Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Oct 17;65(Pt 11):m1381–m1382. doi: 10.1107/S1600536809039683

(4,7,13,16,21,24-Hexaoxa-1,10-diaza­bicyclo­[8.8.8]hexa­cosa­ne)sodium perchlorate

Ilia A Guzei a,*, Joe W Su b, Lara C Spencer a, Ronald R Burnette c
PMCID: PMC2971382  PMID: 21578130

Abstract

The title compound, [Na(C18H36N2O6)]ClO4, was isolated and crystallized to understand more fully the ligand’s binding specificity to cations. The cation and anion reside at an inter­section of crystallographic twofold and threefold axes. The carbon atoms in the cation are disordered over two positions in a 3:2 ratio, and the anion is equally disordered over two positions. The geometries of the cation and anion are typical. The compound packs in alternating sheets of discrete cations and anions stacked along the c axis, separated by a distance equal to one-sixth the length of the c axis.

Related literature

For general background to the macrocyclic polyether 4,7,13,16,21,24-hexa­oxa-1,10-diaza-bicyclo­[8.8.8]hexa­cosane, see: Izatt et al. (1985); Tait et al. (1997); Varga et al. (1994); Trend et al. (1993); Hamacher et al. (1986); Su & Burnette (2008). For related structures, see: Belaj et al. (1997); Tehan et al. (1974). For a description of the Cambridge Structural Database, see: Allen (2002) and for Mogul, see: Bruno et al. (2004).graphic file with name e-65-m1381-scheme1.jpg

Experimental

Crystal data

  • [Na(C18H36N2O6)]ClO4

  • M r = 498.93

  • Rhombohedral, Inline graphic

  • a = 8.4730 (3) Å

  • c = 28.220 (3) Å

  • V = 1754.5 (2) Å3

  • Z = 3

  • Mo- Kα radiation

  • μ = 0.24 mm−1

  • T = 100 K

  • 0.49 × 0.37 × 0.35 mm

Data collection

  • Bruker CCD-1000 area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007) T min = 0.893, T max = 0.922

  • 6885 measured reflections

  • 805 independent reflections

  • 765 reflections with I > 2σ(I)

  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.113

  • S = 1.11

  • 805 reflections

  • 85 parameters

  • 144 restraints

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.18 e Å−3

  • Absolute structure: Flack (1983), 319 Friedel pairs

  • Flack parameter: 0.01 (15)

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL, OLEX2 (Dolomanov et al., 2009) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL, modiCIFer (Guzei, 2007) and publCIF (Westrip, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809039683/hk2757sup1.cif

e-65-m1381-sup1.cif (23KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809039683/hk2757Isup2.hkl

e-65-m1381-Isup2.hkl (40.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Cl1—O2i 1.422 (4)
Cl1—O2 1.422 (4)
Cl1—O3i 1.434 (3)
Cl1—O3ii 1.434 (3)
Cl1—O3 1.434 (3)
Cl1—O3iii 1.434 (3)
Cl1—O3iv 1.434 (3)
Cl1—O3v 1.434 (3)
Na1—O1 2.5661 (15)
Na1—N1 2.684 (2)
O2—O3iii 1.639 (5)
O3—O3v 1.797 (10)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

We thank the National Science Foundation for financial support.

supplementary crystallographic information

Comment

The macrocyclic polyether 4,7,13,16,21,24-hexaoxa-1,10-diaza-bicyclo[8.8.8]hexacosane (222) is a classic example of a host molecule possessing important clinical functions. 222 encapsulates 1:1 various alkali and alkaline earth metals, and features high selectivity for K+ and Sr2+ in solution (Izatt et al., 1985). Tait et al. (1997) formulated a cation exchange resin treated with 222 that sorbed more than 95% of the fallout nuclide 90Sr in liquid milk (295 K, pH 5.2, 4 h contact time, 1:50 resin to milk volume ratio). Varga et al. (1994) synthesized functionalized 222 for 85Sr2+ decorporation in the rat and mouse. J. E. Trend and co-workers (1993) formulated 222 with a covalently bound chromophore to assay clinical blood K+4. Hamacher et al. (1986) developed the use of [K+(222)]18F- as a phase transfer catalyst in synthesizing the clinically significant PET tracer 2-[18F]fluoro-2-deoxy-D-glucose. Due to 222 obvious industrial and clinical applications the relative binding characteristics of 222 to Li+, Na+ and K+ have been studied in order to more fully understand 222's binding specificity to cations (Su & Burnette, 2008).

In the title compound, (I), both the Na+(222) cation and the perchlorate anion of (I) reside at an intersection of crystallographic twofold and threefold axes. All the carbon atoms in the cation are disordered over two positions in a 3:2 ratio. The perchlorate anion is equally disordered over two positions. Multiple restraints were applied to ensure computational stability of the refinement.

The bond distances and angles within (I) are typical as confirmed by the Mogul structural check (Bruno et. al, 2004). Among 59 relevant compounds reported to the CSD (Allen, 2002), the most closely related is (4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo(8.8.8)hexacosane)-sodium periodate which contains the same cation as (I) and a periodate anion instead of the perchlorate anion (Belaj et al., 1997), and sodium (2,2,2)-crypt-sodium (Tehan et al., 1974) which forms crystals in the same rhombohedral space group R32, as (I).

The packing structure of compound (I) consists of alternating sheets of cations and anions stacked along the c axis. The distance between these sheets is 4.70 Å, or one sixth of the length of the c axis.

Experimental

An equimolar mixture of 222 and NaClO4 was prepared in acetone. The mixture was allowed to evaporate slowly at room temperature until crystallization was observed.

Refinement

All H-atoms were placed in idealized locations and refined as riding with appropriate thermal displacement coefficients Uiso(H) = 1.2 times Ueq(bearing atom).

The following restraints (expressed as SHELXL commands) were used. Thus, we imposed distance similarity restraints on the C—C and C—N bonds involving disordered atoms and refined the ClO4- anion with an idealized geometry allowing the Cl—O distanct to refine as a free variable. The thermal displacement parameters for C3 and C3a were restrained to approximate isotropic behavior.

EQIV $3 Y+1/3, X-1/3, –Z+5/3 SADI 0.005 C1 C2 C1A C2A C3 C3_$3 C3A C3A_$3 SADI 0.005 N1 C1 N1 C1A SADI 0.005 O1 C2 O1 C2A O1 C3 O1 C3A DFIX 21 0.005 C L1 O3 CL1 O2 DFIX 21.633 0.005 O2 O3 SIMU DELU ISOR 0.02 C3 C3A FVAR 0.49309 1.43008 0.34032

Figures

Fig. 1.

Fig. 1.

Molecular structure of (I). The thermal ellipsoids are shown at 50% probability level. Only the preferred orientation of the carbon atoms is shown and only tone orientation of the perchlorate molecule is shown. All hydrogen atoms were omitted for clarity. Symmetry transformations used to generate equivalent atoms: i: (-x + y+1,-x + 1,z) ii: (-y + 1,x-y,z) iii: (-x + 4/3,-x + y+2/3,-z + 5/3) iv: (y + 1/3,x - 1/3,-z + 5/3) v: (x-y + 1/3,-y + 2/3,-z + 5/3) vi: (-x + y+1,-x + 2,z) vii: (-y + 2,x-y + 1,z).

Crystal data

[Na(C18H36N2O6)]ClO4 F(000) = 798
Mr = 498.93 Dx = 1.417 Mg m3
Rhombohedral, R32 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: R 3 2" Cell parameters from 999 reflections
a = 8.4730 (3) Å θ = 2.2–26.4°
c = 28.220 (3) Å µ = 0.24 mm1
α = 90° T = 100 K
γ = 120° Block, colorless
V = 1754.5 (2) Å3 0.49 × 0.37 × 0.35 mm
Z = 3

Data collection

Bruker CCD-1000 area-detector diffractometer 805 independent reflections
Radiation source: fine-focus sealed tube 765 reflections with I > 2σ(I)
graphite Rint = 0.026
0.30° ω scans θmax = 26.4°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2007) h = −10→10
Tmin = 0.893, Tmax = 0.922 k = −10→10
6885 measured reflections l = −35→35

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037 H-atom parameters constrained
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0715P)2 + 1.1083P] where P = (Fo2 + 2Fc2)/3
S = 1.11 (Δ/σ)max < 0.001
805 reflections Δρmax = 0.28 e Å3
85 parameters Δρmin = −0.18 e Å3
144 restraints Absolute structure: Flack (1983), 319 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.01 (15)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cl1 1.0000 1.0000 1.0000 0.0347 (3)
Na1 0.6667 0.3333 0.8333 0.0246 (3)
O1 0.9844 (2) 0.5262 (3) 0.86993 (4) 0.0589 (6)
O2 1.0000 1.0000 0.94963 (15) 0.0768 (17) 0.50
O3 0.8972 (8) 0.8167 (4) 1.01732 (13) 0.0762 (10) 0.50
N1 0.6667 0.3333 0.92846 (8) 0.0420 (6)
C1 0.8527 (6) 0.3802 (11) 0.9424 (2) 0.0688 (15) 0.60
H1A 0.8634 0.3967 0.9772 0.083* 0.60
H1B 0.8694 0.2754 0.9348 0.083* 0.60
C1A 0.8443 (7) 0.4767 (11) 0.9471 (3) 0.0534 (16) 0.40
H1C 0.8525 0.5973 0.9452 0.064* 0.40
H1D 0.8581 0.4518 0.9807 0.064* 0.40
C2 1.0022 (10) 0.5443 (10) 0.92024 (13) 0.0614 (18) 0.60
H2A 0.9972 0.6535 0.9305 0.074* 0.60
H2B 1.1210 0.5592 0.9301 0.074* 0.60
C2A 0.9880 (17) 0.475 (3) 0.9180 (2) 0.087 (4) 0.40
H2C 1.1084 0.5602 0.9319 0.104* 0.40
H2D 0.9725 0.3514 0.9186 0.104* 0.40
C3 1.0622 (10) 0.7167 (5) 0.85941 (11) 0.087 (2) 0.60
H3A 1.1909 0.7854 0.8699 0.105* 0.60
H3B 0.9934 0.7671 0.8756 0.105* 0.60
C3A 1.1033 (9) 0.6727 (12) 0.8398 (4) 0.094 (4) 0.40
H3C 1.1327 0.6254 0.8110 0.113* 0.40
H3D 1.2183 0.7554 0.8565 0.113* 0.40

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0316 (3) 0.0316 (3) 0.0408 (5) 0.01580 (17) 0.000 0.000
Na1 0.0265 (4) 0.0265 (4) 0.0208 (6) 0.0132 (2) 0.000 0.000
O1 0.0367 (7) 0.0832 (14) 0.0448 (8) 0.0211 (8) −0.0063 (6) 0.0004 (7)
O2 0.093 (3) 0.093 (3) 0.045 (3) 0.0464 (14) 0.000 0.000
O3 0.071 (3) 0.0472 (18) 0.109 (3) 0.028 (2) 0.015 (3) 0.0307 (17)
N1 0.0486 (9) 0.0486 (9) 0.0289 (10) 0.0243 (5) 0.000 0.000
C1 0.068 (3) 0.087 (4) 0.037 (2) 0.028 (3) −0.026 (2) 0.003 (3)
C1A 0.060 (4) 0.058 (4) 0.032 (3) 0.022 (4) −0.017 (3) 0.000 (3)
C2 0.040 (3) 0.077 (4) 0.047 (3) 0.014 (2) −0.008 (2) −0.0187 (19)
C2A 0.046 (4) 0.146 (12) 0.054 (5) 0.037 (6) −0.025 (3) 0.008 (5)
C3 0.067 (4) 0.056 (3) 0.088 (4) −0.007 (3) −0.033 (3) 0.000 (3)
C3A 0.041 (4) 0.100 (7) 0.089 (6) −0.005 (4) 0.009 (4) −0.004 (5)

Geometric parameters (Å, °)

Cl1—O2i 1.422 (4) O3—O3i 1.533 (9)
Cl1—O2 1.422 (4) O3—O3v 1.797 (10)
Cl1—O3i 1.434 (3) N1—C1 1.474 (4)
Cl1—O3ii 1.434 (3) N1—C1vi 1.474 (4)
Cl1—O3 1.434 (3) N1—C1viii 1.474 (4)
Cl1—O3iii 1.434 (3) N1—C1Avi 1.480 (4)
Cl1—O3iv 1.434 (3) N1—C1A 1.480 (4)
Cl1—O3v 1.434 (3) N1—C1Aviii 1.480 (4)
Na1—O1 2.5661 (15) C1—C2 1.473 (5)
Na1—O1vi 2.5661 (15) C1—H1A 0.9900
Na1—O1vii 2.5661 (15) C1—H1B 0.9900
Na1—O1viii 2.5661 (15) C1A—C2A 1.476 (6)
Na1—O1ix 2.5661 (15) C1A—H1C 0.9900
Na1—O1x 2.5661 (15) C1A—H1D 0.9900
Na1—N1 2.684 (2) C2—H2A 0.9900
Na1—N1ix 2.685 (2) C2—H2B 0.9900
O1—C2 1.428 (4) C2A—H2C 0.9900
O1—C2A 1.428 (4) C2A—H2D 0.9900
O1—C3 1.436 (4) C3—C3ix 1.483 (6)
O1—C3A 1.425 (5) C3—H3A 0.9900
O2—O3iii 1.639 (5) C3—H3B 0.9900
O2—O3v 1.639 (5) C3A—C3Aix 1.474 (6)
O2—O3i 1.639 (5) C3A—H3C 0.9900
O3—O2i 1.639 (5) C3A—H3D 0.9900
O2i—Cl1—O2 180.000 (4) C3—O1—Na1 112.2 (3)
O2i—Cl1—O3i 109.92 (16) Cl1—O2—O3iii 55.32 (15)
O2—Cl1—O3i 70.08 (16) Cl1—O2—O3v 55.32 (15)
O2i—Cl1—O3ii 70.08 (16) O3iii—O2—O3v 90.8 (2)
O2—Cl1—O3ii 109.92 (16) Cl1—O2—O3i 55.32 (15)
O3i—Cl1—O3ii 172.5 (5) O3iii—O2—O3i 90.8 (2)
O2i—Cl1—O3 70.08 (16) O3v—O2—O3i 90.8 (2)
O2—Cl1—O3 109.92 (16) Cl1—O3—O3i 57.7 (2)
O3i—Cl1—O3 64.6 (5) Cl1—O3—O2i 54.60 (16)
O3ii—Cl1—O3 109.01 (16) O3i—O3—O2i 94.9 (4)
O2i—Cl1—O3iii 109.92 (16) Cl1—O3—O3v 51.2 (2)
O2—Cl1—O3iii 70.08 (16) O3i—O3—O3v 88.7 (3)
O3i—Cl1—O3iii 109.01 (16) O2i—O3—O3v 85.6 (3)
O3ii—Cl1—O3iii 77.6 (5) C1—N1—C1vi 113.1 (2)
O3—Cl1—O3iii 172.5 (5) C1—N1—C1viii 113.1 (2)
O2i—Cl1—O3iv 70.08 (16) C1vi—N1—C1viii 113.1 (2)
O2—Cl1—O3iv 109.92 (16) C1Avi—N1—C1A 108.0 (3)
O3i—Cl1—O3iv 77.6 (5) C1Avi—N1—C1Aviii 108.0 (3)
O3ii—Cl1—O3iv 109.01 (16) C1A—N1—C1Aviii 108.0 (3)
O3—Cl1—O3iv 109.01 (16) C1—N1—Na1 105.5 (2)
O3iii—Cl1—O3iv 64.6 (4) C1vi—N1—Na1 105.5 (3)
O2i—Cl1—O3v 109.92 (16) C1viii—N1—Na1 105.5 (2)
O2—Cl1—O3v 70.08 (16) C1Avi—N1—Na1 110.9 (3)
O3i—Cl1—O3v 109.01 (16) C1A—N1—Na1 110.9 (3)
O3ii—Cl1—O3v 64.6 (5) C1Aviii—N1—Na1 110.9 (3)
O3—Cl1—O3v 77.6 (5) C2—C1—N1 116.1 (6)
O3iii—Cl1—O3v 109.01 (16) C2—C1—H1A 108.3
O3iv—Cl1—O3v 172.5 (5) N1—C1—H1A 108.3
O1—Na1—O1vi 104.90 (3) C2—C1—H1B 108.3
O1—Na1—O1vii 167.11 (9) N1—C1—H1B 108.3
O1vi—Na1—O1vii 86.11 (9) H1A—C1—H1B 107.4
O1—Na1—O1viii 104.90 (3) C2A—C1A—N1 107.4 (8)
O1vi—Na1—O1viii 104.90 (3) C2A—C1A—H1C 110.2
O1vii—Na1—O1viii 65.09 (7) N1—C1A—H1C 110.2
O1—Na1—O1ix 65.09 (7) C2A—C1A—H1D 110.2
O1vi—Na1—O1ix 167.11 (9) N1—C1A—H1D 110.2
O1vii—Na1—O1ix 104.90 (3) H1C—C1A—H1D 108.5
O1viii—Na1—O1ix 86.11 (9) O1—C2—C1 109.0 (4)
O1—Na1—O1x 86.11 (9) O1—C2—H2A 109.9
O1vi—Na1—O1x 65.09 (7) C1—C2—H2A 109.9
O1vii—Na1—O1x 104.89 (3) O1—C2—H2B 109.9
O1viii—Na1—O1x 167.11 (9) C1—C2—H2B 109.9
O1ix—Na1—O1x 104.89 (3) H2A—C2—H2B 108.3
O1—Na1—N1 66.27 (3) O1—C2A—C1A 112.6 (7)
O1vi—Na1—N1 66.27 (3) O1—C2A—H2C 109.1
O1vii—Na1—N1 113.73 (3) C1A—C2A—H2C 109.1
O1viii—Na1—N1 66.27 (3) O1—C2A—H2D 109.1
O1ix—Na1—N1 113.73 (3) C1A—C2A—H2D 109.1
O1x—Na1—N1 113.73 (3) H2C—C2A—H2D 107.8
O1—Na1—N1ix 113.73 (3) O1—C3—C3ix 105.9 (4)
O1vi—Na1—N1ix 113.73 (3) O1—C3—H3A 110.5
O1vii—Na1—N1ix 66.27 (3) C3ix—C3—H3A 110.5
O1viii—Na1—N1ix 113.73 (3) O1—C3—H3B 110.5
O1ix—Na1—N1ix 66.27 (3) C3ix—C3—H3B 110.5
O1x—Na1—N1ix 66.27 (3) H3A—C3—H3B 108.7
N1—Na1—N1ix 180.0 O1—C3A—C3Aix 106.5 (5)
C3A—O1—C2A 135.9 (9) O1—C3A—H3C 110.4
C2—O1—C3 96.9 (4) C3Aix—C3A—H3C 110.4
C3A—O1—Na1 112.0 (4) O1—C3A—H3D 110.4
C2A—O1—Na1 111.3 (6) C3Aix—C3A—H3D 110.4
C2—O1—Na1 119.3 (3) H3C—C3A—H3D 108.6
O3i—Cl1—O2—O3iii 120.000 (5) O1x—Na1—O1—C3 126.9 (3)
O3ii—Cl1—O2—O3iii −68.0 (5) N1—Na1—O1—C3 −115.1 (3)
O3—Cl1—O2—O3iii 172.0 (5) N1ix—Na1—O1—C3 64.9 (3)
O3iv—Cl1—O2—O3iii 52.0 (5) O1—Na1—N1—C1 −23.0 (4)
O3v—Cl1—O2—O3iii −120.000 (5) O1vi—Na1—N1—C1 97.0 (4)
O3i—Cl1—O2—O3v −120.000 (14) O1vii—Na1—N1—C1 171.1 (3)
O3ii—Cl1—O2—O3v 52.0 (5) O1viii—Na1—N1—C1 −143.0 (4)
O3—Cl1—O2—O3v −68.0 (5) O1ix—Na1—N1—C1 −68.9 (3)
O3iii—Cl1—O2—O3v 120.000 (13) O1x—Na1—N1—C1 51.1 (3)
O3iv—Cl1—O2—O3v 172.0 (5) O1—Na1—N1—C1vi −143.0 (3)
O3ii—Cl1—O2—O3i 172.0 (5) O1vi—Na1—N1—C1vi −23.0 (3)
O3—Cl1—O2—O3i 52.0 (5) O1vii—Na1—N1—C1vi 51.1 (3)
O3iii—Cl1—O2—O3i −120.000 (3) O1viii—Na1—N1—C1vi 97.0 (3)
O3iv—Cl1—O2—O3i −68.0 (5) O1ix—Na1—N1—C1vi 171.1 (3)
O3v—Cl1—O2—O3i 120.000 (2) O1x—Na1—N1—C1vi −68.9 (3)
O2i—Cl1—O3—O3i 125.0 (4) O1—Na1—N1—C1viii 97.0 (4)
O2—Cl1—O3—O3i −55.0 (4) O1vi—Na1—N1—C1viii −143.0 (4)
O3ii—Cl1—O3—O3i −175.6 (3) O1vii—Na1—N1—C1viii −68.9 (4)
O3iv—Cl1—O3—O3i 65.5 (5) O1viii—Na1—N1—C1viii −23.0 (4)
O3v—Cl1—O3—O3i −118.2 (4) O1ix—Na1—N1—C1viii 51.1 (4)
O2—Cl1—O3—O2i 180.000 (4) O1x—Na1—N1—C1viii 171.1 (4)
O3i—Cl1—O3—O2i −125.0 (4) O1—Na1—N1—C1Avi −107.5 (4)
O3ii—Cl1—O3—O2i 59.45 (19) O1vi—Na1—N1—C1Avi 12.5 (4)
O3iv—Cl1—O3—O2i −59.45 (19) O1vii—Na1—N1—C1Avi 86.6 (4)
O3v—Cl1—O3—O2i 116.8 (3) O1viii—Na1—N1—C1Avi 132.5 (4)
O2i—Cl1—O3—O3v −116.8 (3) O1ix—Na1—N1—C1Avi −153.4 (4)
O2—Cl1—O3—O3v 63.2 (3) O1x—Na1—N1—C1Avi −33.4 (4)
O3i—Cl1—O3—O3v 118.2 (4) O1—Na1—N1—C1A 12.5 (4)
O3ii—Cl1—O3—O3v −57.3 (4) O1vi—Na1—N1—C1A 132.5 (4)
O3iv—Cl1—O3—O3v −176.2 (2) O1vii—Na1—N1—C1A −153.4 (4)
O1vi—Na1—O1—C3A 153.1 (4) O1viii—Na1—N1—C1A −107.5 (4)
O1vii—Na1—O1—C3A −58.9 (4) O1ix—Na1—N1—C1A −33.4 (4)
O1viii—Na1—O1—C3A −96.7 (4) O1x—Na1—N1—C1A 86.6 (4)
O1ix—Na1—O1—C3A −18.3 (4) O1—Na1—N1—C1Aviii 132.5 (5)
O1x—Na1—O1—C3A 90.1 (4) O1vi—Na1—N1—C1Aviii −107.5 (5)
N1—Na1—O1—C3A −151.8 (4) O1vii—Na1—N1—C1Aviii −33.4 (4)
N1ix—Na1—O1—C3A 28.2 (4) O1viii—Na1—N1—C1Aviii 12.5 (5)
O1vi—Na1—O1—C2A −35.5 (7) O1ix—Na1—N1—C1Aviii 86.6 (5)
O1vii—Na1—O1—C2A 112.5 (7) O1x—Na1—N1—C1Aviii −153.4 (5)
O1viii—Na1—O1—C2A 74.8 (7) C3—O1—C2—C1 149.0 (7)
O1ix—Na1—O1—C2A 153.2 (7) Na1—O1—C2—C1 28.7 (9)
O1x—Na1—O1—C2A −98.4 (7) C3A—O1—C2A—C1A 115.5 (10)
N1—Na1—O1—C2A 19.7 (7) Na1—O1—C2A—C1A −53.0 (13)
N1ix—Na1—O1—C2A −160.3 (7) C2—O1—C3—C3ix −177.7 (7)
O1vi—Na1—O1—C2 −58.0 (5) Na1—O1—C3—C3ix −52.1 (8)
O1vii—Na1—O1—C2 90.0 (5) C2A—O1—C3A—C3Aix −116.9 (11)
O1viii—Na1—O1—C2 52.3 (5) Na1—O1—C3A—C3Aix 51.6 (10)
O1ix—Na1—O1—C2 130.7 (5) C1vi—N1—C1—C2 166.0 (5)
O1x—Na1—O1—C2 −120.9 (5) C1viii—N1—C1—C2 −63.7 (9)
N1—Na1—O1—C2 −2.8 (5) Na1—N1—C1—C2 51.2 (6)
N1ix—Na1—O1—C2 177.2 (5) C1Avi—N1—C1A—C2A 79.9 (10)
O1vi—Na1—O1—C3 −170.2 (3) C1Aviii—N1—C1A—C2A −163.5 (7)
O1vii—Na1—O1—C3 −22.2 (3) Na1—N1—C1A—C2A −41.8 (8)
O1viii—Na1—O1—C3 −59.9 (3) N1—C1—C2—O1 −55.6 (9)
O1ix—Na1—O1—C3 18.5 (3) N1—C1A—C2A—O1 65.1 (14)

Symmetry codes: (i) y, x, −z+2; (ii) −y+2, xy+1, z; (iii) xy+1, −y+2, −z+2; (iv) −x+y+1, −x+2, z; (v) −x+2, −x+y+1, −z+2; (vi) −x+y+1, −x+1, z; (vii) −x+4/3, −x+y+2/3, −z+5/3; (viii) −y+1, xy, z; (ix) y+1/3, x−1/3, −z+5/3; (x) xy+1/3, −y+2/3, −z+5/3.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2757).

References

  1. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  2. Belaj, F., Trnoska, A. & Nachbaur, E. (1997). Z. Kristallogr.212, 355–361.
  3. Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  4. Bruker (2007). SADABS, SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci.44, 2133–2144. [DOI] [PubMed]
  6. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst.42, 339–341.
  7. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  8. Guzei, I. A. (2007). modiCIFer University of Wisconsin–Madison, USA.
  9. Hamacher, K., Coenen, H. H. & Stocklin, G. (1986). J. Nucl. Med.27, 235–238. [PubMed]
  10. Izatt, R. M., Bradshaw, J. S., Nielsen, B. L., Lamb, J. D. & Christensen, J. J. (1985). Chem. Rev.85, 271–339.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Su, J. W. & Burnette, R. R. (2008). ChemPhysChem, 9, 1989–1996. [DOI] [PubMed]
  13. Tait, D., Haase, G. & Wiechen, A. (1997). J. Radioanal. Nucl. Chem.226, 225–228.
  14. Tehan, F. J., Barnett, B. L. & Dye, J. L. (1974). J. Am. Chem. Soc.96, 7203–7208.
  15. Trend, J. E., Kipke, C. A., Rossmann, M., Yafuso, M. & Patil, S. L. (1993). US Patent No. 5 474 743.
  16. Varga, L. P., Sztanyik, L. B., Ronai, E., Bodo, K., Brucher, E., Gyori, B., Emri, J. & Kovacs, Z. (1994). Int. J. Radiat. Biol.66, 399–405. [DOI] [PubMed]
  17. Westrip, S. P. (2009). publCIF. In preparation.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809039683/hk2757sup1.cif

e-65-m1381-sup1.cif (23KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809039683/hk2757Isup2.hkl

e-65-m1381-Isup2.hkl (40.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES