Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Oct 13;65(Pt 11):o2718–o2719. doi: 10.1107/S1600536809040069

1-Hydr­oxy-3-(3-methyl­but-2-en­yloxy)xanthone

Luis Gales a, Raquel A P Castanheiro b, Madalena M M Pinto b, Ana M Damas a,*
PMCID: PMC2971381  PMID: 21578316

Abstract

In the title compound, C18H16O4, a monoprenylated xanthone, the xanthone skeleton exhibits an essentially planar conformation (r.m.s. deviation 0.0072 Å) and the isoprenyl side chain remains approximately in the mean plane of the xanthone unit, making a dihedral angle of 4.5 (2)°. The hydroxyl group forms an intra­molecular O—H⋯O hydrogen bond. Moreover, there is a weak inter­molecular C—H⋯O inter­action between a ring C atom and the xanthene O atom. In the crystal structure, there are no inter­molecular hydrogen bonds and the crystallographic packing is governed by van der Waals forces, leading to an arrangement in which the mol­ecules assemble with their planes parallel to each other, having a separation of 3.6 (3) Å.

Related literature

For a review of the biological activity of prenylated xanthones, see: Pinto et al. (2005). For background literature and synthesis of prenylated xanthones, see: Pinto et al. (2005); Epifano et al. (2007); Castanheiro et al. (2007). For the synthesis of the title compound using microwave radiation, see: Castanheiro et al. (2009). For analysis of related structures of xanthone derivatives, see: Gales et al. (2001, 2005 a,b); Castanheiro et al. (2007). For the interaction with biological membranes and target proteins, see: Maia et al. (2005); Epifano et al. (2007). For a review of prenylated xanthone crystal structures, see: Gales & Damas, 2005).graphic file with name e-65-o2718-scheme1.jpg

Experimental

Crystal data

  • C18H16O4

  • M r = 296.31

  • Triclinic, Inline graphic

  • a = 4.8199 (3) Å

  • b = 11.7014 (8) Å

  • c = 13.6176 (10) Å

  • α = 77.329 (6)°

  • β = 88.582 (6)°

  • γ = 79.039 (6)°

  • V = 735.54 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 295 K

  • 0.4 × 0.2 × 0.1 mm

Data collection

  • Oxford Diffraction Gemini PX Ultra CCD area-detector diffractometer

  • Absorption correction: none

  • 8520 measured reflections

  • 2981 independent reflections

  • 1958 reflections with I > 2σ(I)

  • R int = 0.017

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.147

  • S = 1.07

  • 2981 reflections

  • 202 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2004); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Johnson & Burnett, 1996); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809040069/bv2126sup1.cif

e-65-o2718-sup1.cif (19.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809040069/bv2126Isup2.hkl

e-65-o2718-Isup2.hkl (143.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O11 0.82 1.85 2.5846 (17) 148
C5—H5A⋯O2i 0.93 2.60 3.514 (2) 168

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the Fundaçao para a Ciência e a Tecnologia (FCT), I&D Units 226/2003 (CEQOFFUP) and 4040/2007 (CEQUIMED), FEDER, POCI for financial support and the FCT (projects FCT /FEDER /POCI 2010 and PTDC/CTM/64191/2006) for the PhD grant to RC (SFRH/BD/13167/2003).

supplementary crystallographic information

Comment

Prenylated xanthones have been reported to mediate a number of important biological activities, concerning a large variety of targets with therapeutic value. The presence of the prenyl side chains seems to enhance the interaction with biological membranes and with target proteins (Maia et al., 2005 and Epifano et al., 2007) and we plan to further study these kind of interactions.

However, the synthesis of prenylated xanthones usually involves toxic reagents and is considered not only very demanding but also environmentally unfriendly (Castanheiro et al., 2007). We have looked for an alternative method to obtain prenylated xanthones. The title compound was the first example of a prenylated xanthone synthesized by the microwave irradiation method (Castanheiro et al., 2009). In fact, microwave-assisted heating under controlled conditions is an invaluable technology for medicinal chemistry because it often dramatically reduces reaction times.

In the crystal, the title compound molecules are essentially planar (Fig. 1). The isoprenyl side chain adopts a nearly coplanar conformation relatively to the xanthone skeleton (corresponding dihedral angle 4.5 (2)°). This is an exception because in the crystal structures of other prenylated xanthones, the isoprenyl side chain is usually out of the plane of the xanthones moiety (for a review of prenylated xanthone crystal structures see: Gales & Damas, 2005). Moreover, the hydroxyl substituent bound to C1 forms a strong intramolecular hydrogen bond to O11 [O1—H1A···O11 = 2.5845 (17) Å].

In the crystal structure, the title compound forms stacking planes (Fig. 2) with intermolecular separation of 3.6 Å. The packing of the molecules is governed by van der Waals forces and there are no intermolecular hydrogen bonds.

Experimental

Prenylation was carried out using prenyl bromide in alkaline medium under microwave irradiation according to the procedure reported by Castanheiro et al. (2009). Single crystals suitable for X-ray crystallographic analysis were grown by recrystallization from slow evaporation of a CH2Cl2/PE (60–80) solution.

Refinement

Non-hydrogen atoms were refined anisotropically. The H atoms were positioned with idealized geometry using a riding model [O—H = 0.82, C—H = 0.93–0.97 Å]. All H atoms were refined with isotropic displacement parameters [set to 1.2 times of the Ueq of the parent atom (1.5 times for the methyl groups)].

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms.

Fig. 2.

Fig. 2.

The packing of the title compound, showing parallel stacking planes 3.6Å apart. H atoms have been omitted.

Crystal data

C18H16O4 Z = 2
Mr = 296.31 F(000) = 312
Triclinic, P1 Dx = 1.338 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 4.8199 (3) Å Cell parameters from 1141 reflections
b = 11.7014 (8) Å θ = 4.0–24.3°
c = 13.6176 (10) Å µ = 0.09 mm1
α = 77.329 (6)° T = 295 K
β = 88.582 (6)° Plate, yellow
γ = 79.039 (6)° 0.4 × 0.2 × 0.1 mm
V = 735.54 (9) Å3

Data collection

Oxford Diffraction Gemini PX Ultra CCD area-detector diffractometer 1958 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.017
graphite θmax = 26.4°, θmin = 2.6°
ω and θ scans h = −5→6
8520 measured reflections k = −14→14
2981 independent reflections l = −17→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0771P)2 + 0.0559P] where P = (Fo2 + 2Fc2)/3
2981 reflections (Δ/σ)max < 0.001
202 parameters Δρmax = 0.16 e Å3
0 restraints Δρmin = −0.15 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.2991 (3) 0.54781 (11) 0.38058 (10) 0.0702 (4)
H1A 0.4106 0.5456 0.3343 0.105*
O2 0.0013 (3) 0.78593 (11) 0.61948 (9) 0.0652 (4)
O10 0.6160 (2) 0.91544 (10) 0.36924 (8) 0.0558 (3)
O11 0.6489 (3) 0.62252 (12) 0.24577 (10) 0.0734 (4)
C1 0.3046 (3) 0.64516 (14) 0.41726 (13) 0.0525 (4)
C2 0.1471 (3) 0.66156 (14) 0.50003 (12) 0.0538 (4)
H2A 0.0408 0.6055 0.5307 0.065*
C3 0.1479 (3) 0.76265 (15) 0.53766 (12) 0.0518 (4)
C4 0.3038 (3) 0.84872 (15) 0.49224 (12) 0.0538 (4)
H4A 0.3000 0.9171 0.5168 0.065*
C4A 0.4623 (3) 0.82954 (14) 0.41054 (11) 0.0480 (4)
C5 0.9287 (4) 0.99283 (16) 0.25015 (13) 0.0612 (5)
H5A 0.9186 1.0567 0.2813 0.073*
C6 1.0918 (4) 0.98563 (18) 0.16677 (14) 0.0689 (5)
H6A 1.1906 1.0462 0.1408 0.083*
C7 1.1124 (4) 0.89031 (18) 0.12043 (14) 0.0694 (5)
H7A 1.2247 0.8870 0.0642 0.083*
C8 0.9666 (4) 0.80095 (17) 0.15780 (13) 0.0634 (5)
H8A 0.9809 0.7367 0.1269 0.076*
C8A 0.7966 (3) 0.80542 (15) 0.24201 (12) 0.0520 (4)
C9 0.6388 (3) 0.71111 (15) 0.28351 (13) 0.0546 (4)
C9A 0.4708 (3) 0.72862 (14) 0.36983 (12) 0.0487 (4)
C10A 0.7792 (3) 0.90220 (15) 0.28679 (12) 0.0516 (4)
C1X −0.1460 (4) 0.69521 (16) 0.67349 (13) 0.0652 (5)
H1XA −0.0128 0.6219 0.6991 0.078*
H1XB −0.2807 0.6790 0.6290 0.078*
C2X −0.2946 (4) 0.74034 (17) 0.75770 (14) 0.0716 (5)
H2XA −0.3558 0.8224 0.7476 0.086*
C3X −0.3486 (4) 0.67573 (16) 0.84547 (13) 0.0642 (5)
C4AX −0.5155 (5) 0.7288 (2) 0.92405 (18) 0.0985 (8)
H4AA −0.5531 0.8142 0.9028 0.148*
H4AB −0.4096 0.7055 0.9863 0.148*
H4AC −0.6910 0.7007 0.9334 0.148*
C4BX −0.2550 (6) 0.5424 (2) 0.87218 (17) 0.1053 (8)
H4BA −0.1111 0.5186 0.8268 0.158*
H4BB −0.4135 0.5052 0.8669 0.158*
H4BC −0.1808 0.5184 0.9399 0.158*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0865 (9) 0.0539 (7) 0.0832 (9) −0.0265 (6) 0.0115 (7) −0.0323 (6)
O2 0.0812 (8) 0.0638 (8) 0.0629 (7) −0.0349 (6) 0.0260 (6) −0.0248 (6)
O10 0.0642 (7) 0.0533 (7) 0.0592 (7) −0.0242 (5) 0.0179 (5) −0.0229 (5)
O11 0.0800 (8) 0.0676 (8) 0.0872 (9) −0.0196 (7) 0.0159 (7) −0.0447 (7)
C1 0.0567 (9) 0.0432 (9) 0.0611 (10) −0.0120 (7) −0.0055 (8) −0.0158 (7)
C2 0.0588 (10) 0.0490 (10) 0.0579 (10) −0.0207 (8) 0.0024 (8) −0.0118 (8)
C3 0.0562 (9) 0.0508 (10) 0.0519 (9) −0.0157 (7) 0.0032 (7) −0.0145 (7)
C4 0.0635 (10) 0.0489 (9) 0.0579 (9) −0.0211 (8) 0.0108 (8) −0.0229 (8)
C4A 0.0511 (9) 0.0435 (9) 0.0530 (9) −0.0138 (7) 0.0024 (7) −0.0140 (7)
C5 0.0684 (11) 0.0575 (10) 0.0618 (10) −0.0196 (9) 0.0132 (8) −0.0161 (8)
C6 0.0727 (12) 0.0681 (12) 0.0644 (11) −0.0201 (10) 0.0158 (9) −0.0071 (9)
C7 0.0728 (12) 0.0791 (14) 0.0542 (10) −0.0099 (10) 0.0166 (9) −0.0157 (9)
C8 0.0668 (11) 0.0676 (12) 0.0573 (10) −0.0061 (9) 0.0053 (9) −0.0229 (9)
C8A 0.0504 (9) 0.0562 (10) 0.0503 (9) −0.0056 (7) 0.0025 (7) −0.0174 (8)
C9 0.0542 (9) 0.0522 (10) 0.0617 (10) −0.0063 (7) −0.0029 (8) −0.0241 (8)
C9A 0.0476 (8) 0.0463 (9) 0.0545 (9) −0.0088 (7) −0.0027 (7) −0.0160 (7)
C10A 0.0525 (9) 0.0540 (10) 0.0492 (9) −0.0100 (7) 0.0050 (7) −0.0140 (7)
C1X 0.0767 (12) 0.0563 (11) 0.0664 (11) −0.0262 (9) 0.0178 (9) −0.0117 (9)
C2X 0.0800 (13) 0.0569 (11) 0.0794 (13) −0.0187 (9) 0.0279 (10) −0.0161 (10)
C3X 0.0750 (12) 0.0612 (11) 0.0605 (10) −0.0236 (9) 0.0129 (9) −0.0141 (9)
C4AX 0.1244 (19) 0.0849 (16) 0.0881 (15) −0.0254 (14) 0.0440 (14) −0.0225 (13)
C4BX 0.163 (2) 0.0746 (15) 0.0736 (14) −0.0225 (15) 0.0266 (15) −0.0095 (11)

Geometric parameters (Å, °)

O1—C1 1.3453 (19) C7—C8 1.369 (3)
O1—H1A 0.8200 C7—H7A 0.9300
O2—C3 1.3548 (19) C8—C8A 1.397 (2)
O2—C1X 1.4460 (18) C8—H8A 0.9300
O10—C10A 1.3744 (19) C8A—C10A 1.388 (2)
O10—C4A 1.3748 (18) C8A—C9 1.463 (2)
O11—C9 1.247 (2) C9—C9A 1.440 (2)
C1—C2 1.371 (2) C1X—C2X 1.479 (3)
C1—C9A 1.417 (2) C1X—H1XA 0.9700
C2—C3 1.389 (2) C1X—H1XB 0.9700
C2—H2A 0.9300 C2X—C3X 1.316 (2)
C3—C4 1.398 (2) C2X—H2XA 0.9300
C4—C4A 1.369 (2) C3X—C4AX 1.495 (3)
C4—H4A 0.9300 C3X—C4BX 1.504 (3)
C4A—C9A 1.404 (2) C4AX—H4AA 0.9600
C5—C6 1.374 (2) C4AX—H4AB 0.9600
C5—C10A 1.391 (2) C4AX—H4AC 0.9600
C5—H5A 0.9300 C4BX—H4BA 0.9600
C6—C7 1.384 (3) C4BX—H4BB 0.9600
C6—H6A 0.9300 C4BX—H4BC 0.9600
C1—O1—H1A 109.5 O11—C9—C9A 122.80 (16)
C3—O2—C1X 117.02 (13) O11—C9—C8A 121.86 (16)
C10A—O10—C4A 119.38 (13) C9A—C9—C8A 115.34 (15)
O1—C1—C2 118.92 (15) C4A—C9A—C1 116.83 (15)
O1—C1—C9A 119.70 (15) C4A—C9A—C9 121.62 (14)
C2—C1—C9A 121.37 (15) C1—C9A—C9 121.55 (15)
C1—C2—C3 119.42 (15) O10—C10A—C8A 123.03 (15)
C1—C2—H2A 120.3 O10—C10A—C5 115.61 (15)
C3—C2—H2A 120.3 C8A—C10A—C5 121.36 (15)
O2—C3—C2 123.65 (14) O2—C1X—C2X 107.68 (14)
O2—C3—C4 115.03 (14) O2—C1X—H1XA 110.2
C2—C3—C4 121.31 (15) C2X—C1X—H1XA 110.2
C4A—C4—C3 118.15 (15) O2—C1X—H1XB 110.2
C4A—C4—H4A 120.9 C2X—C1X—H1XB 110.2
C3—C4—H4A 120.9 H1XA—C1X—H1XB 108.5
C4—C4A—O10 116.23 (14) C3X—C2X—C1X 126.38 (18)
C4—C4A—C9A 122.89 (14) C3X—C2X—H2XA 116.8
O10—C4A—C9A 120.88 (14) C1X—C2X—H2XA 116.8
C6—C5—C10A 118.31 (18) C2X—C3X—C4AX 122.55 (19)
C6—C5—H5A 120.8 C2X—C3X—C4BX 122.09 (19)
C10A—C5—H5A 120.8 C4AX—C3X—C4BX 115.33 (16)
C5—C6—C7 121.54 (18) C3X—C4AX—H4AA 109.5
C5—C6—H6A 119.2 C3X—C4AX—H4AB 109.5
C7—C6—H6A 119.2 H4AA—C4AX—H4AB 109.5
C8—C7—C6 119.64 (17) C3X—C4AX—H4AC 109.5
C8—C7—H7A 120.2 H4AA—C4AX—H4AC 109.5
C6—C7—H7A 120.2 H4AB—C4AX—H4AC 109.5
C7—C8—C8A 120.57 (17) C3X—C4BX—H4BA 109.5
C7—C8—H8A 119.7 C3X—C4BX—H4BB 109.5
C8A—C8—H8A 119.7 H4BA—C4BX—H4BB 109.5
C10A—C8A—C8 118.56 (16) C3X—C4BX—H4BC 109.5
C10A—C8A—C9 119.75 (15) H4BA—C4BX—H4BC 109.5
C8—C8A—C9 121.69 (16) H4BB—C4BX—H4BC 109.5
O1—C1—C2—C3 −179.05 (15) C4—C4A—C9A—C9 179.75 (14)
C9A—C1—C2—C3 0.7 (2) O10—C4A—C9A—C9 −0.2 (2)
C1X—O2—C3—C2 4.5 (2) O1—C1—C9A—C4A 178.64 (14)
C1X—O2—C3—C4 −175.47 (14) C2—C1—C9A—C4A −1.1 (2)
C1—C2—C3—O2 −179.37 (14) O1—C1—C9A—C9 −0.9 (2)
C1—C2—C3—C4 0.6 (2) C2—C1—C9A—C9 179.34 (14)
O2—C3—C4—C4A 178.50 (13) O11—C9—C9A—C4A −179.71 (15)
C2—C3—C4—C4A −1.5 (2) C8A—C9—C9A—C4A −0.2 (2)
C3—C4—C4A—O10 −178.95 (13) O11—C9—C9A—C1 −0.2 (2)
C3—C4—C4A—C9A 1.1 (2) C8A—C9—C9A—C1 179.34 (13)
C10A—O10—C4A—C4 −179.75 (12) C4A—O10—C10A—C8A 0.2 (2)
C10A—O10—C4A—C9A 0.2 (2) C4A—O10—C10A—C5 −179.70 (13)
C10A—C5—C6—C7 −1.0 (3) C8—C8A—C10A—O10 179.40 (14)
C5—C6—C7—C8 0.3 (3) C9—C8A—C10A—O10 −0.7 (2)
C6—C7—C8—C8A 0.2 (3) C8—C8A—C10A—C5 −0.7 (2)
C7—C8—C8A—C10A −0.1 (2) C9—C8A—C10A—C5 179.25 (15)
C7—C8—C8A—C9 −179.96 (15) C6—C5—C10A—O10 −178.90 (14)
C10A—C8A—C9—O11 −179.85 (15) C6—C5—C10A—C8A 1.2 (3)
C8—C8A—C9—O11 0.1 (3) C3—O2—C1X—C2X −178.84 (14)
C10A—C8A—C9—C9A 0.6 (2) O2—C1X—C2X—C3X −149.12 (19)
C8—C8A—C9—C9A −179.45 (13) C1X—C2X—C3X—C4AX −176.29 (19)
C4—C4A—C9A—C1 0.2 (2) C1X—C2X—C3X—C4BX 1.5 (3)
O10—C4A—C9A—C1 −179.79 (13)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1A···O11 0.82 1.85 2.5846 (17) 148
C5—H5A···O2i 0.93 2.60 3.514 (2) 168

Symmetry codes: (i) −x+1, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BV2126).

References

  1. Castanheiro, R. A. P., Pinto, M. M. M., Cravo, S. M. M., Pinto, D. C. G. A., Silva, A. M. S. & Kijjoa, A. (2009). Tetrahedron, 65, 3848–3857.
  2. Castanheiro, R. A. P., Pinto, M. M. M., Silva, A. M. S., Cravo, S. M. M., Gales, L., Damas, A. M., Pedro, M. M., Nazareth, N., Nascimento, M. S. J. & Eaton, G. (2007). Bioorg. Med. Chem.15, 6080–6088. [DOI] [PubMed]
  3. Epifano, F., Genovese, S., Menghini, L. & Curini, M. (2007). Phytochemistry, 68, 939–953. [DOI] [PubMed]
  4. Gales, L. & Damas, A. M. (2005). Curr. Med. Chem.12, 2499–2515. [DOI] [PubMed]
  5. Gales, L., de Sousa, M. E., Pinto, M. M. M., Kijjoa, A. & Damas, A. M. (2005). Acta Cryst. E61, o2213–o2215.
  6. Gales, L., Sousa, M. E. de, Pinto, M. M. M., Kijjoa, A. & Damas, A. M. (2001). Acta Cryst. C57, 1319–1323. [DOI] [PubMed]
  7. Johnson, C. K. & Burnett, M. N. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  8. Maia, F., ALmeida, M. R., Gales, L., Kijjoa, A., Pinto, M. M., Saraiva, M. J. & Damas, A. M. (2005). Biochem. Pharmacol.70, 1861–1869. [DOI] [PubMed]
  9. Oxford Diffraction (2004). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
  10. Pinto, M. M., Sousa, M. E. & Nascimento, M. S. (2005). Curr. Med. Chem.12, 2517–2538. [DOI] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809040069/bv2126sup1.cif

e-65-o2718-sup1.cif (19.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809040069/bv2126Isup2.hkl

e-65-o2718-Isup2.hkl (143.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES