Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Oct 10;65(Pt 11):o2688–o2689. doi: 10.1107/S1600536809040306

1-(6-Chloro-2-methyl-4-phenyl-3-quinol­yl)ethanone

Hoong-Kun Fun a,*,, Wan-Sin Loh a, S Sarveswari b, V Vijayakumar b, B Palakshi Reddy b
PMCID: PMC2971397  PMID: 21578294

Abstract

In the title compound, C18H14ClNO, the quinoline ring system is approximately planar with a maximum devation of 0.022 (1) Å and forms a dihedral angle of 62.70 (3)° with the phenyl ring. In the crystal, pairs of C—H⋯O inter­molecular hydrogen bonds link neighbouring mol­ecules into inversion dimers, forming R 2 2(14) ring motifs. These inversion dimers are stacked along the b axis. The structure is further stabilized by C—H⋯π inter­actions.

Related literature

For reference bond-length data, see: Allen et al. (1987). For background to quinolines, see: Morimoto et al. (1991); Michael (1997); Markees et al. (1970); Campbell et al. (1988); Maguire et al. (1994); Kalluraya & Sreenivasa (1998); Roma et al. (2000); Chen et al. (2001); Skraup (1880); Katritzky & Arend (1998); Jiang & Si (2002). For the biological activity of chalcones, see: Dimmock et al. (1999); Yamazaki et al. (2002). For a related structure, see: Fun et al. (2009). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).graphic file with name e-65-o2688-scheme1.jpg

Experimental

Crystal data

  • C18H14ClNO

  • M r = 295.75

  • Monoclinic, Inline graphic

  • a = 10.4633 (2) Å

  • b = 7.7959 (1) Å

  • c = 17.5925 (3) Å

  • β = 90.887 (1)°

  • V = 1434.86 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 100 K

  • 0.57 × 0.34 × 0.27 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.865, T max = 0.932

  • 32340 measured reflections

  • 7613 independent reflections

  • 6588 reflections with I > 2σ(I)

  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.107

  • S = 1.07

  • 7613 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809040306/wn2352sup1.cif

e-65-o2688-sup1.cif (19.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809040306/wn2352Isup2.hkl

e-65-o2688-Isup2.hkl (372.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15A⋯O1i 0.93 2.55 3.2047 (10) 128
C11—H11ACg1ii 0.93 2.78 3.6416 (7) 155
C13—H13ACg2iii 0.93 2.92 3.6255 (8) 133

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic. Cg1 and Cg2 are the centroids of the C1–C9/N1 and C10–C15 ring systems, respectively.

Acknowledgments

HKF and WSL thank USM for the Research University Golden Goose Grant (No. 1001/PFIZIK/811012). WSL thanks the Malaysian Government and USM for the award of the post of Assistant Research Officer under the Research University Golden Goose Grant (No. 1001/PFIZIK/811012). VV is grateful to DST-India for funding through the Young Scientist Scheme (Fast Track Proposal).

supplementary crystallographic information

Comment

Quinolines and their derivatives are very important compounds because of their wide occurrence in natural products (Morimoto et al., 1991; Michael, 1997) and biologically active compounds (Markees et al., 1970; Campbell et al., 1988). A large variety of quinolines have interesting physiological activities and have found attractive applications as pharmaceuticals, agrochemicals and as synthetic building blocks (Maguire et al., 1994; Kalluraya & Sreenivasa, 1998; Roma et al., 2000; Chen et al., 2001; Skraup, 1880). Many synthetic methods such as the Skraup, Doebner-Von Miller, Friedländer and Combes reactions have been developed for the preparation of quinolines, but due to their great importance, the synthesis of new derivatives of quinoline remains an active research area (Katritzky & Arend, 1998; Jiang & Si, 2002). Chalcones are open-chain flavonoids, possessing a variety of biological activities, including antioxidant, anti-inflammatory, antimicrobial, antiprotozoal, antiulcer, as well as other activities (Dimmock et al., 1999). More importantly, chalcones have shown several anticancer activities, such as inhibitors of cancer cell proliferation, carcinogenesis, and metastasis (Yamazaki et al., 2002).

In the crystal structure (Fig. 1), bond lengths (Allen et al., 1987) and angles are within normal ranges and comparable to those in a closely related structure (Fun et al., 2009). The quinoline ring system (C1–C9/N1) is approximately planar, with a maximum devation of 0.022 (1) Å at atom C1. The phenyl ring (C10–C15) forms a dihedral angle of 62.70 (3)° with the mean plane of the quinoline ring system. In the crystal packing (Fig. 2), pairs of C15—H15A···O1 hydrogen bonds link neighbouring molecules into dimers, forming R22(14) ring motifs (Bernstein et al., 1995). These inversion dimers are stacked along the b axis. The crystal structure is further stabilized by C—H···π interactions (Table 1), involving the C1–C9/N1 (centroid Cg1) and C10–C15 (centroid Cg2) ring systems.

Experimental

A mixture of 2-amino-5-chlorobenzophenone (2.3 g, 0.01 mol) and acetylacetone (1.0 g, 0.01 mol) with 0.15 ml concentrated HCl in a beaker was subjected to microwave irradiation for about 6 min. After completion of the reaction (monitored by TLC), the reaction mixture was washed with saturated solvent NaHCO3 (10 ml) and then it was dried. After that it was washed with petroleum ether and recrystallized with chloroform (M. p. 224–226°C). IR (cm-1): 1704, 1480, 1385, 840, 711.

Refinement

All H atoms were positioned geometrically [C—H = 0.93 or 0.96 Å] and were refined using a riding model, with Uiso(H) = 1.2Ueq(Csp2) or 1.5Ueq(methyl C). A rotating-group model was applied for the methyl groups.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, viewed along the b axis, showing the R22(14) ring motifs. C—H···O intermolecular interactions are shown as dashed lines.

Crystal data

C18H14ClNO F(000) = 616
Mr = 295.75 Dx = 1.369 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 9994 reflections
a = 10.4633 (2) Å θ = 2.3–37.6°
b = 7.7959 (1) Å µ = 0.26 mm1
c = 17.5925 (3) Å T = 100 K
β = 90.887 (1)° Block, yellow
V = 1434.86 (4) Å3 0.57 × 0.34 × 0.27 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 7613 independent reflections
Radiation source: fine-focus sealed tube 6588 reflections with I > 2σ(I)
graphite Rint = 0.023
φ and ω scans θmax = 37.6°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −17→16
Tmin = 0.865, Tmax = 0.932 k = −13→12
32340 measured reflections l = −30→30

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0574P)2 + 0.2858P] where P = (Fo2 + 2Fc2)/3
7613 reflections (Δ/σ)max < 0.001
192 parameters Δρmax = 0.58 e Å3
0 restraints Δρmin = −0.24 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 1.179322 (16) 0.65521 (3) 0.247848 (10) 0.02152 (5)
O1 0.56817 (6) 0.27543 (9) 0.51440 (4) 0.02585 (12)
N1 0.98196 (6) 0.23575 (8) 0.49910 (3) 0.01532 (10)
C1 0.98802 (6) 0.50843 (9) 0.32517 (4) 0.01414 (10)
H1A 0.9336 0.5589 0.2894 0.017*
C2 1.11760 (6) 0.53229 (9) 0.32124 (4) 0.01548 (11)
C3 1.20321 (6) 0.46250 (9) 0.37595 (4) 0.01719 (11)
H3A 1.2907 0.4809 0.3723 0.021*
C4 1.15518 (6) 0.36706 (9) 0.43465 (4) 0.01614 (11)
H4A 1.2107 0.3226 0.4714 0.019*
C5 1.02224 (6) 0.33535 (8) 0.43995 (4) 0.01347 (10)
C6 0.93765 (6) 0.40614 (8) 0.38437 (3) 0.01243 (10)
C7 0.80451 (6) 0.36943 (8) 0.39077 (3) 0.01238 (10)
C8 0.76613 (6) 0.26872 (8) 0.45085 (3) 0.01334 (10)
C9 0.85868 (6) 0.20413 (9) 0.50445 (4) 0.01465 (10)
C10 0.70864 (6) 0.44156 (8) 0.33610 (3) 0.01260 (10)
C11 0.70861 (6) 0.39520 (9) 0.25902 (4) 0.01491 (10)
H11A 0.7714 0.3219 0.2410 0.018*
C12 0.61476 (6) 0.45857 (9) 0.20938 (4) 0.01612 (11)
H12A 0.6143 0.4263 0.1585 0.019*
C13 0.52150 (6) 0.57038 (9) 0.23602 (4) 0.01573 (11)
H13A 0.4589 0.6126 0.2029 0.019*
C14 0.52217 (6) 0.61880 (9) 0.31229 (4) 0.01545 (11)
H14A 0.4607 0.6947 0.3298 0.019*
C15 0.61476 (6) 0.55367 (9) 0.36233 (4) 0.01429 (10)
H15A 0.6141 0.5849 0.4133 0.017*
C16 0.81736 (8) 0.09262 (10) 0.56922 (4) 0.02031 (13)
H16B 0.8914 0.0471 0.5951 0.030*
H16C 0.7660 −0.0001 0.5499 0.030*
H16A 0.7683 0.1595 0.6041 0.030*
C17 0.62761 (6) 0.22144 (9) 0.46068 (4) 0.01645 (11)
C18 0.56993 (9) 0.09744 (14) 0.40461 (5) 0.02852 (17)
H18A 0.4785 0.1000 0.4083 0.043*
H18B 0.6004 −0.0162 0.4156 0.043*
H18C 0.5940 0.1292 0.3541 0.043*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.01532 (7) 0.02794 (10) 0.02141 (8) −0.00307 (5) 0.00332 (5) 0.00537 (6)
O1 0.0226 (3) 0.0312 (3) 0.0242 (3) 0.0004 (2) 0.0103 (2) −0.0010 (2)
N1 0.0162 (2) 0.0145 (2) 0.0153 (2) 0.00089 (17) −0.00179 (17) 0.00089 (17)
C1 0.0122 (2) 0.0158 (2) 0.0145 (2) 0.00001 (19) 0.00039 (18) 0.00054 (19)
C2 0.0132 (2) 0.0166 (3) 0.0167 (2) −0.00137 (19) 0.00138 (19) 0.0000 (2)
C3 0.0123 (2) 0.0174 (3) 0.0219 (3) −0.0004 (2) −0.0010 (2) −0.0008 (2)
C4 0.0133 (2) 0.0153 (3) 0.0197 (3) 0.00069 (19) −0.0032 (2) −0.0008 (2)
C5 0.0136 (2) 0.0125 (2) 0.0143 (2) 0.00098 (18) −0.00177 (18) −0.00102 (18)
C6 0.0118 (2) 0.0130 (2) 0.0125 (2) 0.00046 (18) −0.00022 (17) −0.00075 (18)
C7 0.0121 (2) 0.0135 (2) 0.0115 (2) 0.00065 (17) 0.00041 (17) −0.00052 (18)
C8 0.0136 (2) 0.0143 (2) 0.0122 (2) 0.00014 (18) 0.00090 (18) −0.00009 (18)
C9 0.0168 (2) 0.0135 (2) 0.0136 (2) 0.00065 (19) −0.00055 (19) 0.00067 (19)
C10 0.0108 (2) 0.0151 (2) 0.0119 (2) −0.00022 (18) 0.00032 (17) 0.00094 (18)
C11 0.0140 (2) 0.0181 (3) 0.0127 (2) 0.0014 (2) 0.00037 (18) −0.0009 (2)
C12 0.0151 (2) 0.0200 (3) 0.0132 (2) −0.0002 (2) −0.00113 (19) 0.0002 (2)
C13 0.0127 (2) 0.0181 (3) 0.0164 (2) −0.00090 (19) −0.00199 (19) 0.0024 (2)
C14 0.0116 (2) 0.0171 (3) 0.0176 (3) 0.00086 (19) 0.00059 (19) 0.0011 (2)
C15 0.0122 (2) 0.0171 (3) 0.0136 (2) 0.00082 (19) 0.00122 (18) −0.00023 (19)
C16 0.0232 (3) 0.0199 (3) 0.0177 (3) 0.0000 (2) 0.0000 (2) 0.0065 (2)
C17 0.0150 (2) 0.0194 (3) 0.0150 (2) −0.0010 (2) 0.00195 (19) 0.0031 (2)
C18 0.0256 (4) 0.0377 (5) 0.0222 (3) −0.0151 (3) 0.0014 (3) −0.0032 (3)

Geometric parameters (Å, °)

Cl1—C2 1.7401 (7) C10—C15 1.3985 (9)
O1—C17 1.2146 (9) C10—C11 1.4032 (9)
N1—C9 1.3181 (9) C11—C12 1.3944 (9)
N1—C5 1.3701 (9) C11—H11A 0.9300
C1—C2 1.3714 (9) C12—C13 1.3949 (10)
C1—C6 1.4196 (9) C12—H12A 0.9300
C1—H1A 0.9300 C13—C14 1.3937 (10)
C2—C3 1.4137 (10) C13—H13A 0.9300
C3—C4 1.3742 (10) C14—C15 1.3947 (9)
C3—H3A 0.9300 C14—H14A 0.9300
C4—C5 1.4173 (9) C15—H15A 0.9300
C4—H4A 0.9300 C16—H16B 0.9600
C5—C6 1.4203 (9) C16—H16C 0.9600
C6—C7 1.4284 (9) C16—H16A 0.9600
C7—C8 1.3813 (9) C17—C18 1.5012 (11)
C7—C10 1.4891 (9) C18—H18A 0.9600
C8—C9 1.4325 (9) C18—H18B 0.9600
C8—C17 1.5081 (9) C18—H18C 0.9600
C9—C16 1.5021 (10)
C9—N1—C5 118.23 (6) C12—C11—C10 120.24 (6)
C2—C1—C6 119.46 (6) C12—C11—H11A 119.9
C2—C1—H1A 120.3 C10—C11—H11A 119.9
C6—C1—H1A 120.3 C11—C12—C13 120.03 (6)
C1—C2—C3 122.01 (6) C11—C12—H12A 120.0
C1—C2—Cl1 119.39 (5) C13—C12—H12A 120.0
C3—C2—Cl1 118.59 (5) C14—C13—C12 119.97 (6)
C4—C3—C2 119.00 (6) C14—C13—H13A 120.0
C4—C3—H3A 120.5 C12—C13—H13A 120.0
C2—C3—H3A 120.5 C13—C14—C15 120.14 (6)
C3—C4—C5 120.97 (6) C13—C14—H14A 119.9
C3—C4—H4A 119.5 C15—C14—H14A 119.9
C5—C4—H4A 119.5 C14—C15—C10 120.25 (6)
N1—C5—C4 117.56 (6) C14—C15—H15A 119.9
N1—C5—C6 123.19 (6) C10—C15—H15A 119.9
C4—C5—C6 119.25 (6) C9—C16—H16B 109.5
C1—C6—C5 119.27 (6) C9—C16—H16C 109.5
C1—C6—C7 122.95 (6) H16B—C16—H16C 109.5
C5—C6—C7 117.78 (6) C9—C16—H16A 109.5
C8—C7—C6 118.01 (6) H16B—C16—H16A 109.5
C8—C7—C10 120.53 (5) H16C—C16—H16A 109.5
C6—C7—C10 121.43 (5) O1—C17—C18 121.94 (7)
C7—C8—C9 120.13 (6) O1—C17—C8 120.60 (7)
C7—C8—C17 121.19 (6) C18—C17—C8 117.34 (6)
C9—C8—C17 118.67 (6) C17—C18—H18A 109.5
N1—C9—C8 122.66 (6) C17—C18—H18B 109.5
N1—C9—C16 117.12 (6) H18A—C18—H18B 109.5
C8—C9—C16 120.21 (6) C17—C18—H18C 109.5
C15—C10—C11 119.35 (6) H18A—C18—H18C 109.5
C15—C10—C7 119.49 (5) H18B—C18—H18C 109.5
C11—C10—C7 121.13 (6)
C6—C1—C2—C3 −2.09 (10) C5—N1—C9—C8 0.38 (10)
C6—C1—C2—Cl1 179.09 (5) C5—N1—C9—C16 179.18 (6)
C1—C2—C3—C4 0.36 (11) C7—C8—C9—N1 −0.40 (10)
Cl1—C2—C3—C4 179.19 (5) C17—C8—C9—N1 178.37 (6)
C2—C3—C4—C5 1.27 (10) C7—C8—C9—C16 −179.17 (6)
C9—N1—C5—C4 −179.52 (6) C17—C8—C9—C16 −0.40 (9)
C9—N1—C5—C6 0.11 (10) C8—C7—C10—C15 61.18 (9)
C3—C4—C5—N1 178.51 (6) C6—C7—C10—C15 −116.81 (7)
C3—C4—C5—C6 −1.13 (10) C8—C7—C10—C11 −116.99 (7)
C2—C1—C6—C5 2.18 (10) C6—C7—C10—C11 65.01 (9)
C2—C1—C6—C7 −177.46 (6) C15—C10—C11—C12 −0.88 (10)
N1—C5—C6—C1 179.78 (6) C7—C10—C11—C12 177.30 (6)
C4—C5—C6—C1 −0.60 (9) C10—C11—C12—C13 0.91 (10)
N1—C5—C6—C7 −0.57 (9) C11—C12—C13—C14 0.02 (10)
C4—C5—C6—C7 179.06 (6) C12—C13—C14—C15 −0.97 (10)
C1—C6—C7—C8 −179.83 (6) C13—C14—C15—C10 1.00 (10)
C5—C6—C7—C8 0.52 (9) C11—C10—C15—C14 −0.07 (10)
C1—C6—C7—C10 −1.79 (10) C7—C10—C15—C14 −178.28 (6)
C5—C6—C7—C10 178.56 (6) C7—C8—C17—O1 −113.46 (8)
C6—C7—C8—C9 −0.08 (9) C9—C8—C17—O1 67.78 (9)
C10—C7—C8—C9 −178.14 (6) C7—C8—C17—C18 70.31 (9)
C6—C7—C8—C17 −178.81 (6) C9—C8—C17—C18 −108.45 (8)
C10—C7—C8—C17 3.13 (9)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C15—H15A···O1i 0.93 2.55 3.2047 (10) 128
C11—H11A···Cg1ii 0.93 2.78 3.6416 (7) 155
C13—H13A···Cg2iii 0.93 2.92 3.6255 (8) 133

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+3/2, y−1/2, −z+1/2; (iii) −x+3/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2352).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  3. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Campbell, S. F., Hardstone, J. D. & Palmer, M. J. (1988). J. Med. Chem.31, 1031–1035. [DOI] [PubMed]
  5. Chen, Y.-L., Fang, K.-C., Sheu, J.-Y., Hsu, S.-L. & Tzeng, C.-C. (2001). J. Med. Chem.44, 2374–2377. [DOI] [PubMed]
  6. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  7. Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem.6, 1125–1149. [PubMed]
  8. Fun, H.-K., Yeap, C. S., Sarveswari, S., Vijayakumar, V. & Prasath, R. (2009). Acta Cryst. E65, o2665–o2666. [DOI] [PMC free article] [PubMed]
  9. Jiang, B. & Si, Y.-G. (2002). J. Org. Chem.67, 9449–9451. [DOI] [PubMed]
  10. Kalluraya, B. & Sreenivasa, S. (1998). Farmaco, 53, 399–404. [DOI] [PubMed]
  11. Katritzky, A. R. & Arend, M. I. (1998). J. Org. Chem.63, 9989–9991.
  12. Maguire, M. P., Sheets, K. R., McVety, K., Spada, A. P. & Zilberstein, A. (1994). J. Med. Chem.37, 2129–2137. [DOI] [PubMed]
  13. Markees, D. G., Dewey, V. C. & Kidder, G. W. (1970). J. Med. Chem.13, 324–326. [DOI] [PubMed]
  14. Michael, J. P. (1997). Nat. Prod. Rep.14, 605–608.
  15. Morimoto, Y., Matsuda, F. & Shirahama, H. (1991). Synlett, 3, 202–203.
  16. Roma, G., Braccio, M. D., Grossi, G., Mattioli, F. & Ghia, M. (2000). Eur. J. Med. Chem.35, 1021–1026. [DOI] [PubMed]
  17. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  18. Skraup, H. (1880). Ber. Dtsch Chem. Ges.13, 2086–2088.
  19. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  20. Yamazaki, S., Morita, T. & Endo, H. (2002). Cancer Lett.183, 23–30. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809040306/wn2352sup1.cif

e-65-o2688-sup1.cif (19.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809040306/wn2352Isup2.hkl

e-65-o2688-Isup2.hkl (372.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES