Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Oct 31;65(Pt 11):o2909–o2910. doi: 10.1107/S1600536809043797

3-(2-Amino-1-methyl-4-oxo-4,5-dihydro-1H-imidazol-5-yl)-5-fluoro-3-hydr­oxy-1-methyl­indolin-2-one methanol hemisolvate

Narsimha Reddy Penthala a, Thirupathi Reddy Yerram Reddy a, Sean Parkin b, Peter A Crooks a,*
PMCID: PMC2971372  PMID: 21578489

Abstract

In the title compound, C13H13FN4O3·0.5CH3OH, mol­ecules are packed in the crystal structure by a series of O—H⋯N, N—H⋯O, N—H⋯F and O—H⋯O inter­molecular hydrogen bonds. The indole and creatinine units make a dihedral angle of 60.80 (4)°.

Related literature

For the biological activity of isatin and its derivatives, see: Pandeya et al. (2005); The endogenous oxindoles 5-hydroxy­oxindole and isatin are anti­proliferative and proapoptotic, see: Cane et al. (2000). For the in vitro cytotoxicity evaluation of some substituted isatin derivatives, see: Vine et al. (2007). For 2-indol-3-yl-methyl­enequinuclidin-3-ols and NADPH oxidase activity, see: Sekhar et al. (2003) and for novel substituted (Z)-2-(N-benzyl­indol-3-ylmethyl­ene)quinuclidin-3-one and (Z)-(±)-2-(N-benzyl­indol-3-yl methyl­ene)quinuclidin-3-ol derivatives as potent thermal sensitizing agents, see: Sonar et al. (2007). For the crystal and mol­ecular structure of isatin, see: Frolova et al. (1988), for 3-(2-amino-1-methyl-4-oxo-4,5-dihydro-1H-imidazol-5-yl)-3-hydroxy­indolin-2-one monohydrate, see: Penthala et al. (2009) and for 1,1′-diacetyl-3-hydr­oxy-2,2′,3,3′-tetra­hydro-3,3′-bi(1H-indole)-2,2′-dione, see: Usman et al. (2002). For the aldol condensation enolate mechanism via a six-membered transition state, see: Zimmerman & Traxler (1957). graphic file with name e-65-o2909-scheme1.jpg

Experimental

Crystal data

  • C13H13FN4O3·0.5CH4O

  • M r = 308.30

  • Monoclinic, Inline graphic

  • a = 14.3088 (3) Å

  • b = 10.7900 (2) Å

  • c = 18.1286 (5) Å

  • β = 107.676 (1)°

  • V = 2666.77 (10) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 1.04 mm−1

  • T = 90 K

  • 0.15 × 0.03 × 0.02 mm

Data collection

  • Bruker X8 Proteum diffractometer

  • Absorption correction: multi-scan (SADABS in APEX2; Bruker, 2006) T min = 0.805, T max = 0.979

  • 19606 measured reflections

  • 2448 independent reflections

  • 2196 reflections with I > 2σ(I)

  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.092

  • S = 1.04

  • 2448 reflections

  • 211 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 and local procedures.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809043797/hg2556sup1.cif

e-65-o2909-sup1.cif (20.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809043797/hg2556Isup2.hkl

e-65-o2909-Isup2.hkl (120.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N2i 0.84 1.97 2.8074 (16) 171
N3—H3A⋯O3ii 0.88 2.25 3.1265 (16) 177
N3—H3B⋯O1iii 0.88 2.12 2.8490 (17) 140
N3—H3B⋯F1iv 0.88 2.45 2.8743 (14) 110
O1S—H1S4⋯O3 0.84 2.01 2.846 (3) 171

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

This investigation was supported by NIH/National Cancer Institute grant PO1 CA104457 (PAC) and by NSF MRI grant CHE 0319176 (SP).

supplementary crystallographic information

Comment

Isatin analogs display diverse biological activities, (Pandeya et al., 2005; Cane et al., 2000 and Vine et al., 2007). In continuation of our work on radiosensitizers (Sekhar et al., 2003; Sonar et al., 2007), we focused on the design, synthesis and structural analysis of a series of 3-(2-amino-1-methyl-4-oxo-4,5-dihydro-1H-imidazol-5-yl)-3 -hydroxyindolin-2-one analogs with different substituents on the indole moiety. The main aim of X-ray analysis of the title compound was to confirm the stereochemistry of the molecule and to obtain detailed information on the structural conformation, which may be useful in structure-activity relationship (SAR) analysis. The title compound was prepared by the aldol condensation of 5-fluoro-N-methyl indol-2,3-dione with 2-amino- 1-methyl-1H-imidazol-4(5H)-one (creatinine) in the presence of sodium acetate in acetic acid under microwave irradiation. The compound was crystallized from methyl alcohol. This aldol condensation reaction proceeds by the formation of the E-enolate, as per the Zimmerman-Traxler model (Zimmerman & Traxler, 1957). The molecular structure and the atom-numbering scheme are shown in Fig.1. The isatin ring is planar with r.m.s. deviation of 0.0232 (11) Å and the creatinine ring has r.m.s. deviation of 0.0307 (8) Å. with bond distances and angles comparable with those previously reported for other isatin derivatives (Frolova et al., 1988; Usman et al., 2002 and Penthala et al. (2009). The indole and creatinine moieties make a dihedral angle of 60.80 (4) °. Intermolecular O—H···N, N—H···O, N—H···F and O—H···O hydrogen bonds stabilize the crystal structure and form a supramolecular aggregation.

Experimental

A mixture of 5-fluoro-N-methyl isatin (1 mmol), creatinine (1.1 mmol) and sodium acetate (1.2 mmol) in acetic acid (1 ml) was irradiated in a domestic microwave oven for 30 sec with intermittent cooling every 5 sec. The reaction mixture was allowed to cool to room temperature, 10 ml of saturated sodium bicarbonate solution was added, and the mixture was stirred for 10 minutes. The precipitate thus obtained was collected by filtration, washed with cold water and dried, to afford the crude product. Crystallization from methyl alcohol gave a white crystalline product of 3-(2-amino-1-methyl-4-oxo-4,5-dihydro-1H-imidazol-5-yl)- 5-fluoro-3-hydroxy-1-methylindolin-2-one methanolate, which was suitable for X-ray analysis. 1H NMR (DMSO-d6): δ 3.05 (s, 3H), 3.18 (s, 3H), 4.11 (s, 1H), 6.58 (s, 1H, OH), 6.85–6.89 (dd, J=2.7 Hz, J=5.4 Hz, 1H), 6.93–6.97 (dd, J=2.7 Hz, J=4.2 Hz, 1H), 7.11–7.18 (m, 1H), 7.42 (bs, 1H, NH), 7.72 (bs, 1H, NH), p.p.m.; 13C NMR (DMSO-d6): δ 26.08, 32.76, 48.62, 69.87, 76.29, 109.14, 109.25, 111.16, 111.50, 115.42, 115.72, 128.84, 128.95, 140.23, 156.35, 159.49, 171.98, 173.97, 181.85 p.p.m..

Refinement

H atoms were found in difference Fourier maps and subsequently placed in idealized positions with constrained distances of 0.98Å (RCH3), 1.00 Å (R3CH), 0.95 Å (CArH), 0.84 Å (O—H), 0.88 Å (N—H), and with Uiso(H) values set to either 1.2Ueq or 1.5Ueq (RCH3, OH) of the attached atom.

The presence of difference map peaks in the vicinity of the 2-fold axis at ca (1/4,0.62,0) were consistent with a disordered methanol solvent molecule. This methanol was modelled at half occupancy, such that application of the 2-fold site symmetry generates a full occupancy for the site. There is an O—H···O hydrogen-bonding interaction between this methanol and O3 of the main molecule (see Table 1).

Figures

Fig. 1.

Fig. 1.

A view of the molecule with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

C13H13FN4O3·0.5CH4O F(000) = 1288
Mr = 308.30 Dx = 1.536 Mg m3
Monoclinic, I2/a Cu Kα radiation, λ = 1.54178 Å
Hall symbol: -I 2ya Cell parameters from 9961 reflections
a = 14.3088 (3) Å θ = 4.8–68.5°
b = 10.7900 (2) Å µ = 1.04 mm1
c = 18.1286 (5) Å T = 90 K
β = 107.676 (1)° Rod, colourless
V = 2666.77 (10) Å3 0.15 × 0.03 × 0.02 mm
Z = 8

Data collection

Bruker X8 Proteum diffractometer 2448 independent reflections
Radiation source: fine-focus rotating anode 2196 reflections with I > 2σ(I)
graded multilayer optics Rint = 0.041
Detector resolution: 5.6 pixels mm-1 θmax = 68.5°, θmin = 4.8°
φ and ω scans h = −17→17
Absorption correction: multi-scan (SADABS in APEX2; Bruker, 2006) k = −13→13
Tmin = 0.805, Tmax = 0.979 l = −17→21
19606 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0452P)2 + 3.1985P] where P = (Fo2 + 2Fc2)/3
2448 reflections (Δ/σ)max < 0.001
211 parameters Δρmax = 0.25 e Å3
0 restraints Δρmin = −0.27 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
F1 0.71683 (6) 0.82226 (8) 0.40909 (5) 0.0226 (2)
O1 0.34944 (7) 0.34900 (10) 0.34227 (6) 0.0220 (2)
N1 0.40050 (8) 0.53388 (11) 0.40330 (7) 0.0180 (3)
C1 0.40738 (10) 0.43524 (13) 0.35922 (8) 0.0171 (3)
O2 0.56972 (7) 0.35213 (9) 0.37870 (6) 0.0182 (2)
H2 0.5465 0.2822 0.3628 0.027*
N2 0.48670 (8) 0.61111 (11) 0.17484 (7) 0.0186 (3)
C2 0.50466 (10) 0.44565 (13) 0.33829 (8) 0.0164 (3)
O3 0.34268 (7) 0.56370 (9) 0.20215 (6) 0.0207 (2)
N3 0.64656 (9) 0.58544 (12) 0.16571 (8) 0.0230 (3)
H3A 0.7006 0.5411 0.1762 0.028*
H3B 0.6417 0.6549 0.1393 0.028*
C3 0.54173 (10) 0.57182 (13) 0.37146 (8) 0.0162 (3)
N4 0.57662 (8) 0.44285 (11) 0.22994 (7) 0.0168 (3)
C4 0.62309 (10) 0.64045 (13) 0.37024 (8) 0.0168 (3)
H4 0.6668 0.6122 0.3436 0.020*
C5 0.63765 (10) 0.75245 (14) 0.40985 (8) 0.0181 (3)
C6 0.57663 (11) 0.79772 (14) 0.44928 (8) 0.0205 (3)
H6 0.5904 0.8747 0.4758 0.025*
C7 0.49419 (11) 0.72920 (14) 0.44984 (8) 0.0206 (3)
H7 0.4503 0.7582 0.4762 0.025*
C8 0.47874 (10) 0.61742 (13) 0.41062 (8) 0.0174 (3)
C9 0.32581 (11) 0.54673 (15) 0.44237 (9) 0.0227 (3)
H9A 0.2715 0.5971 0.4105 0.034*
H9B 0.3544 0.5872 0.4926 0.034*
H9C 0.3013 0.4646 0.4503 0.034*
C10 0.48606 (10) 0.43188 (13) 0.25013 (8) 0.0158 (3)
H10 0.4521 0.3519 0.2308 0.019*
C11 0.42843 (10) 0.54179 (13) 0.20572 (8) 0.0166 (3)
C12 0.57275 (10) 0.54783 (13) 0.18962 (8) 0.0174 (3)
C13 0.65283 (10) 0.34938 (13) 0.24071 (9) 0.0200 (3)
H13A 0.6606 0.3276 0.1904 0.030*
H13B 0.6344 0.2753 0.2644 0.030*
H13C 0.7149 0.3822 0.2746 0.030*
O1S 0.2149 (2) 0.6430 (4) 0.05671 (19) 0.0769 (13) 0.50
H1S4 0.2574 0.6239 0.0984 0.115* 0.50
C1S 0.2489 (9) 0.6226 (3) −0.0003 (6) 0.0403 (9) 0.5
H1S1 0.3121 0.6649 0.0091 0.060* 0.50
H2S1 0.2026 0.6540 −0.0482 0.060* 0.50
H3S1 0.2580 0.5332 −0.0051 0.060* 0.50

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F1 0.0206 (4) 0.0228 (5) 0.0262 (5) −0.0075 (3) 0.0100 (3) −0.0027 (3)
O1 0.0189 (5) 0.0224 (5) 0.0266 (6) −0.0049 (4) 0.0098 (4) −0.0021 (4)
N1 0.0153 (6) 0.0215 (6) 0.0188 (6) −0.0016 (5) 0.0076 (5) −0.0022 (5)
C1 0.0156 (7) 0.0204 (7) 0.0158 (7) 0.0003 (5) 0.0056 (5) 0.0016 (5)
O2 0.0172 (5) 0.0165 (5) 0.0200 (5) 0.0007 (4) 0.0043 (4) 0.0002 (4)
N2 0.0174 (6) 0.0192 (6) 0.0203 (6) 0.0003 (5) 0.0073 (5) 0.0020 (5)
C2 0.0138 (6) 0.0176 (7) 0.0180 (7) −0.0001 (5) 0.0052 (5) 0.0006 (5)
O3 0.0153 (5) 0.0223 (5) 0.0246 (5) 0.0007 (4) 0.0065 (4) 0.0000 (4)
N3 0.0202 (6) 0.0225 (6) 0.0297 (7) 0.0015 (5) 0.0129 (5) 0.0070 (5)
C3 0.0160 (7) 0.0175 (7) 0.0145 (6) 0.0016 (5) 0.0039 (5) 0.0012 (5)
N4 0.0158 (6) 0.0166 (6) 0.0206 (6) 0.0013 (4) 0.0096 (5) 0.0014 (5)
C4 0.0152 (6) 0.0196 (7) 0.0158 (7) 0.0008 (5) 0.0050 (5) 0.0004 (5)
C5 0.0158 (6) 0.0197 (7) 0.0180 (7) −0.0029 (5) 0.0037 (5) 0.0029 (5)
C6 0.0231 (7) 0.0192 (7) 0.0184 (7) −0.0004 (6) 0.0051 (6) −0.0032 (6)
C7 0.0199 (7) 0.0241 (7) 0.0190 (7) 0.0013 (6) 0.0078 (6) −0.0028 (6)
C8 0.0147 (6) 0.0211 (7) 0.0160 (7) 0.0000 (5) 0.0039 (5) 0.0012 (5)
C9 0.0184 (7) 0.0321 (8) 0.0206 (7) −0.0025 (6) 0.0103 (6) −0.0039 (6)
C10 0.0133 (7) 0.0168 (7) 0.0185 (7) −0.0015 (5) 0.0069 (5) −0.0010 (5)
C11 0.0160 (7) 0.0176 (7) 0.0160 (7) −0.0003 (5) 0.0044 (5) −0.0027 (5)
C12 0.0181 (7) 0.0184 (7) 0.0160 (7) −0.0015 (5) 0.0058 (5) −0.0016 (5)
C13 0.0183 (7) 0.0197 (7) 0.0245 (7) 0.0034 (6) 0.0102 (6) 0.0008 (6)
O1S 0.0548 (19) 0.136 (4) 0.0458 (18) 0.060 (2) 0.0247 (16) 0.038 (2)
C1S 0.0351 (15) 0.0419 (18) 0.0384 (17) 0.012 (4) 0.0029 (13) −0.033 (4)

Geometric parameters (Å, °)

F1—C5 1.3641 (16) C4—C5 1.389 (2)
O1—C1 1.2220 (17) C4—H4 0.9500
N1—C1 1.3525 (19) C5—C6 1.375 (2)
N1—C8 1.4117 (18) C6—C7 1.395 (2)
N1—C9 1.4570 (18) C6—H6 0.9500
C1—C2 1.5539 (19) C7—C8 1.383 (2)
O2—C2 1.4168 (16) C7—H7 0.9500
O2—H2 0.8400 C9—H9A 0.9800
N2—C11 1.3606 (18) C9—H9B 0.9800
N2—C12 1.3615 (18) C9—H9C 0.9800
C2—C3 1.5175 (19) C10—C11 1.5270 (19)
C2—C10 1.546 (2) C10—H10 1.0000
O3—C11 1.2318 (17) C13—H13A 0.9800
N3—C12 1.3214 (19) C13—H13B 0.9800
N3—H3A 0.8800 C13—H13C 0.9800
N3—H3B 0.8800 O1S—C1S 1.288 (10)
C3—C4 1.386 (2) O1S—H1S4 0.8400
C3—C8 1.395 (2) C1S—H1S1 0.9800
N4—C12 1.3401 (19) C1S—H2S1 0.9800
N4—C13 1.4543 (18) C1S—H3S1 0.9800
N4—C10 1.4544 (17)
C1—N1—C8 111.10 (12) C7—C8—C3 122.81 (13)
C1—N1—C9 123.91 (12) C7—C8—N1 127.11 (13)
C8—N1—C9 124.85 (12) C3—C8—N1 110.08 (12)
O1—C1—N1 125.61 (13) N1—C9—H9A 109.5
O1—C1—C2 125.69 (13) N1—C9—H9B 109.5
N1—C1—C2 108.59 (11) H9A—C9—H9B 109.5
C2—O2—H2 109.5 N1—C9—H9C 109.5
C11—N2—C12 105.90 (12) H9A—C9—H9C 109.5
O2—C2—C3 109.77 (11) H9B—C9—H9C 109.5
O2—C2—C10 110.25 (11) N4—C10—C11 100.60 (11)
C3—C2—C10 115.20 (11) N4—C10—C2 111.45 (11)
O2—C2—C1 108.60 (11) C11—C10—C2 111.49 (11)
C3—C2—C1 101.49 (11) N4—C10—H10 111.0
C10—C2—C1 111.09 (11) C11—C10—H10 111.0
C12—N3—H3A 120.0 C2—C10—H10 111.0
C12—N3—H3B 120.0 O3—C11—N2 126.72 (13)
H3A—N3—H3B 120.0 O3—C11—C10 123.14 (13)
C4—C3—C8 119.69 (13) N2—C11—C10 110.09 (11)
C4—C3—C2 131.87 (13) N3—C12—N4 122.26 (13)
C8—C3—C2 108.42 (12) N3—C12—N2 123.14 (13)
C12—N4—C13 124.37 (12) N4—C12—N2 114.60 (12)
C12—N4—C10 108.28 (11) N4—C13—H13A 109.5
C13—N4—C10 126.78 (11) N4—C13—H13B 109.5
C3—C4—C5 116.85 (13) H13A—C13—H13B 109.5
C3—C4—H4 121.6 N4—C13—H13C 109.5
C5—C4—H4 121.6 H13A—C13—H13C 109.5
F1—C5—C6 118.00 (13) H13B—C13—H13C 109.5
F1—C5—C4 118.03 (12) C1S—O1S—H1S4 109.5
C6—C5—C4 123.97 (13) O1S—C1S—H1S1 109.5
C5—C6—C7 119.17 (13) O1S—C1S—H2S1 109.5
C5—C6—H6 120.4 H1S1—C1S—H2S1 109.5
C7—C6—H6 120.4 O1S—C1S—H3S1 109.5
C8—C7—C6 117.51 (13) H1S1—C1S—H3S1 109.5
C8—C7—H7 121.2 H2S1—C1S—H3S1 109.5
C6—C7—H7 121.2
C8—N1—C1—O1 −179.11 (13) C2—C3—C8—N1 −2.46 (15)
C9—N1—C1—O1 5.0 (2) C1—N1—C8—C7 178.43 (14)
C8—N1—C1—C2 4.55 (15) C9—N1—C8—C7 −5.7 (2)
C9—N1—C1—C2 −171.35 (12) C1—N1—C8—C3 −1.40 (16)
O1—C1—C2—O2 −66.31 (17) C9—N1—C8—C3 174.45 (13)
N1—C1—C2—O2 110.02 (12) C12—N4—C10—C11 6.11 (14)
O1—C1—C2—C3 178.05 (13) C13—N4—C10—C11 −165.51 (13)
N1—C1—C2—C3 −5.62 (14) C12—N4—C10—C2 −112.18 (13)
O1—C1—C2—C10 55.09 (18) C13—N4—C10—C2 76.20 (17)
N1—C1—C2—C10 −128.58 (12) O2—C2—C10—N4 −60.19 (14)
O2—C2—C3—C4 68.20 (19) C3—C2—C10—N4 64.70 (15)
C10—C2—C3—C4 −56.9 (2) C1—C2—C10—N4 179.38 (11)
C1—C2—C3—C4 −177.03 (14) O2—C2—C10—C11 −171.72 (10)
O2—C2—C3—C8 −110.02 (13) C3—C2—C10—C11 −46.83 (16)
C10—C2—C3—C8 124.84 (13) C1—C2—C10—C11 67.85 (14)
C1—C2—C3—C8 4.74 (14) C12—N2—C11—O3 −176.78 (14)
C8—C3—C4—C5 0.7 (2) C12—N2—C11—C10 5.73 (15)
C2—C3—C4—C5 −177.33 (13) N4—C10—C11—O3 175.06 (13)
C3—C4—C5—F1 −179.53 (12) C2—C10—C11—O3 −66.68 (17)
C3—C4—C5—C6 −0.1 (2) N4—C10—C11—N2 −7.34 (14)
F1—C5—C6—C7 178.89 (12) C2—C10—C11—N2 110.92 (13)
C4—C5—C6—C7 −0.6 (2) C13—N4—C12—N3 −10.8 (2)
C5—C6—C7—C8 0.5 (2) C10—N4—C12—N3 177.36 (13)
C6—C7—C8—C3 0.1 (2) C13—N4—C12—N2 168.57 (12)
C6—C7—C8—N1 −179.68 (13) C10—N4—C12—N2 −3.30 (16)
C4—C3—C8—C7 −0.8 (2) C11—N2—C12—N3 177.68 (13)
C2—C3—C8—C7 177.70 (13) C11—N2—C12—N4 −1.65 (16)
C4—C3—C8—N1 179.06 (12)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H2···N2i 0.84 1.97 2.8074 (16) 171
N3—H3A···O3ii 0.88 2.25 3.1265 (16) 177
N3—H3B···O1iii 0.88 2.12 2.8490 (17) 140
N3—H3B···F1iv 0.88 2.45 2.8743 (14) 110
O1S—H1S4···O3 0.84 2.01 2.846 (3) 171

Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) x+1/2, −y+1, z; (iii) −x+1, y+1/2, −z+1/2; (iv) −x+3/2, −y+3/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2556).

References

  1. Bruker (2006). APEX2 andSAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Cane, A., Tournaire, M. C., Barritault, D. & Crumeyrolle-Arias, M. (2000). Biochem. Biophys. Res. Commun 276, 379–384. [DOI] [PubMed]
  3. Frolova, N. A., Kravtsov, V. Kh., Biyushkin, V. N., Chumakov, Yu. M., Bel’kova, O. N. & Malinovskii, T. I. (1988). J. Struct. Chem.29, 491–493.
  4. Pandeya, S. N., Smitha, S., Jyoti, M. & Sridhar, S. K. (2005). Acta Pharm 55, 27–46. [PubMed]
  5. Penthala, N. R., Reddy, T. R. Y., Parkin, S. & Crooks, P. A. (2009). Acta Cryst. E65, o552. [DOI] [PMC free article] [PubMed]
  6. Sekhar, K. R., Crooks, P. A., Sonar, V. N., Friedman, D. B., Chan, J. Y., Meredith, M. J., Starnes, J. H., Kelton, K. R., Summar, S. R., Sasi, S. & Freeman, M. L. (2003). Cancer Res.63, 5636–5645. [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Sonar, V. N., Reddy, Y. T., Sekhar, K. R., Sowmya, S., Freeman, M. L. & Crooks, P. A. (2007). Bioorg. Med. Chem. Lett.17, 6821–6824. [DOI] [PMC free article] [PubMed]
  9. Usman, A., Razak, I. A., Fun, H.-K., Chantrapromma, S., Zhao, B.-G. & Xu, J.-H. (2002). Acta Cryst. C58, o24–o25. [DOI] [PubMed]
  10. Vine, K. L., Locke, J. M., Ranson, M., Benkendorff, K., Pyne, S. G. & Bremner, J. B. (2007). Bioorg. Med. Chem 15, 931–938. [DOI] [PubMed]
  11. Zimmerman, H. E. & Traxler, M. D. (1957). J. Am. Chem. Soc.79, 1920–1923.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809043797/hg2556sup1.cif

e-65-o2909-sup1.cif (20.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809043797/hg2556Isup2.hkl

e-65-o2909-Isup2.hkl (120.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES