Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Oct 3;65(Pt 11):o2619. doi: 10.1107/S1600536809039221

(Z)-3-(9-Anthr­yl)-2-(4-nitro-1H-imidazol-1-yl)-1-p-tolyl­prop-2-en-1-one

Guang-Zhou Wang a, Bo Fang a, Cheng-He Zhou a,*
PMCID: PMC2971385  PMID: 21578235

Abstract

In the title mol­ecule, C27H19N3O3, the imidazole and benzene rings make dihedral angles of 64.72 (4) and 64.02 (4)°, respectively, with the anthracene ring system (r.m.s. deviation = 0.043 Å). The nitro group is coplanar with the imidazole ring [dihedral angle = 1.1 (1)°]. The crystal packing is stabilized by weak π–π inter­actions with centroid–centroid distances of 3.7342 (10) and 3.7627 (9) Å.

Related literature

For the crystal structures of the chloro and bromo analogues, see: Wang et al. (2009); Lu et al. (2009). For general background to chalcones, see: Vogel et al. (2008). For the synthesis, see: Erhardt et al. (1985).graphic file with name e-65-o2619-scheme1.jpg

Experimental

Crystal data

  • C27H19N3O3

  • M r = 433.45

  • Triclinic, Inline graphic

  • a = 7.9335 (9) Å

  • b = 11.2626 (13) Å

  • c = 13.0291 (15) Å

  • α = 75.454 (2)°

  • β = 85.763 (2)°

  • γ = 71.059 (2)°

  • V = 1065.8 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.36 × 0.23 × 0.10 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997) T min = 0.968, T max = 0.991

  • 12116 measured reflections

  • 4621 independent reflections

  • 3646 reflections with I > 2σ(I)

  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.127

  • S = 1.05

  • 4621 reflections

  • 299 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809039221/ci2921sup1.cif

e-65-o2619-sup1.cif (22.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809039221/ci2921Isup2.hkl

e-65-o2619-Isup2.hkl (226.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Southwest University (grant Nos. SWUB2006018, XSGX0602 and SWUF2007023) and the Natural Science Foundation of Chongqing (grant No. 2007BB5369) for financial support.

supplementary crystallographic information

Comment

Chalcones or 1,3-diaryl-2-propen-1-ones are natural or synthetic compounds belonging to the flavonoid family (Vogel et al., 2008). They exhibit diverse kinds of biological activities. Hence, chalcones are considered as an important class of therapeutic agents. A series of chalcone derivatives containing a imidazole ring have been synthesized in our lab and crystal structues of some of them have been reported (Lu et al., 2009; Wang et al., 2009). We report here the crystal structure of the title compound.

In the molecular structure of the title compound (Fig. 1), the imidazole and benzene ring of the tolyl group form dihedral angles of 64.72 (4)° and 64.02 (4)°, respectively, with the anthracene ring system (r.m.s. deviation 0.043 Å). The nitro group is coplanar with the imidazole ring [dihedral angle 1.1 (1)°].

The crystal structure is stabilized by weak π-π interactions between imidazole and benzene ring of the tolyl group (centroid to centroid distance = 3.7627 (9) Å) and those between the rings of the anthracene ring system (centroid to centroid distance = 3.7342 (10) Å).

Experimental

The title compound was synthesized according to the procedure of Erhardt et al. (1985). Single crystals suitable for X-ray analysis was grown from a chloroform solution by slow evaporation at room temperature.

Refinement

H atoms were placed at calculated positions with C-H = 0.93 Å (aromatic) and 0.96 Å (methyl). The Uiso(H) values were set equal to 1.2Ueq(Caromatic) and 1.5Ueq(Cmethyl).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

C27H19N3O3 Z = 2
Mr = 433.45 F(000) = 452
Triclinic, P1 Dx = 1.351 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.9335 (9) Å Cell parameters from 5053 reflections
b = 11.2626 (13) Å θ = 2.2–28.1°
c = 13.0291 (15) Å µ = 0.09 mm1
α = 75.454 (2)° T = 298 K
β = 85.763 (2)° Plate, yellow
γ = 71.059 (2)° 0.36 × 0.23 × 0.10 mm
V = 1065.8 (2) Å3

Data collection

Bruker SMART CCD area-detector diffractometer 4621 independent reflections
Radiation source: fine-focus sealed tube 3646 reflections with I > 2σ(I)
graphite Rint = 0.030
φ and ω scans θmax = 27.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 1997) h = −10→10
Tmin = 0.968, Tmax = 0.991 k = −14→14
12116 measured reflections l = −16→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0696P)2 + 0.061P] where P = (Fo2 + 2Fc2)/3
4621 reflections (Δ/σ)max = 0.012
299 parameters Δρmax = 0.18 e Å3
0 restraints Δρmin = −0.23 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.8022 (2) 0.80103 (14) 0.10371 (11) 0.0625 (4)
C2 0.9235 (2) 0.68461 (16) 0.09495 (12) 0.0655 (4)
H2 1.0443 0.6760 0.0895 0.079*
C3 0.86855 (18) 0.58070 (13) 0.09409 (10) 0.0542 (3)
H3 0.9521 0.5032 0.0871 0.065*
C4 0.68960 (16) 0.59098 (11) 0.10360 (9) 0.0443 (3)
C5 0.56700 (18) 0.70796 (12) 0.11149 (10) 0.0525 (3)
H5 0.4464 0.7164 0.1176 0.063*
C6 0.6231 (2) 0.81227 (13) 0.11031 (11) 0.0604 (4)
H6 0.5394 0.8911 0.1140 0.073*
C7 0.8646 (3) 0.91345 (19) 0.10604 (18) 0.1030 (7)
H7A 0.9884 0.8938 0.0878 0.155*
H7B 0.8486 0.9288 0.1759 0.155*
H7C 0.7964 0.9893 0.0559 0.155*
C8 0.63944 (15) 0.47439 (11) 0.10306 (9) 0.0429 (3)
C9 0.53578 (15) 0.42485 (10) 0.19465 (9) 0.0401 (3)
C10 0.51789 (15) 0.46279 (11) 0.28466 (9) 0.0424 (3)
H10 0.5567 0.5329 0.2825 0.051*
C11 0.55904 (19) 0.21206 (12) 0.15682 (10) 0.0547 (3)
H11 0.6800 0.1879 0.1413 0.066*
C12 0.29544 (19) 0.21363 (13) 0.18201 (9) 0.0522 (3)
C13 0.29627 (17) 0.32641 (12) 0.20011 (9) 0.0479 (3)
H13 0.2010 0.3902 0.2198 0.057*
C14 0.44576 (16) 0.41062 (12) 0.38765 (9) 0.0442 (3)
C15 0.31154 (16) 0.49758 (13) 0.43426 (9) 0.0497 (3)
C16 0.23060 (19) 0.62857 (14) 0.38169 (12) 0.0604 (4)
H16 0.2649 0.6593 0.3130 0.072*
C17 0.1035 (2) 0.71059 (18) 0.42967 (15) 0.0772 (5)
H17 0.0528 0.7965 0.3936 0.093*
C18 0.0482 (2) 0.6666 (2) 0.53315 (16) 0.0844 (6)
H18 −0.0377 0.7238 0.5655 0.101*
C19 0.1187 (2) 0.5429 (2) 0.58552 (13) 0.0770 (5)
H19 0.0799 0.5152 0.6538 0.092*
C20 0.25212 (18) 0.45250 (17) 0.53893 (10) 0.0587 (4)
C21 0.3253 (2) 0.32471 (18) 0.59118 (10) 0.0668 (4)
H21 0.2843 0.2958 0.6585 0.080*
C22 0.4581 (2) 0.23721 (15) 0.54715 (10) 0.0609 (4)
C23 0.5358 (3) 0.10705 (19) 0.60296 (13) 0.0849 (5)
H23 0.4934 0.0776 0.6698 0.102*
C24 0.6697 (3) 0.02531 (18) 0.56107 (15) 0.0961 (6)
H24 0.7168 −0.0604 0.5983 0.115*
C25 0.7395 (3) 0.06850 (16) 0.46106 (13) 0.0800 (5)
H25 0.8346 0.0116 0.4339 0.096*
C26 0.6691 (2) 0.19203 (13) 0.40416 (11) 0.0588 (4)
H26 0.7175 0.2190 0.3386 0.071*
C27 0.52314 (18) 0.28088 (13) 0.44281 (9) 0.0495 (3)
N1 0.46726 (13) 0.32578 (9) 0.18306 (7) 0.0428 (2)
N2 0.45809 (17) 0.14128 (11) 0.15594 (9) 0.0602 (3)
N4 0.1423 (2) 0.17060 (15) 0.18753 (10) 0.0718 (4)
O1 0.69016 (12) 0.41643 (9) 0.03388 (7) 0.0576 (3)
O2 0.1606 (2) 0.06711 (14) 0.16772 (11) 0.1051 (5)
O3 0.00028 (18) 0.24220 (15) 0.21342 (12) 0.0975 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0851 (10) 0.0617 (9) 0.0534 (8) −0.0413 (8) 0.0181 (7) −0.0175 (7)
C2 0.0631 (9) 0.0805 (10) 0.0669 (9) −0.0393 (8) 0.0181 (7) −0.0256 (8)
C3 0.0561 (8) 0.0585 (8) 0.0523 (7) −0.0224 (6) 0.0110 (6) −0.0185 (6)
C4 0.0526 (7) 0.0487 (7) 0.0330 (6) −0.0207 (5) 0.0039 (5) −0.0070 (5)
C5 0.0549 (7) 0.0518 (7) 0.0487 (7) −0.0175 (6) 0.0043 (6) −0.0088 (6)
C6 0.0793 (10) 0.0476 (7) 0.0520 (8) −0.0192 (7) 0.0090 (7) −0.0113 (6)
C7 0.1274 (17) 0.0883 (13) 0.1247 (16) −0.0694 (13) 0.0351 (14) −0.0441 (12)
C8 0.0430 (6) 0.0459 (6) 0.0378 (6) −0.0122 (5) −0.0015 (5) −0.0083 (5)
C9 0.0436 (6) 0.0390 (6) 0.0385 (6) −0.0150 (5) −0.0023 (5) −0.0078 (5)
C10 0.0473 (6) 0.0432 (6) 0.0399 (6) −0.0189 (5) −0.0012 (5) −0.0094 (5)
C11 0.0663 (8) 0.0466 (7) 0.0539 (7) −0.0195 (6) 0.0048 (6) −0.0160 (6)
C12 0.0684 (9) 0.0562 (8) 0.0393 (6) −0.0335 (7) −0.0051 (6) −0.0049 (5)
C13 0.0509 (7) 0.0533 (7) 0.0419 (6) −0.0211 (6) −0.0030 (5) −0.0089 (5)
C14 0.0501 (7) 0.0566 (7) 0.0347 (6) −0.0276 (6) −0.0006 (5) −0.0122 (5)
C15 0.0491 (7) 0.0693 (9) 0.0428 (6) −0.0290 (6) 0.0004 (5) −0.0216 (6)
C16 0.0582 (8) 0.0705 (9) 0.0604 (8) −0.0221 (7) 0.0010 (6) −0.0276 (7)
C17 0.0632 (9) 0.0857 (11) 0.0916 (12) −0.0160 (8) −0.0031 (8) −0.0463 (10)
C18 0.0562 (9) 0.1257 (17) 0.0902 (13) −0.0252 (10) 0.0098 (9) −0.0667 (13)
C19 0.0564 (9) 0.1382 (17) 0.0592 (9) −0.0450 (10) 0.0129 (7) −0.0491 (11)
C20 0.0508 (7) 0.0984 (11) 0.0442 (7) −0.0399 (7) 0.0042 (6) −0.0274 (7)
C21 0.0708 (9) 0.1096 (13) 0.0367 (7) −0.0552 (9) 0.0048 (6) −0.0134 (8)
C22 0.0771 (10) 0.0761 (9) 0.0401 (7) −0.0446 (8) −0.0072 (6) −0.0034 (6)
C23 0.1265 (16) 0.0850 (12) 0.0485 (8) −0.0569 (12) −0.0116 (9) 0.0089 (8)
C24 0.151 (2) 0.0634 (10) 0.0639 (11) −0.0333 (12) −0.0260 (12) 0.0091 (9)
C25 0.1040 (13) 0.0594 (9) 0.0676 (10) −0.0148 (9) −0.0201 (9) −0.0081 (8)
C26 0.0715 (9) 0.0565 (8) 0.0480 (7) −0.0221 (7) −0.0097 (6) −0.0065 (6)
C27 0.0603 (8) 0.0576 (8) 0.0378 (6) −0.0308 (6) −0.0062 (5) −0.0065 (5)
N1 0.0501 (6) 0.0427 (5) 0.0385 (5) −0.0179 (4) −0.0008 (4) −0.0105 (4)
N2 0.0837 (9) 0.0513 (6) 0.0546 (7) −0.0321 (6) 0.0017 (6) −0.0150 (5)
N4 0.0921 (10) 0.0831 (9) 0.0569 (7) −0.0572 (9) −0.0091 (7) −0.0046 (7)
O1 0.0656 (6) 0.0654 (6) 0.0495 (5) −0.0253 (5) 0.0130 (4) −0.0253 (5)
O2 0.1427 (12) 0.1039 (10) 0.1091 (10) −0.0885 (10) −0.0031 (9) −0.0309 (8)
O3 0.0747 (8) 0.1167 (11) 0.1149 (11) −0.0555 (8) 0.0020 (7) −0.0195 (8)

Geometric parameters (Å, °)

C1—C2 1.378 (2) C13—H13 0.93
C1—C6 1.383 (2) C14—C27 1.4085 (18)
C1—C7 1.509 (2) C14—C15 1.4099 (17)
C2—C3 1.3779 (19) C15—C16 1.414 (2)
C2—H2 0.93 C15—C20 1.4327 (18)
C3—C4 1.3852 (18) C16—C17 1.361 (2)
C3—H3 0.93 C16—H16 0.93
C4—C5 1.3835 (18) C17—C18 1.405 (3)
C4—C8 1.4923 (16) C17—H17 0.93
C5—C6 1.3814 (18) C18—C19 1.339 (3)
C5—H5 0.93 C18—H18 0.93
C6—H6 0.93 C19—C20 1.429 (2)
C7—H7A 0.96 C19—H19 0.93
C7—H7B 0.96 C20—C21 1.377 (2)
C7—H7C 0.96 C21—C22 1.390 (2)
C8—O1 1.2133 (13) C21—H21 0.93
C8—C9 1.4933 (16) C22—C23 1.415 (2)
C9—C10 1.3289 (15) C22—C27 1.4426 (18)
C9—N1 1.4332 (14) C23—C24 1.344 (3)
C10—C14 1.4772 (15) C23—H23 0.93
C10—H10 0.93 C24—C25 1.411 (3)
C11—N2 1.3029 (17) C24—H24 0.93
C11—N1 1.3657 (16) C25—C26 1.355 (2)
C11—H11 0.93 C25—H25 0.93
C12—C13 1.3510 (17) C26—C27 1.418 (2)
C12—N2 1.3551 (18) C26—H26 0.93
C12—N4 1.4381 (18) N4—O2 1.2174 (17)
C13—N1 1.3563 (15) N4—O3 1.2346 (18)
C2—C1—C6 118.62 (13) C14—C15—C20 119.28 (13)
C2—C1—C7 120.37 (15) C16—C15—C20 117.91 (12)
C6—C1—C7 121.01 (15) C17—C16—C15 121.32 (15)
C1—C2—C3 120.94 (14) C17—C16—H16 119.3
C1—C2—H2 119.5 C15—C16—H16 119.3
C3—C2—H2 119.5 C16—C17—C18 120.57 (18)
C2—C3—C4 120.40 (13) C16—C17—H17 119.7
C2—C3—H3 119.8 C18—C17—H17 119.7
C4—C3—H3 119.8 C19—C18—C17 120.34 (16)
C5—C4—C3 118.92 (12) C19—C18—H18 119.8
C5—C4—C8 123.45 (11) C17—C18—H18 119.8
C3—C4—C8 117.62 (11) C18—C19—C20 121.48 (16)
C6—C5—C4 120.24 (13) C18—C19—H19 119.3
C6—C5—H5 119.9 C20—C19—H19 119.3
C4—C5—H5 119.9 C21—C20—C19 122.36 (14)
C5—C6—C1 120.85 (13) C21—C20—C15 119.29 (13)
C5—C6—H6 119.6 C19—C20—C15 118.35 (15)
C1—C6—H6 119.6 C20—C21—C22 122.53 (12)
C1—C7—H7A 109.5 C20—C21—H21 118.7
C1—C7—H7B 109.5 C22—C21—H21 118.7
H7A—C7—H7B 109.5 C21—C22—C23 121.93 (14)
C1—C7—H7C 109.5 C21—C22—C27 119.26 (13)
H7A—C7—H7C 109.5 C23—C22—C27 118.78 (16)
H7B—C7—H7C 109.5 C24—C23—C22 121.12 (16)
O1—C8—C4 121.31 (10) C24—C23—H23 119.4
O1—C8—C9 120.52 (11) C22—C23—H23 119.4
C4—C8—C9 118.02 (10) C23—C24—C25 120.55 (16)
C10—C9—N1 121.36 (10) C23—C24—H24 119.7
C10—C9—C8 122.61 (10) C25—C24—H24 119.7
N1—C9—C8 115.87 (9) C26—C25—C24 120.61 (18)
C9—C10—C14 129.89 (10) C26—C25—H25 119.7
C9—C10—H10 115.1 C24—C25—H25 119.7
C14—C10—H10 115.1 C25—C26—C27 121.12 (14)
N2—C11—N1 112.40 (13) C25—C26—H26 119.4
N2—C11—H11 123.8 C27—C26—H26 119.4
N1—C11—H11 123.8 C14—C27—C26 123.60 (11)
C13—C12—N2 112.85 (11) C14—C27—C22 118.59 (13)
C13—C12—N4 125.76 (14) C26—C27—C22 117.70 (12)
N2—C12—N4 121.39 (13) C13—N1—C11 106.73 (10)
C12—C13—N1 104.50 (11) C13—N1—C9 125.53 (10)
C12—C13—H13 127.7 C11—N1—C9 127.71 (11)
N1—C13—H13 127.7 C11—N2—C12 103.51 (11)
C27—C14—C15 121.01 (11) O2—N4—O3 124.53 (15)
C27—C14—C10 120.56 (11) O2—N4—C12 118.72 (16)
C15—C14—C10 118.04 (11) O3—N4—C12 116.74 (13)
C14—C15—C16 122.80 (11)
C6—C1—C2—C3 −0.8 (2) C14—C15—C20—C19 178.69 (11)
C7—C1—C2—C3 179.16 (15) C16—C15—C20—C19 −1.83 (17)
C1—C2—C3—C4 −0.9 (2) C19—C20—C21—C22 −178.42 (12)
C2—C3—C4—C5 1.47 (19) C15—C20—C21—C22 1.3 (2)
C2—C3—C4—C8 −179.46 (11) C20—C21—C22—C23 178.14 (14)
C3—C4—C5—C6 −0.28 (18) C20—C21—C22—C27 0.1 (2)
C8—C4—C5—C6 −179.29 (11) C21—C22—C23—C24 −176.94 (16)
C4—C5—C6—C1 −1.5 (2) C27—C22—C23—C24 1.1 (3)
C2—C1—C6—C5 2.0 (2) C22—C23—C24—C25 1.6 (3)
C7—C1—C6—C5 −177.96 (14) C23—C24—C25—C26 −2.0 (3)
C5—C4—C8—O1 127.74 (13) C24—C25—C26—C27 −0.5 (2)
C3—C4—C8—O1 −51.28 (16) C15—C14—C27—C26 −174.16 (11)
C5—C4—C8—C9 −56.71 (15) C10—C14—C27—C26 −1.40 (18)
C3—C4—C8—C9 124.27 (12) C15—C14—C27—C22 2.01 (17)
O1—C8—C9—C10 161.69 (12) C10—C14—C27—C22 174.76 (11)
C4—C8—C9—C10 −13.90 (17) C25—C26—C27—C14 179.39 (13)
O1—C8—C9—N1 −13.70 (16) C25—C26—C27—C22 3.2 (2)
C4—C8—C9—N1 170.72 (10) C21—C22—C27—C14 −1.75 (18)
N1—C9—C10—C14 5.68 (19) C23—C22—C27—C14 −179.84 (13)
C8—C9—C10—C14 −169.46 (11) C21—C22—C27—C26 174.64 (12)
N2—C12—C13—N1 0.92 (14) C23—C22—C27—C26 −3.45 (19)
N4—C12—C13—N1 −178.45 (11) C12—C13—N1—C11 −0.61 (13)
C9—C10—C14—C27 59.15 (18) C12—C13—N1—C9 −178.63 (10)
C9—C10—C14—C15 −127.88 (14) N2—C11—N1—C13 0.13 (14)
C27—C14—C15—C16 179.91 (11) N2—C11—N1—C9 178.09 (10)
C10—C14—C15—C16 6.98 (17) C10—C9—N1—C13 54.97 (16)
C27—C14—C15—C20 −0.64 (17) C8—C9—N1—C13 −129.58 (11)
C10—C14—C15—C20 −173.57 (10) C10—C9—N1—C11 −122.63 (14)
C14—C15—C16—C17 −178.85 (12) C8—C9—N1—C11 52.83 (15)
C20—C15—C16—C17 1.70 (19) N1—C11—N2—C12 0.41 (14)
C15—C16—C17—C18 −0.4 (2) C13—C12—N2—C11 −0.83 (14)
C16—C17—C18—C19 −0.7 (2) N4—C12—N2—C11 178.56 (11)
C17—C18—C19—C20 0.5 (2) C13—C12—N4—O2 178.97 (13)
C18—C19—C20—C21 −179.54 (14) N2—C12—N4—O2 −0.34 (19)
C18—C19—C20—C15 0.8 (2) C13—C12—N4—O3 −1.7 (2)
C14—C15—C20—C21 −1.03 (17) N2—C12—N4—O3 178.98 (13)
C16—C15—C20—C21 178.45 (12)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2921).

References

  1. Bruker (2001). SMART and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Erhardt, H., Mildenberger, H., Handte, R., Sachse, B., Hartz, P. & Bürstell, H. (1985). German Patent No. DE3406908.
  3. Lu, Y.-H., Wang, G.-Z., Zhou, C.-H. & Zhang, Y.-Y. (2009). Acta Cryst. E65, o1396. [DOI] [PMC free article] [PubMed]
  4. Sheldrick, G. M. (1997). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Vogel, S., Ohmayer, S., Brunner, G. & Heilmann, J. (2008). Bioorg. Med. Chem.16, 4286–4293. [DOI] [PubMed]
  7. Wang, G., Lu, Y., Zhou, C. & Zhang, Y. (2009). Acta Cryst. E65, o1113. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809039221/ci2921sup1.cif

e-65-o2619-sup1.cif (22.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809039221/ci2921Isup2.hkl

e-65-o2619-Isup2.hkl (226.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES