Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Oct 28;65(Pt 11):o2868–o2869. doi: 10.1107/S1600536809044018

1-[2-(2,4-Dichloro­benz­yloxy)-2-(2-fur­yl)eth­yl]-1H-1,2,4-triazole

Özden Özel Güven a, Hakan Tahtacı a, Simon J Coles b, Tuncer Hökelek c,*
PMCID: PMC2971368  PMID: 21578455

Abstract

In the mol­ecule of the title compound, C15H13Cl2N3O2, the triazole ring is oriented at dihedral angles of 14.8 (2) and 81.5 (1)° to the furan and dichloro­benzene rings, respectively. The dihedral angle between the dichloro­benzene and furan rings is 86.3 (2)°. An intra­molecular C—H⋯O hydrogen bond results in the formation of a planar [maximum deviation 0.012 (2) Å] five-membered ring, which is oriented at a dihedral angle of 0.90 (7)° with respect to the dichloro­benzene ring. There is an inter­molecular C—H⋯π contact between the methyl­ene group and the dichloro­benzene ring.

Related literature

For general background to the use of ether structures containing 1H-imidazole and 1H-1,2,4-triazole rings as anti­fungal agents, see: Caira et al. (2004); Godefroi et al. (1969); Özel Güven et al. (2007a ,b ); Paulvannan et al. (2001); Peeters et al. (1996); Wahbi et al. (1995). For related structures, see: Freer et al. (1986); Özel Güven et al. (2008a ,b ,c ,d ,e ,f ); Peeters et al. (1979).graphic file with name e-65-o2868-scheme1.jpg

Experimental

Crystal data

  • C15H13Cl2N3O2

  • M r = 338.18

  • Monoclinic, Inline graphic

  • a = 10.6057 (2) Å

  • b = 13.3560 (3) Å

  • c = 11.1919 (2) Å

  • β = 101.170 (1)°

  • V = 1555.30 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.43 mm−1

  • T = 120 K

  • 0.50 × 0.35 × 0.20 mm

Data collection

  • Bruker–Nonius Kappa CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007) T min = 0.815, T max = 0.920

  • 6687 measured reflections

  • 3547 independent reflections

  • 2522 reflections with I > 2σ(I)

  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052

  • wR(F 2) = 0.161

  • S = 1.06

  • 3547 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.77 e Å−3

  • Δρmin = −0.33 e Å−3

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809044018/ci2951sup1.cif

e-65-o2868-sup1.cif (18.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809044018/ci2951Isup2.hkl

e-65-o2868-Isup2.hkl (170.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯O1 0.93 2.35 2.702 (3) 102
C9—H9BCg1i 0.97 2.90 3.775 (3) 151

Symmetry code: (i) Inline graphic. Cg1 is the centroid of the C10—C15 ring.

Acknowledgments

The authors acknowledge the Zonguldak Karaelmas University Research Fund (Project No. 2008–13–02–06) for financial support.

supplementary crystallographic information

Comment

In recent years, among antifungal agents, azole derivatives still have an important place in the class of systemic antifungal drugs. Some ether structures containing 1H-imidazole ring like micozanole, ecozanole and sulconazole have been synthesized and developed for clinical uses as antifungal agents (Godefroi et al., 1969). The crystal structures of these ether derivatives like miconazole (Peeters et al., 1979), econazole (Freer et al., 1986) have been reported previously. Also, antifungal activity of aromatic ethers possessing 1H-1,2,4-triazole ring have been reported (Wahbi et al., 1995). Itraconazole (Peeters et al., 1996) and fluconazole (Caira et al., 2004) are 1H-1,2,4-triazole ring containing azole derivatives. 1,2,4-Triazoles are biologically interesting molecules and their chemistry is receiving considerable attention due to antihypertensive, antifungal and antibacterial properties (Paulvannan et al., 2001). Ether structures possessing 1H-benzimidazole ring have been reported to show antibacterial activity more than antifungal activity (Özel Güven et al., 2007a,b). The crystal structures of 1H-benzimidazole ring containing ether derivatives (Özel Güven et al., 2008a,b,c,d) and also,1H-1,2,4-triazole ring containing ether derivatives have been reported recently (Özel Güven et al., 2008e,f). Now, we report herein the crystal structure of 2,4-dichloro- derivative of 1H-1,2,4-triazole and furyl rings containing ether structure.

In the molecule of the title compound (Fig. 1) the bond lengths and angles are generally within normal ranges. The planar triazole ring is oriented with respect to the furan and dichlorobenzene rings at dihedral angles of 14.8 (2)° and 81.5 (1)°, respectively. Atoms C3, C4 and C9 are -0.021 (2), 0.029 (2) and 0.034 (4) Å away from the planes of the triazole, furan and dichlorobenzene, respectively. So, they are nearly coplanar with the adjacent rings. The dichlorobenzene ring is oriented with respect to the furan ring at a dihedral angle of 86.3 (2)°. An intramolecular C—H···O hydrogen bond (Table 1) results in the formation of a planar five-membered ring (O1/H11/C9–C11), which is oriented with respect to dichlorobenzene ring at a dihedral angle of 0.90 (7)°. So, they are coplanar.

In the crystal, an intermolecular C—H···π interaction (Table 1) is observed between the methylene group and the dichlorobenzene ring. A view of the molecular packing in the crystal is shown in Fig.2.

Experimental

The title compound was synthesized by the reaction of 1-(furan-2-yl)-2-(1H-1, 2,4-triazol-1-yl)ethanol (unpublished results) with NaH and appropriate benzyl halide. To a solution of alcohol (400 mg, 2.232 mmol) in DMF (4 ml) was added NaH (89 mg, 2.232 mmol) in small fractions. The appropriate benzyl halide (436 mg, 2.232 mmol) was added dropwise. The mixture was stirred at room temperature for 3 h, and excess hydride was decomposed with methyl alcohol (5 ml). After evaporation to dryness under reduced pressure, the crude residue was suspended with water and extracted with methylene chloride. The organic layer was dried over anhydrous sodium sulfate and then evaporated to dryness. The crude residue was purified by chromatography on a silica-gel column using chloroform as eluent. Crystals suitable for X-ray analysis were obtained by the recrystallization of the ether from 2-propanol (yield; 355 mg, 47%).

Refinement

H atoms were positioned geometrically, with C-H = 0.93, 0.98 and 0.97 Å for aromatic, methine and methylene H, respectively, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The dashed line indicates a hydrogen bond.

Fig. 2.

Fig. 2.

Part of a packing diagram. Hydrogen atoms have been omitted for clarity.

Crystal data

C15H13Cl2N3O2 F(000) = 696
Mr = 338.18 Dx = 1.444 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 3274 reflections
a = 10.6057 (2) Å θ = 2.9–27.5°
b = 13.3560 (3) Å µ = 0.43 mm1
c = 11.1919 (2) Å T = 120 K
β = 101.170 (1)° Plate, colourless
V = 1555.30 (5) Å3 0.50 × 0.35 × 0.20 mm
Z = 4

Data collection

Bruker–Nonius Kappa CCD diffractometer 3547 independent reflections
Radiation source: fine-focus sealed tube 2522 reflections with I > 2σ(I)
graphite Rint = 0.025
φ and ω scans θmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 2007) h = −13→13
Tmin = 0.815, Tmax = 0.920 k = −17→17
6687 measured reflections l = −14→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0852P)2 + 0.4221P] where P = (Fo2 + 2Fc2)/3
3547 reflections (Δ/σ)max = 0.001
199 parameters Δρmax = 0.77 e Å3
0 restraints Δρmin = −0.32 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.48306 (8) 0.29223 (6) 0.76970 (7) 0.0823 (3)
Cl2 0.66147 (6) 0.12991 (6) 0.39547 (7) 0.0719 (3)
O1 0.26246 (14) 0.02290 (13) 0.27553 (13) 0.0523 (4)
O2 0.20740 (18) 0.07592 (15) 0.01684 (16) 0.0673 (5)
N1 0.06121 (18) −0.11249 (15) 0.27806 (16) 0.0498 (5)
N2 0.0878 (2) −0.20960 (17) 0.3093 (2) 0.0648 (6)
N3 0.0001 (2) −0.13162 (18) 0.45167 (19) 0.0644 (6)
C1 0.0492 (3) −0.2156 (2) 0.4135 (3) 0.0657 (7)
H1 0.0556 −0.2746 0.4583 0.079*
C2 0.0106 (3) −0.0688 (2) 0.3648 (2) 0.0598 (6)
H2 −0.0142 −0.0019 0.3637 0.072*
C3 0.0914 (2) −0.0710 (2) 0.16712 (19) 0.0550 (6)
H3A 0.0425 −0.0100 0.1464 0.066*
H3B 0.0658 −0.1183 0.1011 0.066*
C4 0.2337 (2) −0.04811 (18) 0.17976 (19) 0.0495 (5)
H4 0.2831 −0.1093 0.2036 0.059*
C5 0.2625 (2) −0.01101 (19) 0.0610 (2) 0.0505 (5)
C6 0.2450 (3) 0.0932 (3) −0.0918 (2) 0.0760 (8)
H6 0.2218 0.1486 −0.1416 0.091*
C7 0.3176 (4) 0.0206 (3) −0.1140 (3) 0.0926 (11)
H7 0.3551 0.0147 −0.1823 0.111*
C8 0.3303 (3) −0.0490 (3) −0.0155 (3) 0.0884 (10)
H8 0.3765 −0.1086 −0.0071 0.106*
C9 0.3934 (2) 0.05052 (18) 0.30581 (19) 0.0460 (5)
H9A 0.4171 0.0885 0.2396 0.055*
H9B 0.4468 −0.0089 0.3191 0.055*
C10 0.4136 (2) 0.11323 (16) 0.41992 (18) 0.0430 (5)
C11 0.3143 (2) 0.13351 (19) 0.4814 (2) 0.0528 (6)
H11 0.2325 0.1087 0.4508 0.063*
C12 0.3349 (2) 0.1896 (2) 0.5868 (2) 0.0590 (6)
H12 0.2674 0.2025 0.6267 0.071*
C13 0.4554 (2) 0.22648 (19) 0.6326 (2) 0.0547 (6)
C14 0.5566 (2) 0.20958 (18) 0.5743 (2) 0.0532 (6)
H14 0.6379 0.2351 0.6052 0.064*
C15 0.5333 (2) 0.15318 (17) 0.4678 (2) 0.0470 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.1025 (6) 0.0819 (6) 0.0616 (4) −0.0194 (4) 0.0135 (4) −0.0290 (4)
Cl2 0.0461 (4) 0.0894 (6) 0.0834 (5) −0.0112 (3) 0.0204 (3) −0.0183 (4)
O1 0.0435 (8) 0.0694 (11) 0.0444 (8) −0.0108 (7) 0.0093 (6) −0.0156 (7)
O2 0.0722 (12) 0.0746 (13) 0.0579 (10) 0.0045 (10) 0.0191 (8) 0.0056 (9)
N1 0.0488 (10) 0.0542 (12) 0.0468 (10) −0.0102 (9) 0.0101 (8) −0.0052 (8)
N2 0.0735 (14) 0.0536 (13) 0.0701 (14) −0.0059 (11) 0.0206 (11) −0.0055 (10)
N3 0.0621 (13) 0.0746 (16) 0.0615 (12) 0.0017 (11) 0.0249 (10) 0.0094 (11)
C1 0.0627 (16) 0.0617 (17) 0.0743 (17) −0.0078 (13) 0.0171 (13) 0.0120 (13)
C2 0.0644 (15) 0.0610 (16) 0.0577 (13) 0.0051 (12) 0.0213 (11) 0.0013 (12)
C3 0.0521 (13) 0.0703 (16) 0.0415 (11) −0.0148 (11) 0.0069 (9) −0.0046 (10)
C4 0.0505 (12) 0.0546 (14) 0.0431 (11) −0.0075 (10) 0.0086 (9) −0.0083 (10)
C5 0.0482 (12) 0.0583 (14) 0.0466 (11) −0.0061 (11) 0.0133 (9) −0.0116 (10)
C6 0.081 (2) 0.095 (2) 0.0525 (14) −0.0173 (18) 0.0141 (13) 0.0096 (15)
C7 0.101 (2) 0.125 (3) 0.0621 (17) −0.008 (2) 0.0413 (17) −0.0092 (18)
C8 0.099 (2) 0.100 (3) 0.0766 (19) 0.0192 (19) 0.0428 (18) −0.0125 (17)
C9 0.0430 (11) 0.0520 (13) 0.0437 (10) −0.0073 (10) 0.0101 (8) −0.0030 (9)
C10 0.0439 (11) 0.0428 (12) 0.0416 (10) −0.0036 (9) 0.0067 (8) 0.0020 (8)
C11 0.0455 (12) 0.0633 (16) 0.0495 (12) −0.0082 (10) 0.0094 (9) −0.0073 (10)
C12 0.0594 (14) 0.0677 (16) 0.0518 (13) −0.0041 (12) 0.0157 (11) −0.0110 (11)
C13 0.0670 (15) 0.0499 (14) 0.0456 (12) −0.0063 (11) 0.0072 (10) −0.0063 (10)
C14 0.0548 (13) 0.0495 (14) 0.0508 (12) −0.0109 (10) −0.0009 (10) 0.0008 (10)
C15 0.0434 (11) 0.0479 (13) 0.0493 (11) −0.0030 (9) 0.0083 (9) 0.0026 (9)

Geometric parameters (Å, °)

Cl1—C13 1.742 (2) C5—C8 1.321 (3)
Cl2—C15 1.740 (2) C6—H6 0.93
O1—C4 1.419 (3) C7—C6 1.293 (5)
O1—C9 1.413 (2) C7—H7 0.93
O2—C5 1.350 (3) C8—C7 1.428 (5)
O2—C6 1.370 (3) C8—H8 0.93
N1—N2 1.358 (3) C9—H9A 0.97
N1—C2 1.332 (3) C9—H9B 0.97
N1—C3 1.451 (3) C10—C15 1.386 (3)
N2—C1 1.311 (3) C10—C11 1.391 (3)
N3—C1 1.341 (4) C10—C9 1.508 (3)
N3—C2 1.305 (3) C11—C12 1.379 (3)
C1—H1 0.93 C11—H11 0.93
C2—H2 0.93 C12—H12 0.93
C3—H3A 0.97 C13—C12 1.373 (3)
C3—H3B 0.97 C14—C13 1.378 (4)
C4—C3 1.519 (3) C14—C15 1.391 (3)
C4—C5 1.504 (3) C14—H14 0.93
C4—H4 0.98
C9—O1—C4 114.40 (16) C6—C7—C8 108.0 (3)
C5—O2—C6 106.9 (2) C6—C7—H7 126.0
N2—N1—C3 121.0 (2) C8—C7—H7 126.0
C2—N1—N2 108.9 (2) C5—C8—C7 105.6 (3)
C2—N1—C3 130.1 (2) C5—C8—H8 127.2
C1—N2—N1 101.6 (2) C7—C8—H8 127.2
C2—N3—C1 101.9 (2) O1—C9—C10 108.67 (17)
N2—C1—N3 116.1 (2) O1—C9—H9A 110.0
N2—C1—H1 121.9 O1—C9—H9B 110.0
N3—C1—H1 121.9 C10—C9—H9A 110.0
N1—C2—H2 124.3 C10—C9—H9B 110.0
N3—C2—N1 111.4 (2) H9A—C9—H9B 108.3
N3—C2—H2 124.3 C11—C10—C9 122.02 (19)
N1—C3—C4 112.17 (18) C15—C10—C9 120.72 (19)
N1—C3—H3A 109.2 C15—C10—C11 117.3 (2)
N1—C3—H3B 109.2 C10—C11—H11 119.4
C4—C3—H3A 109.2 C12—C11—C10 121.3 (2)
C4—C3—H3B 109.2 C12—C11—H11 119.4
H3A—C3—H3B 107.9 C11—C12—H12 120.1
O1—C4—C5 113.35 (19) C13—C12—C11 119.8 (2)
O1—C4—C3 105.63 (18) C13—C12—H12 120.1
O1—C4—H4 109.0 C12—C13—Cl1 119.7 (2)
C3—C4—H4 109.0 C12—C13—C14 121.2 (2)
C5—C4—C3 110.63 (18) C14—C13—Cl1 119.08 (19)
C5—C4—H4 109.0 C13—C14—C15 118.0 (2)
O2—C5—C4 117.3 (2) C13—C14—H14 121.0
C8—C5—O2 110.1 (3) C15—C14—H14 121.0
C8—C5—C4 132.5 (3) C10—C15—Cl2 119.41 (17)
O2—C6—H6 125.3 C10—C15—C14 122.5 (2)
C7—C6—O2 109.3 (3) C14—C15—Cl2 118.09 (18)
C7—C6—H6 125.3
C9—O1—C4—C3 177.01 (19) C3—C4—C5—C8 −113.9 (3)
C9—O1—C4—C5 −61.7 (3) O2—C5—C8—C7 0.9 (4)
C4—O1—C9—C10 −171.48 (18) C4—C5—C8—C7 178.2 (3)
C6—O2—C5—C4 −178.8 (2) C8—C7—C6—O2 −0.2 (4)
C6—O2—C5—C8 −1.0 (3) C5—C8—C7—C6 −0.4 (4)
C5—O2—C6—C7 0.8 (3) C11—C10—C9—O1 2.1 (3)
C2—N1—N2—C1 0.4 (3) C15—C10—C9—O1 −177.9 (2)
C3—N1—N2—C1 178.7 (2) C9—C10—C11—C12 178.9 (2)
N2—N1—C2—N3 −0.9 (3) C15—C10—C11—C12 −1.1 (4)
C3—N1—C2—N3 −179.0 (2) C9—C10—C15—Cl2 −0.3 (3)
N2—N1—C3—C4 −77.0 (3) C9—C10—C15—C14 −178.6 (2)
C2—N1—C3—C4 100.9 (3) C11—C10—C15—Cl2 179.67 (18)
N1—N2—C1—N3 0.2 (3) C11—C10—C15—C14 1.4 (3)
C2—N3—C1—N2 −0.7 (3) C10—C11—C12—C13 0.0 (4)
C1—N3—C2—N1 1.0 (3) Cl1—C13—C12—C11 −176.9 (2)
O1—C4—C3—N1 −60.3 (3) C14—C13—C12—C11 0.9 (4)
C5—C4—C3—N1 176.7 (2) C15—C14—C13—Cl1 177.24 (18)
O1—C4—C5—O2 −55.2 (3) C15—C14—C13—C12 −0.6 (4)
O1—C4—C5—C8 127.7 (3) C13—C14—C15—C10 −0.6 (4)
C3—C4—C5—O2 63.3 (3) C13—C14—C15—Cl2 −178.91 (19)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C11—H11···O1 0.93 2.35 2.702 (3) 102
C9—H9B···Cg1i 0.97 2.90 3.775 (3) 151

Symmetry codes: (i) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2951).

References

  1. Caira, M. R., Alkhamis, K. A. & Obaidat, R. M. (2004). J. Pharm. Sci.93, 601–611. [DOI] [PubMed]
  2. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  3. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  4. Freer, A. A., Pearson, A. & Salole, E. G. (1986). Acta Cryst. C42, 1350–1352.
  5. Godefroi, E. F., Heeres, J., Van Cutsem, J. & Janssen, P. A. J. (1969). J. Med. Chem.12, 784–791. [DOI] [PubMed]
  6. Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
  7. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  8. Özel Güven, Ö., Erdoğan, T., Coles, S. J. & Hökelek, T. (2008a). Acta Cryst. E64, o1437. [DOI] [PMC free article] [PubMed]
  9. Özel Güven, Ö., Erdoğan, T., Coles, S. J. & Hökelek, T. (2008b). Acta Cryst. E64, o1496–o1497. [DOI] [PMC free article] [PubMed]
  10. Özel Güven, Ö., Erdoğan, T., Coles, S. J. & Hökelek, T. (2008c). Acta Cryst. E64, o1588–o1589. [DOI] [PMC free article] [PubMed]
  11. Özel Güven, Ö., Erdoğan, T., Coles, S. J. & Hökelek, T. (2008d). Acta Cryst. E64, o1655–o1656. [DOI] [PMC free article] [PubMed]
  12. Özel Güven, Ö., Erdoğan, T., Göker, H. & Yıldız, S. (2007a). Bioorg. Med. Chem. Lett.17, 2233–2236. [DOI] [PubMed]
  13. Özel Güven, Ö., Erdoğan, T., Göker, H. & Yıldız, S. (2007b). J. Heterocycl. Chem.44, 731–734.
  14. Özel Güven, Ö., Tahtacı, H., Coles, S. J. & Hökelek, T. (2008e). Acta Cryst. E64, o1914–o1915. [DOI] [PMC free article] [PubMed]
  15. Özel Güven, Ö., Tahtacı, H., Tahir, M. N. & Hökelek, T. (2008f). Acta Cryst. E64, o2465. [DOI] [PMC free article] [PubMed]
  16. Paulvannan, K., Hale, R., Sedehi, D. & Chen, T. (2001). Tetrahedron, 57, 9677–9682.
  17. Peeters, O. M., Blaton, N. M. & De Ranter, C. J. (1979). Acta Cryst. B35, 2461–2464.
  18. Peeters, O. M., Blaton, N. M. & De Ranter, C. J. (1996). Acta Cryst. C52, 2225–2229.
  19. Sheldrick, G. M. (2007). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  20. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  21. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  22. Wahbi, Y., Caujolle, R., Tournaire, C., Payard, M., Linas, M. D. & Seguela, J. P. (1995). Eur. J. Med. Chem.30, 955–962.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809044018/ci2951sup1.cif

e-65-o2868-sup1.cif (18.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809044018/ci2951Isup2.hkl

e-65-o2868-Isup2.hkl (170.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES