Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Oct 3;65(Pt 11):m1293–m1294. doi: 10.1107/S1600536809038446

{4-Bromo-2-[3-(diethyl­ammonio)propyl­imino­meth­yl]phenolato}diiodidozinc(II) methanol solvate

Xue-Wen Zhu a,*, Zhi-Gang Yin a, Xu-Zhao Yang a, Gang-Sen Li a, Chun-Xia Zhang a
PMCID: PMC2971364  PMID: 21578061

Abstract

In the title complex, [ZnI2(C14H21BrN2O)]·CH3OH, the asymmetric unit consists of a mononuclear zinc(II) complex mol­ecule and a methanol solvent mol­ecule. The compound was derived from the zwitterionic form of the Schiff base 4-bromo-2-[3-(diethyl­amino)propyl­imino­meth­yl]phenol. The ZnII atom is four-coordinated by the imine N and phenolate O atoms of the Schiff base ligand and by two iodide ions in a distorted tetra­hedral coordination. In the crystal structure, the methanol mol­ecules are linked to the Schiff base mol­ecules through N—H⋯O and O—H⋯O hydrogen bonds. One I atom is disordered over two positions in a 0.702 (19):0.298 (19) ratio.

Related literature

For background to the chemistry of Schiff base complexes, see: Ali et al. (2008); Biswas et al. (2008); Chen et al. (2008); Darensbourg & Frantz (2007); Habibi et al. (2007); Kawamoto et al. (2008); Lipscomb & Sträter (1996); Tomat et al. (2007); Wu et al. (2008); Yuan et al. (2007). For related structures, see: Zhu (2008); Zhu & Yang (2008a ,b ,c ); Qiu (2006a ,b ); Wei et al. (2007); Zhu et al. (2007). For hydrogen-bond motifs, see: Bernstein et al. (1995).graphic file with name e-65-m1293-scheme1.jpg

Experimental

Crystal data

  • [ZnI2(C14H21BrN2O)]·CH4O

  • M r = 664.45

  • Monoclinic, Inline graphic

  • a = 10.869 (2) Å

  • b = 17.562 (3) Å

  • c = 11.377 (2) Å

  • β = 94.358 (3)°

  • V = 2165.4 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.84 mm−1

  • T = 298 K

  • 0.20 × 0.20 × 0.17 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004) T min = 0.388, T max = 0.437

  • 14106 measured reflections

  • 4664 independent reflections

  • 3499 reflections with I > 2σ(I)

  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.105

  • S = 1.06

  • 4664 reflections

  • 225 parameters

  • 8 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.75 e Å−3

  • Δρmin = −0.85 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809038446/bx2241sup1.cif

e-65-m1293-sup1.cif (19.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809038446/bx2241Isup2.hkl

e-65-m1293-Isup2.hkl (233.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Zn1—O1 1.958 (4)
Zn1—N1 2.032 (5)
Zn1—I2′ 2.545 (6)
Zn1—I1 2.5627 (9)
Zn1—I2 2.5768 (18)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.82 1.86 2.640 (6) 158
N2—H2A⋯O2 0.91 (6) 1.81 (6) 2.716 (7) 173 (8)

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

Schiff bases have widely been used as versatile ligands in coordination chemistry (Biswas et al., 2008; Wu et al., 2008; Kawamoto et al., 2008; Ali et al., 2008; Habibi et al., 2007), and their metal complexes are of great interest in many fields (Chen et al., 2008; Yuan et al., 2007; Tomat et al., 2007; Darensbourg & Frantz, 2007). Zinc(II) is an important element in biological systems and functions as the active site of hydrolytic enzymes, such as carboxypeptidase and carbonic anhydrase where it is in a hard-donor coordination environment of nitrogen and oxygen ligands (Lipscomb & Sträter, 1996). Recently, we have reported a few Schiff base zinc complexes (Zhu, 2008; Zhu & Yang, 2008a,b,c). In this paper, the title new zinc(II) complex, Fig. 1, is reported.

The complex consists of a mononuclear zinc(II) complex molecule and a methanol molecule. The ZnII atom is four-coordinated by the imine N and phenolate O atoms of the zwitterionic form of the Schiff base ligand, and by two I- ions, in a distorted tetrahedral coordination. The coordinate bond lengths (Table 1) are typical and comparable to the corresponding values observed in the Schiff base zinc complexes we reported previously and other similar Schiff base zinc complexes (Zhu et al., 2007; Wei et al., 2007; Qiu, 2006a,b). I2 atom is disordered over two positions [0.702(19/0.298 (19)].

In the crystal structure, the methanol molecules are linked to the Schiff base molecules through O—H···O and N—H···O hydrogen bonds generating a graph-set motif C22(10) chain along [100] direction (Table 2, Fig. 2). (Bernstein et al., 1995)

Experimental

The Schiff base compound was prepared by the condensation of equimolar amounts of 5-bromosalicylaldehyde with N,N-diethylpropane-1,3-diamine in a methanol solution. The complex was prepared by the following method. To an anhydrous methanol solution (5 ml) of ZnI2 (31.9 mg, 0.1 mmol) was added a methanol solution (10 ml) of the Schiff base compound (31.3 mg, 0.1 mmol) with stirring. The mixture was stirred for 30 min at room temperature and filtered. Upon keeping the filtrate in air for a few days, colorless block-shaped crystals were formed.

Refinement

H2A was located from a difference Fourier map and refined isotropically, with N—H distance restrained to 0.90 (1) Å. Other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.97 Å, O—H distance of 0.82 Å, and with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(methyl C and O). The I2 atom is disordered over two distinct sites with occupancies of 0.702 (2) and 0.298 (2), respectively.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title complex, with ellipsoids drawn at the 30% probability level.

Fig. 2.

Fig. 2.

The crystal packing of the title complex.

Crystal data

[ZnI2(C14H21BrN2O)]·CH4O F(000) = 1264
Mr = 664.45 Dx = 2.038 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 3253 reflections
a = 10.869 (2) Å θ = 2.2–24.5°
b = 17.562 (3) Å µ = 5.84 mm1
c = 11.377 (2) Å T = 298 K
β = 94.358 (3)° Block, colorless
V = 2165.4 (7) Å3 0.20 × 0.20 × 0.17 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer 4664 independent reflections
Radiation source: fine-focus sealed tube 3499 reflections with I > 2σ(I)
graphite Rint = 0.041
ω scans θmax = 27.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) h = −13→13
Tmin = 0.388, Tmax = 0.437 k = −22→22
14106 measured reflections l = −14→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105 H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0298P)2 + 7.4538P] where P = (Fo2 + 2Fc2)/3
4664 reflections (Δ/σ)max = 0.001
225 parameters Δρmax = 0.75 e Å3
8 restraints Δρmin = −0.85 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Zn1 0.17105 (6) 0.26943 (4) −0.06556 (7) 0.0380 (2)
I1 0.13989 (4) 0.14098 (3) −0.17051 (4) 0.05239 (16)
I2 0.1766 (2) 0.39343 (11) −0.1861 (2) 0.0541 (8) 0.702 (19)
I2' 0.1771 (8) 0.3793 (9) −0.2109 (16) 0.118 (2) 0.298 (19)
Br1 0.19879 (8) 0.49547 (5) 0.46762 (7) 0.0630 (2)
O1 0.0560 (4) 0.2904 (3) 0.0548 (4) 0.0443 (11)
O2 0.8239 (4) 0.2628 (3) −0.0180 (5) 0.0546 (13)
H2 0.8982 0.2714 −0.0142 0.082*
N1 0.3188 (4) 0.2626 (3) 0.0547 (4) 0.0311 (11)
N2 0.6505 (5) 0.3665 (3) −0.0945 (5) 0.0383 (12)
C1 0.2134 (5) 0.3368 (3) 0.1971 (5) 0.0301 (13)
C2 0.0899 (5) 0.3330 (4) 0.1466 (5) 0.0338 (14)
C3 0.0011 (6) 0.3764 (4) 0.2014 (6) 0.0414 (16)
H3 −0.0810 0.3733 0.1723 0.050*
C4 0.0311 (6) 0.4231 (4) 0.2955 (6) 0.0431 (16)
H4 −0.0297 0.4516 0.3284 0.052*
C5 0.1523 (6) 0.4276 (4) 0.3417 (6) 0.0400 (15)
C6 0.2417 (6) 0.3841 (3) 0.2958 (5) 0.0355 (14)
H6 0.3220 0.3857 0.3302 0.043*
C7 0.3161 (5) 0.2950 (3) 0.1550 (5) 0.0340 (14)
H7 0.3870 0.2914 0.2059 0.041*
C8 0.4322 (5) 0.2223 (3) 0.0264 (6) 0.0369 (14)
H8A 0.4115 0.1707 0.0018 0.044*
H8B 0.4888 0.2195 0.0965 0.044*
C9 0.4942 (5) 0.2625 (3) −0.0704 (6) 0.0349 (14)
H9A 0.4367 0.2659 −0.1397 0.042*
H9B 0.5644 0.2326 −0.0911 0.042*
C10 0.5383 (5) 0.3429 (4) −0.0348 (6) 0.0395 (15)
H10A 0.4722 0.3789 −0.0547 0.047*
H10B 0.5568 0.3446 0.0499 0.047*
C11 0.6305 (6) 0.3689 (4) −0.2268 (6) 0.0506 (18)
H11A 0.5991 0.3198 −0.2544 0.061*
H11B 0.7096 0.3766 −0.2591 0.061*
C12 0.5423 (8) 0.4303 (5) −0.2747 (8) 0.074 (3)
H12A 0.4639 0.4237 −0.2425 0.111*
H12B 0.5320 0.4265 −0.3590 0.111*
H12C 0.5753 0.4794 −0.2528 0.111*
C13 0.7034 (6) 0.4385 (4) −0.0402 (7) 0.0545 (19)
H13A 0.7097 0.4334 0.0450 0.065*
H13B 0.6478 0.4804 −0.0608 0.065*
C14 0.8299 (7) 0.4567 (5) −0.0810 (8) 0.064 (2)
H14A 0.8834 0.4137 −0.0666 0.096*
H14B 0.8637 0.5000 −0.0384 0.096*
H14C 0.8225 0.4679 −0.1638 0.096*
C15 0.7989 (8) 0.2122 (6) 0.0666 (8) 0.075 (3)
H15A 0.8652 0.1762 0.0773 0.113*
H15B 0.7236 0.1858 0.0433 0.113*
H15C 0.7900 0.2387 0.1393 0.113*
H2A 0.705 (6) 0.329 (3) −0.073 (7) 0.080*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.0302 (4) 0.0493 (4) 0.0342 (4) 0.0016 (3) 0.0001 (3) −0.0028 (3)
I1 0.0523 (3) 0.0513 (3) 0.0513 (3) 0.0029 (2) −0.0108 (2) −0.0073 (2)
I2 0.0678 (10) 0.0487 (8) 0.0474 (9) 0.0168 (6) 0.0150 (8) 0.0091 (5)
I2' 0.130 (4) 0.100 (4) 0.115 (5) −0.016 (3) −0.036 (3) 0.035 (4)
Br1 0.0832 (6) 0.0568 (5) 0.0503 (5) 0.0002 (4) 0.0141 (4) −0.0192 (4)
O1 0.026 (2) 0.065 (3) 0.042 (3) −0.005 (2) 0.0035 (19) −0.009 (2)
O2 0.032 (2) 0.059 (3) 0.071 (4) −0.006 (2) −0.006 (2) 0.006 (3)
N1 0.024 (2) 0.035 (3) 0.035 (3) 0.0020 (19) 0.005 (2) −0.002 (2)
N2 0.034 (3) 0.040 (3) 0.042 (3) −0.003 (2) 0.009 (2) 0.002 (3)
C1 0.025 (3) 0.032 (3) 0.033 (3) −0.003 (2) 0.009 (2) 0.003 (3)
C2 0.029 (3) 0.041 (4) 0.032 (3) −0.002 (2) 0.010 (3) 0.005 (3)
C3 0.030 (3) 0.048 (4) 0.047 (4) 0.005 (3) 0.010 (3) 0.009 (3)
C4 0.051 (4) 0.040 (4) 0.041 (4) 0.008 (3) 0.020 (3) 0.008 (3)
C5 0.055 (4) 0.034 (3) 0.032 (4) 0.000 (3) 0.011 (3) −0.003 (3)
C6 0.038 (3) 0.042 (4) 0.027 (3) −0.003 (3) 0.006 (3) −0.002 (3)
C7 0.024 (3) 0.041 (3) 0.036 (4) −0.003 (2) −0.003 (3) 0.005 (3)
C8 0.030 (3) 0.032 (3) 0.049 (4) 0.004 (2) 0.006 (3) −0.003 (3)
C9 0.024 (3) 0.038 (3) 0.043 (4) 0.003 (2) 0.007 (3) −0.011 (3)
C10 0.035 (3) 0.045 (4) 0.040 (4) 0.000 (3) 0.013 (3) −0.006 (3)
C11 0.049 (4) 0.058 (5) 0.045 (4) −0.006 (3) 0.011 (3) 0.003 (4)
C12 0.070 (5) 0.076 (6) 0.074 (6) −0.002 (4) −0.003 (5) 0.026 (5)
C13 0.051 (4) 0.043 (4) 0.069 (5) −0.009 (3) 0.005 (4) −0.007 (4)
C14 0.054 (4) 0.061 (5) 0.077 (6) −0.019 (4) 0.008 (4) 0.011 (4)
C15 0.055 (5) 0.098 (7) 0.071 (6) −0.005 (5) −0.002 (4) 0.008 (5)

Geometric parameters (Å, °)

Zn1—O1 1.958 (4) C7—H7 0.9300
Zn1—N1 2.032 (5) C8—C9 1.510 (9)
Zn1—I2' 2.545 (6) C8—H8A 0.9700
Zn1—I1 2.5627 (9) C8—H8B 0.9700
Zn1—I2 2.5768 (18) C9—C10 1.536 (8)
Br1—C5 1.902 (6) C9—H9A 0.9700
O1—C2 1.315 (7) C9—H9B 0.9700
O2—C15 1.353 (9) C10—H10A 0.9700
O2—H2 0.8200 C10—H10B 0.9700
N1—C7 1.278 (7) C11—C12 1.516 (10)
N1—C8 1.478 (7) C11—H11A 0.9700
N2—C10 1.499 (8) C11—H11B 0.9700
N2—C13 1.503 (8) C12—H12A 0.9600
N2—C11 1.506 (9) C12—H12B 0.9600
N2—H2A 0.91 (6) C12—H12C 0.9600
C1—C6 1.412 (8) C13—C14 1.519 (9)
C1—C2 1.421 (8) C13—H13A 0.9700
C1—C7 1.447 (8) C13—H13B 0.9700
C2—C3 1.411 (8) C14—H14A 0.9600
C3—C4 1.368 (9) C14—H14B 0.9600
C3—H3 0.9300 C14—H14C 0.9600
C4—C5 1.383 (9) C15—H15A 0.9600
C4—H4 0.9300 C15—H15B 0.9600
C5—C6 1.370 (8) C15—H15C 0.9600
C6—H6 0.9300
O1—Zn1—N1 93.11 (18) N1—C8—H8B 109.4
O1—Zn1—I2' 111.2 (5) C9—C8—H8B 109.4
N1—Zn1—I2' 115.1 (3) H8A—C8—H8B 108.0
O1—Zn1—I1 115.00 (13) C8—C9—C10 112.7 (5)
N1—Zn1—I1 109.36 (14) C8—C9—H9A 109.1
I2'—Zn1—I1 111.9 (5) C10—C9—H9A 109.1
O1—Zn1—I2 104.79 (15) C8—C9—H9B 109.1
N1—Zn1—I2 111.03 (15) C10—C9—H9B 109.1
I2'—Zn1—I2 8.4 (5) H9A—C9—H9B 107.8
I1—Zn1—I2 120.23 (7) N2—C10—C9 112.5 (5)
C2—O1—Zn1 120.5 (4) N2—C10—H10A 109.1
C15—O2—H2 109.5 C9—C10—H10A 109.1
C7—N1—C8 118.9 (5) N2—C10—H10B 109.1
C7—N1—Zn1 120.3 (4) C9—C10—H10B 109.1
C8—N1—Zn1 120.7 (4) H10A—C10—H10B 107.8
C10—N2—C13 110.2 (5) N2—C11—C12 114.7 (6)
C10—N2—C11 113.6 (5) N2—C11—H11A 108.6
C13—N2—C11 114.2 (5) C12—C11—H11A 108.6
C10—N2—H2A 103 (5) N2—C11—H11B 108.6
C13—N2—H2A 106 (5) C12—C11—H11B 108.6
C11—N2—H2A 109 (5) H11A—C11—H11B 107.6
C6—C1—C2 119.4 (5) C11—C12—H12A 109.5
C6—C1—C7 115.8 (5) C11—C12—H12B 109.5
C2—C1—C7 124.9 (5) H12A—C12—H12B 109.5
O1—C2—C3 119.9 (5) C11—C12—H12C 109.5
O1—C2—C1 123.1 (5) H12A—C12—H12C 109.5
C3—C2—C1 116.9 (6) H12B—C12—H12C 109.5
C4—C3—C2 122.6 (6) N2—C13—C14 112.2 (6)
C4—C3—H3 118.7 N2—C13—H13A 109.2
C2—C3—H3 118.7 C14—C13—H13A 109.2
C3—C4—C5 119.7 (6) N2—C13—H13B 109.2
C3—C4—H4 120.2 C14—C13—H13B 109.2
C5—C4—H4 120.2 H13A—C13—H13B 107.9
C6—C5—C4 120.4 (6) C13—C14—H14A 109.5
C6—C5—Br1 118.8 (5) C13—C14—H14B 109.5
C4—C5—Br1 120.8 (5) H14A—C14—H14B 109.5
C5—C6—C1 120.9 (6) C13—C14—H14C 109.5
C5—C6—H6 119.5 H14A—C14—H14C 109.5
C1—C6—H6 119.5 H14B—C14—H14C 109.5
N1—C7—C1 126.3 (5) O2—C15—H15A 109.5
N1—C7—H7 116.9 O2—C15—H15B 109.5
C1—C7—H7 116.9 H15A—C15—H15B 109.5
N1—C8—C9 111.1 (5) O2—C15—H15C 109.5
N1—C8—H8A 109.4 H15A—C15—H15C 109.5
C9—C8—H8A 109.4 H15B—C15—H15C 109.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H2···O1i 0.82 1.86 2.640 (6) 158
N2—H2A···O2 0.91 (6) 1.81 (6) 2.716 (7) 173 (8)

Symmetry codes: (i) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2241).

References

  1. Ali, H. M., Mohamed Mustafa, M. I., Rizal, M. R. & Ng, S. W. (2008). Acta Cryst. E64, m718–m719. [DOI] [PMC free article] [PubMed]
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  3. Biswas, C., Drew, M. G. B. & Ghosh, A. (2008). Inorg. Chem.47, 4513–4519. [DOI] [PubMed]
  4. Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Chen, Z., Morimoto, H., Matsunaga, S. & Shibasaki, M. (2008). J. Am. Chem. Soc.130, 2170–2171. [DOI] [PubMed]
  6. Darensbourg, D. J. & Frantz, E. B. (2007). Inorg. Chem.46, 5967–5978. [DOI] [PubMed]
  7. Habibi, M. H., Askari, E., Chantrapromma, S. & Fun, H.-K. (2007). Acta Cryst. E63, m2905–m2906.
  8. Kawamoto, T., Nishiwaki, M., Tsunekawa, Y., Nozaki, K. & Konno, T. (2008). Inorg. Chem.47, 3095–3104. [DOI] [PubMed]
  9. Lipscomb, W. N. & Sträter, N. (1996). Chem. Rev.96, 2375–2434. [DOI] [PubMed]
  10. Qiu, X.-Y. (2006a). Acta Cryst. E62, m717–m718.
  11. Qiu, X.-Y. (2006b). Acta Cryst. E62, m2173–m2174.
  12. Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Tomat, E., Cuesta, L., Lynch, V. M. & Sessler, J. L. (2007). Inorg. Chem.46, 6224–6226. [DOI] [PubMed]
  15. Wei, Y.-J., Wang, F.-W. & Zhu, Q.-Y. (2007). Acta Cryst. E63, m654–m655.
  16. Wu, J.-C., Liu, S.-X., Keene, T. D., Neels, A., Mereacre, V., Powell, A. K. & Decurtins, S. (2008). Inorg. Chem.47, 3452–3459. [DOI] [PubMed]
  17. Yuan, M., Zhao, F., Zhang, W., Wang, Z.-M. & Gao, S. (2007). Inorg. Chem.46, 11235–11242. [DOI] [PubMed]
  18. Zhu, X.-W. (2008). Acta Cryst. E64, m1456–m1457. [DOI] [PMC free article] [PubMed]
  19. Zhu, Q.-Y., Wei, Y.-J. & Wang, F.-W. (2007). Acta Cryst. E63, m1431–m1432.
  20. Zhu, X.-W. & Yang, X.-Z. (2008a). Acta Cryst. E64, m1090–m1091. [DOI] [PMC free article] [PubMed]
  21. Zhu, X.-W. & Yang, X.-Z. (2008b). Acta Cryst. E64, m1092–m1093. [DOI] [PMC free article] [PubMed]
  22. Zhu, X.-W. & Yang, X.-Z. (2008c). Acta Cryst. E64, m1094–m1095. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809038446/bx2241sup1.cif

e-65-m1293-sup1.cif (19.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809038446/bx2241Isup2.hkl

e-65-m1293-Isup2.hkl (233.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES