity. The aminophenol was prepared by conventional condensation of (R)-1-(2-chlorophenyl)-1-cyclopentylmethanamine with 1-(3,5-dichloro-2-hydroxyphenyl) ethanone in methanol.

The molecular structure of (I) is illustrated in Fig. 1. The title compoud has two chiral centers (C7/C9), which have configurations R, R, confirmed by the X-ray structural analysis. There are the intramolecular O—H···N and N—H···Cl hydrogen bonding which stablizes the conformation of the molecule (Table 1). In the crystal packing, the molecules are linked to each other via intermolecular C—H···O hydrogen bonds (Table 1).

Experimental

The title compound was prepared according to the procedure of Yang et al. (2005). (R)-1-(2-chlorophenyl)-1-cyclopentylmethanamine (0.9 mmol) and 1-(3,5-dichloro-2-hydroxyphenyl)ethanone (0.9 mmol) were dissolved in methanol (10 ml) and reacted at room temperature for 48 h. After removal of the solvent, NaBH4 (4.5 mmol) was added to the solution in THF/ethanol (1:1 v/v, 20 ml) and stirred at 273 K until the solution became colourless. The solvent was then removed under reduced pressure. Water (10 ml) was added to the residue and 1 M HCl was added dropwise until hydrogen production ceased. The mixture was neutralized with aqueous solution of Na2CO3, then extracted with CHCl3, and the organic layer was dried over anhydrous sodium sulfate. The solvent was removed under reduced pressure. Further purification was carried out by thin-layer silica-gel chromatography (chloroform) to give a colorless solid (yield 82.7%). Single crystals of (I) were grown from the n-hexane solution.

Refinement

Imino-H and hydroxy-H atoms were located in a difference Fourier map and refined as riding in as-found relative positions with Uiso(H) = 1.2Ueq(N,O). Other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H = 0.93–0.98 Å, and refined in riding mode with Uiso(H) = 1.5Ueq(C) for mathyl H atoms and 1.2Ueq(C) for the others.

Figures

Fig. 1.

Fig. 1.

The structure of the title compound with 30% probability ellipsoids. H atoms are shown as spheres of arbitrary radii.

Crystal data

C20H22Cl3NO F(000) = 832
Mr = 398.74 Dx = 1.354 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 4018 reflections
a = 8.4132 (7) Å θ = 2.4–23.8°
b = 13.6767 (10) Å µ = 0.48 mm1
c = 17.0018 (14) Å T = 298 K
V = 1956.3 (3) Å3 Plate, colorless
Z = 4 0.21 × 0.16 × 0.12 mm

Data collection

Bruker SMART CCD area-detector diffractometer 3453 independent reflections
Radiation source: fine-focus sealed tube 3005 reflections with I > 2σ(I)
graphite Rint = 0.022
φ and ω scans θmax = 25.1°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −9→10
Tmin = 0.907, Tmax = 0.945 k = −16→13
10361 measured reflections l = −20→19

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036 H-atom parameters constrained
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0479P)2 + 0.4088P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.001
3453 reflections Δρmax = 0.20 e Å3
227 parameters Δρmin = −0.18 e Å3
0 restraints Absolute structure: Flack (1983), 1464 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.00 (7)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.74492 (12) 0.20053 (6) 0.65026 (5) 0.0892 (3)
Cl2 0.77477 (11) 0.32755 (7) 0.35243 (5) 0.0818 (3)
Cl3 0.17174 (12) 0.73428 (6) 0.60165 (5) 0.0812 (3)
N1 0.4064 (2) 0.58218 (15) 0.51047 (11) 0.0438 (5)
H1N 0.3999 0.6424 0.5201 0.053*
O1 0.6034 (2) 0.49741 (14) 0.41237 (10) 0.0568 (5)
H1A 0.5277 0.5427 0.4341 0.068*
C1 0.6303 (3) 0.42963 (19) 0.46839 (14) 0.0444 (6)
C2 0.5780 (3) 0.44142 (18) 0.54534 (14) 0.0421 (5)
C3 0.6114 (3) 0.36909 (19) 0.60025 (16) 0.0498 (6)
H3 0.5742 0.3755 0.6515 0.060*
C4 0.6985 (3) 0.28820 (19) 0.57958 (18) 0.0568 (7)
C5 0.7529 (4) 0.2752 (2) 0.50434 (17) 0.0603 (7)
H5 0.8136 0.2208 0.4910 0.072*
C6 0.7148 (3) 0.3454 (2) 0.44879 (15) 0.0529 (6)
C7 0.5002 (3) 0.53592 (18) 0.57377 (14) 0.0464 (6)
H7 0.4300 0.5211 0.6182 0.056*
C8 0.6279 (4) 0.6086 (2) 0.6006 (2) 0.0712 (9)
H8A 0.7007 0.6206 0.5582 0.107*
H8B 0.6847 0.5818 0.6446 0.107*
H8C 0.5784 0.6689 0.6159 0.107*
C9 0.2437 (3) 0.54384 (17) 0.49936 (12) 0.0413 (5)
H9 0.2565 0.4764 0.4809 0.050*
C10 0.1458 (3) 0.53736 (19) 0.57434 (14) 0.0462 (6)
C11 0.1105 (3) 0.6155 (2) 0.62414 (15) 0.0551 (7)
C12 0.0257 (3) 0.6038 (3) 0.69294 (16) 0.0657 (9)
H12 0.0036 0.6578 0.7243 0.079*
C13 −0.0256 (4) 0.5139 (3) 0.71500 (17) 0.0722 (9)
H13 −0.0807 0.5061 0.7620 0.087*
C14 0.0042 (4) 0.4338 (3) 0.66735 (19) 0.0717 (9)
H14 −0.0323 0.3722 0.6821 0.086*
C15 0.0871 (3) 0.4449 (2) 0.59875 (16) 0.0555 (7)
H15 0.1055 0.3905 0.5673 0.067*
C16 0.1623 (3) 0.5990 (2) 0.43215 (14) 0.0480 (6)
H16 0.1482 0.6675 0.4478 0.058*
C17 −0.0009 (4) 0.5558 (3) 0.41129 (17) 0.0771 (10)
H17A −0.0032 0.4861 0.4214 0.092*
H17B −0.0843 0.5870 0.4417 0.092*
C18 −0.0216 (4) 0.5764 (4) 0.32453 (19) 0.1024 (14)
H18A −0.0591 0.5182 0.2978 0.123*
H18B −0.0995 0.6279 0.3170 0.123*
C19 0.1269 (4) 0.6057 (4) 0.29287 (18) 0.1004 (15)
H19A 0.1208 0.6730 0.2752 0.121*
H19B 0.1533 0.5650 0.2480 0.121*
C20 0.2520 (3) 0.5960 (2) 0.35444 (14) 0.0607 (7)
H20A 0.3275 0.6494 0.3511 0.073*
H20B 0.3088 0.5346 0.3487 0.073*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.1119 (7) 0.0569 (4) 0.0988 (6) 0.0057 (5) −0.0350 (6) 0.0237 (4)
Cl2 0.0826 (6) 0.0970 (6) 0.0659 (5) 0.0243 (5) 0.0076 (4) −0.0202 (4)
Cl3 0.0997 (6) 0.0587 (4) 0.0852 (5) 0.0023 (4) 0.0080 (5) −0.0205 (4)
N1 0.0408 (10) 0.0424 (11) 0.0481 (11) 0.0033 (9) −0.0060 (9) 0.0035 (9)
O1 0.0513 (10) 0.0707 (12) 0.0484 (10) 0.0118 (9) 0.0076 (8) 0.0129 (9)
C1 0.0368 (12) 0.0505 (14) 0.0458 (13) 0.0015 (11) −0.0041 (10) 0.0016 (11)
C2 0.0354 (12) 0.0429 (13) 0.0480 (14) −0.0021 (11) −0.0048 (10) 0.0026 (11)
C3 0.0511 (14) 0.0501 (14) 0.0483 (14) −0.0045 (12) −0.0077 (12) 0.0047 (11)
C4 0.0573 (16) 0.0423 (15) 0.0709 (19) 0.0000 (12) −0.0216 (14) 0.0066 (13)
C5 0.0590 (16) 0.0455 (15) 0.077 (2) 0.0077 (14) −0.0160 (14) −0.0090 (13)
C6 0.0455 (14) 0.0606 (16) 0.0527 (15) 0.0038 (13) −0.0047 (12) −0.0112 (12)
C7 0.0444 (12) 0.0514 (15) 0.0433 (13) 0.0056 (12) −0.0034 (11) 0.0009 (11)
C8 0.0663 (19) 0.0613 (18) 0.086 (2) 0.0053 (15) −0.0273 (17) −0.0162 (16)
C9 0.0398 (12) 0.0444 (12) 0.0397 (12) 0.0040 (11) 0.0000 (10) −0.0036 (9)
C10 0.0376 (12) 0.0568 (15) 0.0442 (13) 0.0039 (11) −0.0060 (10) 0.0000 (11)
C11 0.0459 (14) 0.0722 (18) 0.0473 (14) 0.0037 (13) −0.0065 (12) −0.0100 (13)
C12 0.0479 (16) 0.107 (3) 0.0423 (15) 0.0089 (17) −0.0037 (13) −0.0125 (16)
C13 0.0513 (17) 0.121 (3) 0.0446 (16) 0.0014 (19) −0.0023 (13) 0.0113 (19)
C14 0.0548 (16) 0.091 (2) 0.069 (2) −0.0134 (18) −0.0066 (16) 0.0246 (18)
C15 0.0467 (14) 0.0685 (18) 0.0512 (15) −0.0014 (13) −0.0035 (12) −0.0006 (13)
C16 0.0487 (14) 0.0514 (15) 0.0438 (13) 0.0091 (12) −0.0049 (11) −0.0032 (11)
C17 0.0420 (14) 0.137 (3) 0.0519 (17) 0.0015 (19) −0.0033 (13) 0.0090 (18)
C18 0.062 (2) 0.189 (4) 0.0560 (19) −0.016 (3) −0.0167 (16) 0.025 (2)
C19 0.064 (2) 0.192 (5) 0.0453 (17) 0.001 (3) −0.0046 (15) 0.014 (2)
C20 0.0469 (15) 0.088 (2) 0.0476 (14) −0.0023 (14) −0.0027 (13) 0.0102 (14)

Geometric parameters (Å, °)

Cl1—C4 1.742 (3) C10—C11 1.395 (4)
Cl2—C6 1.731 (3) C10—C15 1.419 (4)
Cl3—C11 1.747 (3) C11—C12 1.379 (4)
N1—C7 1.477 (3) C12—C13 1.356 (5)
N1—C9 1.478 (3) C12—H12 0.9300
N1—H1N 0.8410 C13—C14 1.386 (5)
O1—C1 1.348 (3) C13—H13 0.9300
O1—H1A 0.9621 C14—C15 1.368 (4)
C1—C2 1.390 (4) C14—H14 0.9300
C1—C6 1.395 (4) C15—H15 0.9300
C2—C3 1.389 (3) C16—C20 1.522 (3)
C2—C7 1.527 (3) C16—C17 1.536 (4)
C3—C4 1.373 (4) C16—H16 0.9800
C3—H3 0.9300 C17—C18 1.512 (4)
C4—C5 1.370 (4) C17—H17A 0.9700
C5—C6 1.384 (4) C17—H17B 0.9700
C5—H5 0.9300 C18—C19 1.417 (5)
C7—C8 1.533 (4) C18—H18A 0.9700
C7—H7 0.9800 C18—H18B 0.9700
C8—H8A 0.9600 C19—C20 1.491 (4)
C8—H8B 0.9600 C19—H19A 0.9700
C8—H8C 0.9600 C19—H19B 0.9700
C9—C10 1.521 (3) C20—H20A 0.9700
C9—C16 1.531 (3) C20—H20B 0.9700
C9—H9 0.9800
C7—N1—C9 115.86 (19) C12—C11—Cl3 116.5 (2)
C7—N1—H1N 108.2 C10—C11—Cl3 121.1 (2)
C9—N1—H1N 108.2 C13—C12—C11 120.2 (3)
C1—O1—H1A 106.4 C13—C12—H12 119.9
O1—C1—C2 122.1 (2) C11—C12—H12 119.9
O1—C1—C6 119.0 (2) C12—C13—C14 119.9 (3)
C2—C1—C6 118.8 (2) C12—C13—H13 120.1
C3—C2—C1 119.1 (2) C14—C13—H13 120.1
C3—C2—C7 118.5 (2) C15—C14—C13 120.1 (3)
C1—C2—C7 122.1 (2) C15—C14—H14 119.9
C4—C3—C2 120.6 (3) C13—C14—H14 119.9
C4—C3—H3 119.7 C14—C15—C10 121.8 (3)
C2—C3—H3 119.7 C14—C15—H15 119.1
C5—C4—C3 121.5 (2) C10—C15—H15 119.1
C5—C4—Cl1 118.7 (2) C20—C16—C9 114.3 (2)
C3—C4—Cl1 119.8 (2) C20—C16—C17 103.4 (2)
C4—C5—C6 118.0 (2) C9—C16—C17 112.5 (2)
C4—C5—H5 121.0 C20—C16—H16 108.8
C6—C5—H5 121.0 C9—C16—H16 108.8
C5—C6—C1 121.9 (2) C17—C16—H16 108.8
C5—C6—Cl2 118.7 (2) C18—C17—C16 104.8 (3)
C1—C6—Cl2 119.4 (2) C18—C17—H17A 110.8
N1—C7—C2 111.16 (19) C16—C17—H17A 110.8
N1—C7—C8 108.3 (2) C18—C17—H17B 110.8
C2—C7—C8 110.0 (2) C16—C17—H17B 110.8
N1—C7—H7 109.1 H17A—C17—H17B 108.9
C2—C7—H7 109.1 C19—C18—C17 108.8 (3)
C8—C7—H7 109.1 C19—C18—H18A 109.9
C7—C8—H8A 109.5 C17—C18—H18A 109.9
C7—C8—H8B 109.5 C19—C18—H18B 109.9
H8A—C8—H8B 109.5 C17—C18—H18B 109.9
C7—C8—H8C 109.5 H18A—C18—H18B 108.3
H8A—C8—H8C 109.5 C18—C19—C20 109.3 (3)
H8B—C8—H8C 109.5 C18—C19—H19A 109.8
N1—C9—C10 114.55 (18) C20—C19—H19A 109.8
N1—C9—C16 109.57 (19) C18—C19—H19B 109.8
C10—C9—C16 114.31 (19) C20—C19—H19B 109.8
N1—C9—H9 105.9 H19A—C19—H19B 108.3
C10—C9—H9 105.9 C19—C20—C16 104.9 (2)
C16—C9—H9 105.9 C19—C20—H20A 110.8
C11—C10—C15 115.5 (2) C16—C20—H20A 110.8
C11—C10—C9 125.4 (2) C19—C20—H20B 110.8
C15—C10—C9 119.1 (2) C16—C20—H20B 110.8
C12—C11—C10 122.4 (3) H20A—C20—H20B 108.8
O1—C1—C2—C3 −179.4 (2) C16—C9—C10—C11 −69.6 (3)
C6—C1—C2—C3 0.0 (4) N1—C9—C10—C15 −120.1 (2)
O1—C1—C2—C7 −5.9 (4) C16—C9—C10—C15 112.3 (3)
C6—C1—C2—C7 173.5 (2) C15—C10—C11—C12 0.6 (4)
C1—C2—C3—C4 1.8 (4) C9—C10—C11—C12 −177.5 (2)
C7—C2—C3—C4 −171.9 (2) C15—C10—C11—Cl3 −179.05 (19)
C2—C3—C4—C5 −1.2 (4) C9—C10—C11—Cl3 2.8 (3)
C2—C3—C4—Cl1 177.7 (2) C10—C11—C12—C13 0.7 (4)
C3—C4—C5—C6 −1.2 (4) Cl3—C11—C12—C13 −179.6 (2)
Cl1—C4—C5—C6 179.9 (2) C11—C12—C13—C14 −1.5 (4)
C4—C5—C6—C1 3.1 (4) C12—C13—C14—C15 0.9 (4)
C4—C5—C6—Cl2 −177.1 (2) C13—C14—C15—C10 0.4 (4)
O1—C1—C6—C5 176.9 (2) C11—C10—C15—C14 −1.2 (4)
C2—C1—C6—C5 −2.4 (4) C9—C10—C15—C14 177.1 (2)
O1—C1—C6—Cl2 −2.9 (3) N1—C9—C16—C20 56.3 (3)
C2—C1—C6—Cl2 177.76 (19) C10—C9—C16—C20 −173.6 (2)
C9—N1—C7—C2 83.1 (2) N1—C9—C16—C17 173.9 (2)
C9—N1—C7—C8 −155.9 (2) C10—C9—C16—C17 −56.0 (3)
C3—C2—C7—N1 −153.0 (2) C20—C16—C17—C18 −26.1 (4)
C1—C2—C7—N1 33.4 (3) C9—C16—C17—C18 −150.0 (3)
C3—C2—C7—C8 87.0 (3) C16—C17—C18—C19 13.3 (5)
C1—C2—C7—C8 −86.5 (3) C17—C18—C19—C20 5.6 (6)
C7—N1—C9—C10 49.9 (3) C18—C19—C20—C16 −22.4 (5)
C7—N1—C9—C16 179.88 (18) C9—C16—C20—C19 152.1 (3)
N1—C9—C10—C11 58.0 (3) C17—C16—C20—C19 29.4 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1A···N1 0.96 1.74 2.622 (3) 151
N1—H1N···Cl3 0.84 2.68 3.260 (2) 127
C13—H13···O1i 0.93 2.56 3.422 (3) 154

Symmetry codes: (i) −x+1/2, −y+1, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2619).

References

  1. Bruker (1999). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Cimarelli, C., Palmieri, G. & Volpini, E. (2002). Tetrahedron Asymmetry, 13, 2011–2018.
  3. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  4. Joshi, S. N. & Malhotra, S. V. (2003). Tetrahedron Asymmetry, 14, 1763–1766.
  5. Li, Y., He, B., Qin, B., Feng, X. & Zhang, G. (2004). J. Org. Chem.69, 7910–7913. [DOI] [PubMed]
  6. Puigjaner, C., Vidal-Ferran, A., Moyano, A., Pericas, M. A., Rieras, M. A. & Riera, A. (1999). J. Org. Chem.64, 7902–7911.
  7. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Watts, C. C., Thoniyot, P., Hirayama, L. C., Romano, T. & Singaram, B. (2005). Tetrahedron Asymmetry, 16, 1829–1835.
  10. Yang, X.-F., Zhang, G.-Y., Zhang, Y., Zhao, J.-Y. & Wang, X.-B. (2005). Acta Cryst. C61, o262–o264. [DOI] [PubMed]
  11. Zhang, G.-Y., Liao, Y.-Q., Wang, Z.-H., Nohira, H. & Hirose, T. (2003). Tetrahedron Asymmetry, 14, 3297–3300.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809041403/xu2619sup1.cif

e-65-o2759-sup1.cif (21.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809041403/xu2619Isup2.hkl

e-65-o2759-Isup2.hkl (172.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES