Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Oct 17;65(Pt 11):o2794. doi: 10.1107/S1600536809041580

c-3,t-3-Dimethyl-r-2,c-6-diphenyl­piperidin-4-one

M Thenmozhi a, S Ponnuswamy b, J Umamaheshwari b, M Jamesh b, M N Ponnuswamy a,*
PMCID: PMC2971408  PMID: 21578386

Abstract

In the title compound, C19H21NO, the piperidine ring adopts a chair conformation. The two phenyl rings attached to the piperidine ring at 2 and 6 positions occupy equatorial orientations and the dihedral angle between them is 57.53 (11)°. In the crystal, the mol­ecules are connected via weak inter­molecular C—H⋯π inter­actions, leading to a zigzag chains.

Related literature

For general background to piperidine derivatives, see: Badorrey et al. (1999); Nalanishi et al. (1974); Elena et al. (2002). For hybridization, see: Beddoes et al. (1986). For hydrogen-bond motifs, see: Bernstein et al. (1995). For ring conformational analysis, see: Cremer & Pople (1975); Nardelli (1983). For the synthesis of the title compound, see Noller & Baliah (1948).graphic file with name e-65-o2794-scheme1.jpg

Experimental

Crystal data

  • C19H21NO

  • M r = 279.37

  • Triclinic, Inline graphic

  • a = 6.0293 (4) Å

  • b = 10.8198 (6) Å

  • c = 12.1649 (6) Å

  • α = 98.559 (2)°

  • β = 92.836 (3)°

  • γ = 96.677 (3)°

  • V = 777.62 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.18 mm

Data collection

  • Bruker Kappa APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001) T min = 0.986, T max = 0.987

  • 15310 measured reflections

  • 3556 independent reflections

  • 1930 reflections with I > 2σ(I)

  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.168

  • S = 1.06

  • 3556 reflections

  • 197 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809041580/bt5058sup1.cif

e-65-o2794-sup1.cif (19.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809041580/bt5058Isup2.hkl

e-65-o2794-Isup2.hkl (170.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯Cg3i 0.93 2.95 3.648 133

Symmetry codes: (i) Inline graphic. Cg3 is the centroid of the C15–C20 ring.

Acknowledgments

MT thanks Dr Babu Varghese, SAIF, IIT-Madras, Chennai, India, for his help with the data collection. SP thanks the UGC, India, for financial support.

supplementary crystallographic information

Comment

Various piperidine derivatives are present in numerous alkaloids (Badorrey et al., 1999). Piperidines have been found to exhibit blood cholesterol-lowering activities (Nalanishi et al., 1974). Trans-platinum piperidine derivatives deserve evaluation of their efficacy in tumor-bearing animals (Elena et al., 2002). In view of these importance, the crystal structure of the title compound has been carrried out.

The ORTEP plot of the molecule is shown in Fig. 1. The piperidine ring adopts chair conformation and the ring-puckering parameters (Cremer & Pople, 1975) are: q2 = 0.1578 (20)Å, q3 = -0.5364 (21)Å, and φ = 176.7 (8)°, and the smallest asymmetry parameter Δs(N1)=Δs(C4) = 1.97 (16)° (Nardelli, 1983). The two phenyl rings attached to the piperidine ring at 2,6- positions occupy equatorial orientation [C7-C2-C3-C4 = -174.77 (16)°; C4-C5-C6-C15 = 175.09 (16)°], respectively and the dihedral angle between them is 57.52 (11)°. The methyl groups attached at position 3 of the piperidine ring takes up syn-periplanar [C13-C3-C4-O1 = -22.3 (3)°] and anti-clinical [C14-C3-C4-O1 = 97.1 (2)°] orientations. The sum of the bond angles at N1[329.62 (5)°] of the piperidine ring is in accordance with sp3 hybridization (Beddoes et al., 1986).

The molecules are connected via intermolecular C–H···π interactions (Table 1) which lead to a zig–zag chain running along b – axis in addition to van der Waals forces (Fig. 2).

Experimental

The procedure reported by Noller and Baliah was followed for the preparation of this compound (Noller & Baliah, 1948). Benzaldehyde (21ml), 3-methyl-2-butanone (10ml) and ammonium acetate (8gm) were dissolved in distilled ethanol (50ml) and heated over boiling water bath with shaking, until an yellow colour developed and changed into orange. The solution was left undisturbed for 14 hours. The solid thrown out was filtered, purified and recrystallized from ethanol.

Refinement

The H atom bonded to N was freely refined. H atoms bonded to C were positioned geometrically (C-H = 0.93 - 0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl H and 1.2Ueq(C) for other H atoms. The components of the anisotropic displacement parameters of C18 and C19 in the direction of the bond between them were restrained to be equal within an effective standard deviation of 0.001.

Figures

Fig. 1.

Fig. 1.

The ORTEP plot of the molecule with 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

The crystal packing of the molecules viewed along b - axis.

Crystal data

C19H21NO Z = 2
Mr = 279.37 F(000) = 300
Triclinic, P1 Dx = 1.193 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 6.0293 (4) Å Cell parameters from 3556 reflections
b = 10.8198 (6) Å θ = 1.7–28.2°
c = 12.1649 (6) Å µ = 0.07 mm1
α = 98.559 (2)° T = 293 K
β = 92.836 (3)° Block, colourless
γ = 96.677 (3)° 0.20 × 0.20 × 0.18 mm
V = 777.62 (8) Å3

Data collection

Bruker Kappa APEXII area-detector diffractometer 3556 independent reflections
Radiation source: fine-focus sealed tube 1930 reflections with I > 2σ(I)
graphite Rint = 0.036
ω and φ scans θmax = 28.2°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 2001) h = −8→7
Tmin = 0.986, Tmax = 0.987 k = −14→13
15310 measured reflections l = −15→15

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.168 w = 1/[σ2(Fo2) + (0.0729P)2 + 0.1205P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max = 0.014
3556 reflections Δρmax = 0.18 e Å3
197 parameters Δρmin = −0.19 e Å3
1 restraint Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.020 (5)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C2 0.1988 (3) 0.24655 (18) 0.32290 (15) 0.0425 (5)
H2 0.0400 0.2403 0.3379 0.051*
C3 0.3320 (3) 0.22876 (19) 0.43103 (15) 0.0468 (5)
C4 0.2694 (3) 0.0952 (2) 0.45372 (16) 0.0493 (5)
C5 0.2448 (4) −0.00903 (19) 0.35615 (16) 0.0524 (6)
H5A 0.1674 −0.0845 0.3778 0.063*
H5B 0.3923 −0.0271 0.3353 0.063*
C6 0.1161 (3) 0.02397 (18) 0.25591 (15) 0.0442 (5)
H6 −0.0376 0.0336 0.2750 0.053*
C7 0.2596 (3) 0.37123 (18) 0.28453 (15) 0.0455 (5)
C8 0.1269 (4) 0.4668 (2) 0.30562 (18) 0.0588 (6)
H8 0.0030 0.4548 0.3472 0.071*
C9 0.1733 (5) 0.5791 (2) 0.2668 (2) 0.0723 (7)
H9 0.0818 0.6421 0.2825 0.087*
C10 0.3532 (5) 0.5982 (2) 0.2053 (2) 0.0750 (8)
H10 0.3836 0.6738 0.1781 0.090*
C11 0.4897 (5) 0.5055 (2) 0.18330 (19) 0.0704 (7)
H11 0.6138 0.5187 0.1421 0.084*
C12 0.4420 (4) 0.3928 (2) 0.22252 (17) 0.0551 (6)
H12 0.5344 0.3301 0.2069 0.066*
C13 0.2732 (5) 0.3230 (2) 0.52803 (18) 0.0740 (8)
H13A 0.1152 0.3097 0.5367 0.111*
H13B 0.3139 0.4072 0.5133 0.111*
H13C 0.3535 0.3117 0.5952 0.111*
C14 0.5846 (4) 0.2435 (2) 0.41959 (19) 0.0644 (7)
H14A 0.6588 0.2207 0.4839 0.097*
H14B 0.6361 0.3294 0.4137 0.097*
H14C 0.6176 0.1895 0.3540 0.097*
C15 0.1096 (4) −0.07639 (18) 0.15558 (16) 0.0460 (5)
C16 0.2873 (4) −0.0837 (2) 0.08964 (18) 0.0605 (6)
H16 0.4134 −0.0243 0.1061 0.073*
C17 0.2818 (5) −0.1775 (2) −0.0003 (2) 0.0728 (7)
H17 0.4041 −0.1810 −0.0438 0.087*
C18 0.0987 (5) −0.2653 (2) −0.0261 (2) 0.0726 (7)
H18 0.0952 −0.3285 −0.0872 0.087*
C19 −0.0791 (5) −0.2598 (2) 0.0383 (2) 0.0732 (7)
H19 −0.2041 −0.3199 0.0214 0.088*
C20 −0.0753 (4) −0.1654 (2) 0.12890 (19) 0.0620 (6)
H20 −0.1982 −0.1621 0.1720 0.074*
N1 0.2245 (3) 0.14438 (15) 0.23353 (13) 0.0435 (4)
O1 0.2492 (3) 0.07213 (16) 0.54724 (12) 0.0687 (5)
H1 0.168 (4) 0.1575 (19) 0.1717 (19) 0.058 (7)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C2 0.0418 (11) 0.0477 (12) 0.0367 (10) 0.0071 (9) 0.0038 (8) 0.0012 (8)
C3 0.0453 (12) 0.0570 (13) 0.0363 (10) 0.0018 (9) 0.0019 (8) 0.0053 (9)
C4 0.0431 (12) 0.0697 (15) 0.0359 (11) 0.0030 (10) 0.0002 (8) 0.0143 (10)
C5 0.0626 (14) 0.0528 (13) 0.0438 (11) 0.0061 (10) 0.0021 (10) 0.0155 (10)
C6 0.0457 (12) 0.0475 (12) 0.0408 (10) 0.0046 (9) 0.0043 (8) 0.0118 (9)
C7 0.0534 (13) 0.0460 (12) 0.0343 (10) 0.0066 (9) −0.0041 (8) −0.0013 (8)
C8 0.0655 (16) 0.0525 (14) 0.0571 (13) 0.0139 (11) −0.0024 (11) 0.0016 (11)
C9 0.093 (2) 0.0524 (15) 0.0708 (16) 0.0209 (13) −0.0092 (15) 0.0045 (12)
C10 0.113 (2) 0.0494 (15) 0.0612 (15) 0.0044 (15) −0.0152 (15) 0.0155 (12)
C11 0.094 (2) 0.0629 (16) 0.0531 (14) −0.0037 (14) 0.0060 (12) 0.0151 (12)
C12 0.0680 (15) 0.0488 (13) 0.0489 (12) 0.0079 (11) 0.0092 (10) 0.0065 (10)
C13 0.096 (2) 0.0789 (17) 0.0410 (12) 0.0077 (14) −0.0001 (12) −0.0051 (12)
C14 0.0462 (14) 0.0788 (17) 0.0677 (15) −0.0021 (12) −0.0080 (10) 0.0215 (13)
C15 0.0554 (13) 0.0428 (11) 0.0402 (10) 0.0039 (9) −0.0023 (9) 0.0113 (9)
C16 0.0711 (16) 0.0504 (13) 0.0572 (14) 0.0011 (11) 0.0117 (12) 0.0015 (11)
C17 0.096 (2) 0.0644 (16) 0.0565 (14) 0.0135 (14) 0.0155 (13) −0.0003 (12)
C18 0.110 (2) 0.0549 (14) 0.0486 (14) 0.0124 (15) −0.0144 (11) 0.0005 (11)
C19 0.0874 (18) 0.0583 (15) 0.0652 (15) −0.0101 (13) −0.0227 (10) 0.0058 (12)
C20 0.0625 (15) 0.0627 (15) 0.0569 (14) −0.0055 (12) −0.0061 (11) 0.0103 (11)
N1 0.0562 (11) 0.0423 (10) 0.0321 (9) 0.0055 (8) 0.0016 (7) 0.0071 (7)
O1 0.0743 (11) 0.0921 (12) 0.0396 (8) −0.0042 (9) 0.0012 (7) 0.0223 (8)

Geometric parameters (Å, °)

C2—N1 1.458 (2) C10—H10 0.9300
C2—C7 1.504 (3) C11—C12 1.380 (3)
C2—C3 1.555 (3) C11—H11 0.9300
C2—H2 0.9800 C12—H12 0.9300
C3—C4 1.520 (3) C13—H13A 0.9600
C3—C13 1.525 (3) C13—H13B 0.9600
C3—C14 1.528 (3) C13—H13C 0.9600
C4—O1 1.209 (2) C14—H14A 0.9600
C4—C5 1.499 (3) C14—H14B 0.9600
C5—C6 1.522 (3) C14—H14C 0.9600
C5—H5A 0.9700 C15—C16 1.372 (3)
C5—H5B 0.9700 C15—C20 1.377 (3)
C6—N1 1.457 (2) C16—C17 1.372 (3)
C6—C15 1.504 (3) C16—H16 0.9300
C6—H6 0.9800 C17—C18 1.362 (4)
C7—C12 1.381 (3) C17—H17 0.9300
C7—C8 1.382 (3) C18—C19 1.360 (4)
C8—C9 1.371 (3) C18—H18 0.9300
C8—H8 0.9300 C19—C20 1.383 (3)
C9—C10 1.361 (4) C19—H19 0.9300
C9—H9 0.9300 C20—H20 0.9300
C10—C11 1.374 (4) N1—H1 0.85 (2)
N1—C2—C7 109.70 (15) C10—C11—C12 119.8 (2)
N1—C2—C3 109.78 (16) C10—C11—H11 120.1
C7—C2—C3 114.76 (15) C12—C11—H11 120.1
N1—C2—H2 107.4 C11—C12—C7 121.2 (2)
C7—C2—H2 107.4 C11—C12—H12 119.4
C3—C2—H2 107.4 C7—C12—H12 119.4
C4—C3—C13 109.95 (17) C3—C13—H13A 109.5
C4—C3—C14 106.01 (17) C3—C13—H13B 109.5
C13—C3—C14 110.43 (18) H13A—C13—H13B 109.5
C4—C3—C2 108.99 (15) C3—C13—H13C 109.5
C13—C3—C2 109.16 (18) H13A—C13—H13C 109.5
C14—C3—C2 112.25 (16) H13B—C13—H13C 109.5
O1—C4—C5 120.6 (2) C3—C14—H14A 109.5
O1—C4—C3 121.75 (19) C3—C14—H14B 109.5
C5—C4—C3 117.57 (16) H14A—C14—H14B 109.5
C4—C5—C6 112.35 (17) C3—C14—H14C 109.5
C4—C5—H5A 109.1 H14A—C14—H14C 109.5
C6—C5—H5A 109.1 H14B—C14—H14C 109.5
C4—C5—H5B 109.1 C16—C15—C20 118.2 (2)
C6—C5—H5B 109.1 C16—C15—C6 121.47 (18)
H5A—C5—H5B 107.9 C20—C15—C6 120.3 (2)
N1—C6—C15 111.07 (15) C17—C16—C15 121.0 (2)
N1—C6—C5 107.32 (16) C17—C16—H16 119.5
C15—C6—C5 111.89 (17) C15—C16—H16 119.5
N1—C6—H6 108.8 C18—C17—C16 120.4 (2)
C15—C6—H6 108.8 C18—C17—H17 119.8
C5—C6—H6 108.8 C16—C17—H17 119.8
C12—C7—C8 117.4 (2) C17—C18—C19 119.4 (2)
C12—C7—C2 121.77 (19) C17—C18—H18 120.3
C8—C7—C2 120.70 (19) C19—C18—H18 120.3
C9—C8—C7 121.6 (2) C18—C19—C20 120.5 (2)
C9—C8—H8 119.2 C18—C19—H19 119.8
C7—C8—H8 119.2 C20—C19—H19 119.8
C10—C9—C8 120.0 (3) C15—C20—C19 120.4 (2)
C10—C9—H9 120.0 C15—C20—H20 119.8
C8—C9—H9 120.0 C19—C20—H20 119.8
C9—C10—C11 119.9 (2) C6—N1—C2 111.51 (15)
C9—C10—H10 120.0 C6—N1—H1 107.9 (14)
C11—C10—H10 120.0 C2—N1—H1 111.3 (15)
N1—C2—C3—C4 −50.7 (2) C7—C8—C9—C10 0.4 (4)
C7—C2—C3—C4 −174.77 (16) C8—C9—C10—C11 −0.8 (4)
N1—C2—C3—C13 −170.78 (17) C9—C10—C11—C12 0.8 (4)
C7—C2—C3—C13 65.1 (2) C10—C11—C12—C7 −0.5 (3)
N1—C2—C3—C14 66.4 (2) C8—C7—C12—C11 0.0 (3)
C7—C2—C3—C14 −57.6 (2) C2—C7—C12—C11 176.84 (19)
C13—C3—C4—O1 −22.3 (3) N1—C6—C15—C16 39.6 (3)
C14—C3—C4—O1 97.1 (2) C5—C6—C15—C16 −80.3 (2)
C2—C3—C4—O1 −141.9 (2) N1—C6—C15—C20 −141.7 (2)
C13—C3—C4—C5 160.91 (19) C5—C6—C15—C20 98.4 (2)
C14—C3—C4—C5 −79.7 (2) C20—C15—C16—C17 −0.3 (3)
C2—C3—C4—C5 41.3 (2) C6—C15—C16—C17 178.5 (2)
O1—C4—C5—C6 139.4 (2) C15—C16—C17—C18 0.2 (4)
C3—C4—C5—C6 −43.7 (2) C16—C17—C18—C19 −0.3 (4)
C4—C5—C6—N1 53.0 (2) C17—C18—C19—C20 0.5 (4)
C4—C5—C6—C15 175.09 (16) C16—C15—C20—C19 0.5 (3)
N1—C2—C7—C12 −41.6 (2) C6—C15—C20—C19 −178.3 (2)
C3—C2—C7—C12 82.6 (2) C18—C19—C20—C15 −0.6 (4)
N1—C2—C7—C8 135.14 (19) C15—C6—N1—C2 170.45 (16)
C3—C2—C7—C8 −100.7 (2) C5—C6—N1—C2 −67.0 (2)
C12—C7—C8—C9 0.0 (3) C7—C2—N1—C6 −165.75 (16)
C2—C7—C8—C9 −176.82 (19) C3—C2—N1—C6 67.3 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C10—H10···Cg3i 0.93 2.95 3.648 133

Symmetry codes: (i) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5058).

References

  1. Badorrey, R., Cativiela, C., Diaz-de-Villegas, M. D. & Galvez, J. A. (1999). Tetrahedron, 55, 7601–7612.
  2. Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787–797.
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  4. Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  6. Elena, K., Yechezkel, B., Dan, G. & Yousef, N. (2002). J. Med. Chem.45, 5196–5204.
  7. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  8. Nalanishi, M., Shiraki, M., Kobayakawa, T. & Kobayashi, R. (1974). Jpn Patent 74-03987.
  9. Nardelli, M. (1983). Acta Cryst. C39, 1141–1142.
  10. Noller, C. & Baliah, V. (1948). J. Am. Chem. Soc.70, 3853–3855. [DOI] [PubMed]
  11. Sheldrick, G. M. (2001). SADABS University of Göttingen, Germany.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809041580/bt5058sup1.cif

e-65-o2794-sup1.cif (19.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809041580/bt5058Isup2.hkl

e-65-o2794-Isup2.hkl (170.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES