Abstract
In the title compound, C19H21NO, the piperidine ring adopts a chair conformation. The two phenyl rings attached to the piperidine ring at 2 and 6 positions occupy equatorial orientations and the dihedral angle between them is 57.53 (11)°. In the crystal, the molecules are connected via weak intermolecular C—H⋯π interactions, leading to a zigzag chains.
Related literature
For general background to piperidine derivatives, see: Badorrey et al. (1999 ▶); Nalanishi et al. (1974 ▶); Elena et al. (2002 ▶). For hybridization, see: Beddoes et al. (1986 ▶). For hydrogen-bond motifs, see: Bernstein et al. (1995 ▶). For ring conformational analysis, see: Cremer & Pople (1975 ▶); Nardelli (1983 ▶). For the synthesis of the title compound, see Noller & Baliah (1948 ▶).
Experimental
Crystal data
C19H21NO
M r = 279.37
Triclinic,
a = 6.0293 (4) Å
b = 10.8198 (6) Å
c = 12.1649 (6) Å
α = 98.559 (2)°
β = 92.836 (3)°
γ = 96.677 (3)°
V = 777.62 (8) Å3
Z = 2
Mo Kα radiation
μ = 0.07 mm−1
T = 293 K
0.20 × 0.20 × 0.18 mm
Data collection
Bruker Kappa APEXII area-detector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2001 ▶) T min = 0.986, T max = 0.987
15310 measured reflections
3556 independent reflections
1930 reflections with I > 2σ(I)
R int = 0.036
Refinement
R[F 2 > 2σ(F 2)] = 0.050
wR(F 2) = 0.168
S = 1.06
3556 reflections
197 parameters
1 restraint
H atoms treated by a mixture of independent and constrained refinement
Δρmax = 0.18 e Å−3
Δρmin = −0.19 e Å−3
Data collection: APEX2 (Bruker, 2004 ▶); cell refinement: SAINT (Bruker, 2004 ▶); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: ORTEP-3 (Farrugia, 1997 ▶); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009 ▶).
Supplementary Material
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809041580/bt5058sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536809041580/bt5058Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| C10—H10⋯Cg3i | 0.93 | 2.95 | 3.648 | 133 |
Symmetry codes: (i)
. Cg3 is the centroid of the C15–C20 ring.
Acknowledgments
MT thanks Dr Babu Varghese, SAIF, IIT-Madras, Chennai, India, for his help with the data collection. SP thanks the UGC, India, for financial support.
supplementary crystallographic information
Comment
Various piperidine derivatives are present in numerous alkaloids (Badorrey et al., 1999). Piperidines have been found to exhibit blood cholesterol-lowering activities (Nalanishi et al., 1974). Trans-platinum piperidine derivatives deserve evaluation of their efficacy in tumor-bearing animals (Elena et al., 2002). In view of these importance, the crystal structure of the title compound has been carrried out.
The ORTEP plot of the molecule is shown in Fig. 1. The piperidine ring adopts chair conformation and the ring-puckering parameters (Cremer & Pople, 1975) are: q2 = 0.1578 (20)Å, q3 = -0.5364 (21)Å, and φ = 176.7 (8)°, and the smallest asymmetry parameter Δs(N1)=Δs(C4) = 1.97 (16)° (Nardelli, 1983). The two phenyl rings attached to the piperidine ring at 2,6- positions occupy equatorial orientation [C7-C2-C3-C4 = -174.77 (16)°; C4-C5-C6-C15 = 175.09 (16)°], respectively and the dihedral angle between them is 57.52 (11)°. The methyl groups attached at position 3 of the piperidine ring takes up syn-periplanar [C13-C3-C4-O1 = -22.3 (3)°] and anti-clinical [C14-C3-C4-O1 = 97.1 (2)°] orientations. The sum of the bond angles at N1[329.62 (5)°] of the piperidine ring is in accordance with sp3 hybridization (Beddoes et al., 1986).
The molecules are connected via intermolecular C–H···π interactions (Table 1) which lead to a zig–zag chain running along b – axis in addition to van der Waals forces (Fig. 2).
Experimental
The procedure reported by Noller and Baliah was followed for the preparation of this compound (Noller & Baliah, 1948). Benzaldehyde (21ml), 3-methyl-2-butanone (10ml) and ammonium acetate (8gm) were dissolved in distilled ethanol (50ml) and heated over boiling water bath with shaking, until an yellow colour developed and changed into orange. The solution was left undisturbed for 14 hours. The solid thrown out was filtered, purified and recrystallized from ethanol.
Refinement
The H atom bonded to N was freely refined. H atoms bonded to C were positioned geometrically (C-H = 0.93 - 0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl H and 1.2Ueq(C) for other H atoms. The components of the anisotropic displacement parameters of C18 and C19 in the direction of the bond between them were restrained to be equal within an effective standard deviation of 0.001.
Figures
Fig. 1.
The ORTEP plot of the molecule with 30% probability displacement ellipsoids.
Fig. 2.
The crystal packing of the molecules viewed along b - axis.
Crystal data
| C19H21NO | Z = 2 |
| Mr = 279.37 | F(000) = 300 |
| Triclinic, P1 | Dx = 1.193 Mg m−3 |
| Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
| a = 6.0293 (4) Å | Cell parameters from 3556 reflections |
| b = 10.8198 (6) Å | θ = 1.7–28.2° |
| c = 12.1649 (6) Å | µ = 0.07 mm−1 |
| α = 98.559 (2)° | T = 293 K |
| β = 92.836 (3)° | Block, colourless |
| γ = 96.677 (3)° | 0.20 × 0.20 × 0.18 mm |
| V = 777.62 (8) Å3 |
Data collection
| Bruker Kappa APEXII area-detector diffractometer | 3556 independent reflections |
| Radiation source: fine-focus sealed tube | 1930 reflections with I > 2σ(I) |
| graphite | Rint = 0.036 |
| ω and φ scans | θmax = 28.2°, θmin = 1.7° |
| Absorption correction: multi-scan (SADABS; Sheldrick, 2001) | h = −8→7 |
| Tmin = 0.986, Tmax = 0.987 | k = −14→13 |
| 15310 measured reflections | l = −15→15 |
Refinement
| Refinement on F2 | Secondary atom site location: difference Fourier map |
| Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
| R[F2 > 2σ(F2)] = 0.050 | H atoms treated by a mixture of independent and constrained refinement |
| wR(F2) = 0.168 | w = 1/[σ2(Fo2) + (0.0729P)2 + 0.1205P] where P = (Fo2 + 2Fc2)/3 |
| S = 1.06 | (Δ/σ)max = 0.014 |
| 3556 reflections | Δρmax = 0.18 e Å−3 |
| 197 parameters | Δρmin = −0.19 e Å−3 |
| 1 restraint | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
| Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.020 (5) |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| C2 | 0.1988 (3) | 0.24655 (18) | 0.32290 (15) | 0.0425 (5) | |
| H2 | 0.0400 | 0.2403 | 0.3379 | 0.051* | |
| C3 | 0.3320 (3) | 0.22876 (19) | 0.43103 (15) | 0.0468 (5) | |
| C4 | 0.2694 (3) | 0.0952 (2) | 0.45372 (16) | 0.0493 (5) | |
| C5 | 0.2448 (4) | −0.00903 (19) | 0.35615 (16) | 0.0524 (6) | |
| H5A | 0.1674 | −0.0845 | 0.3778 | 0.063* | |
| H5B | 0.3923 | −0.0271 | 0.3353 | 0.063* | |
| C6 | 0.1161 (3) | 0.02397 (18) | 0.25591 (15) | 0.0442 (5) | |
| H6 | −0.0376 | 0.0336 | 0.2750 | 0.053* | |
| C7 | 0.2596 (3) | 0.37123 (18) | 0.28453 (15) | 0.0455 (5) | |
| C8 | 0.1269 (4) | 0.4668 (2) | 0.30562 (18) | 0.0588 (6) | |
| H8 | 0.0030 | 0.4548 | 0.3472 | 0.071* | |
| C9 | 0.1733 (5) | 0.5791 (2) | 0.2668 (2) | 0.0723 (7) | |
| H9 | 0.0818 | 0.6421 | 0.2825 | 0.087* | |
| C10 | 0.3532 (5) | 0.5982 (2) | 0.2053 (2) | 0.0750 (8) | |
| H10 | 0.3836 | 0.6738 | 0.1781 | 0.090* | |
| C11 | 0.4897 (5) | 0.5055 (2) | 0.18330 (19) | 0.0704 (7) | |
| H11 | 0.6138 | 0.5187 | 0.1421 | 0.084* | |
| C12 | 0.4420 (4) | 0.3928 (2) | 0.22252 (17) | 0.0551 (6) | |
| H12 | 0.5344 | 0.3301 | 0.2069 | 0.066* | |
| C13 | 0.2732 (5) | 0.3230 (2) | 0.52803 (18) | 0.0740 (8) | |
| H13A | 0.1152 | 0.3097 | 0.5367 | 0.111* | |
| H13B | 0.3139 | 0.4072 | 0.5133 | 0.111* | |
| H13C | 0.3535 | 0.3117 | 0.5952 | 0.111* | |
| C14 | 0.5846 (4) | 0.2435 (2) | 0.41959 (19) | 0.0644 (7) | |
| H14A | 0.6588 | 0.2207 | 0.4839 | 0.097* | |
| H14B | 0.6361 | 0.3294 | 0.4137 | 0.097* | |
| H14C | 0.6176 | 0.1895 | 0.3540 | 0.097* | |
| C15 | 0.1096 (4) | −0.07639 (18) | 0.15558 (16) | 0.0460 (5) | |
| C16 | 0.2873 (4) | −0.0837 (2) | 0.08964 (18) | 0.0605 (6) | |
| H16 | 0.4134 | −0.0243 | 0.1061 | 0.073* | |
| C17 | 0.2818 (5) | −0.1775 (2) | −0.0003 (2) | 0.0728 (7) | |
| H17 | 0.4041 | −0.1810 | −0.0438 | 0.087* | |
| C18 | 0.0987 (5) | −0.2653 (2) | −0.0261 (2) | 0.0726 (7) | |
| H18 | 0.0952 | −0.3285 | −0.0872 | 0.087* | |
| C19 | −0.0791 (5) | −0.2598 (2) | 0.0383 (2) | 0.0732 (7) | |
| H19 | −0.2041 | −0.3199 | 0.0214 | 0.088* | |
| C20 | −0.0753 (4) | −0.1654 (2) | 0.12890 (19) | 0.0620 (6) | |
| H20 | −0.1982 | −0.1621 | 0.1720 | 0.074* | |
| N1 | 0.2245 (3) | 0.14438 (15) | 0.23353 (13) | 0.0435 (4) | |
| O1 | 0.2492 (3) | 0.07213 (16) | 0.54724 (12) | 0.0687 (5) | |
| H1 | 0.168 (4) | 0.1575 (19) | 0.1717 (19) | 0.058 (7)* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| C2 | 0.0418 (11) | 0.0477 (12) | 0.0367 (10) | 0.0071 (9) | 0.0038 (8) | 0.0012 (8) |
| C3 | 0.0453 (12) | 0.0570 (13) | 0.0363 (10) | 0.0018 (9) | 0.0019 (8) | 0.0053 (9) |
| C4 | 0.0431 (12) | 0.0697 (15) | 0.0359 (11) | 0.0030 (10) | 0.0002 (8) | 0.0143 (10) |
| C5 | 0.0626 (14) | 0.0528 (13) | 0.0438 (11) | 0.0061 (10) | 0.0021 (10) | 0.0155 (10) |
| C6 | 0.0457 (12) | 0.0475 (12) | 0.0408 (10) | 0.0046 (9) | 0.0043 (8) | 0.0118 (9) |
| C7 | 0.0534 (13) | 0.0460 (12) | 0.0343 (10) | 0.0066 (9) | −0.0041 (8) | −0.0013 (8) |
| C8 | 0.0655 (16) | 0.0525 (14) | 0.0571 (13) | 0.0139 (11) | −0.0024 (11) | 0.0016 (11) |
| C9 | 0.093 (2) | 0.0524 (15) | 0.0708 (16) | 0.0209 (13) | −0.0092 (15) | 0.0045 (12) |
| C10 | 0.113 (2) | 0.0494 (15) | 0.0612 (15) | 0.0044 (15) | −0.0152 (15) | 0.0155 (12) |
| C11 | 0.094 (2) | 0.0629 (16) | 0.0531 (14) | −0.0037 (14) | 0.0060 (12) | 0.0151 (12) |
| C12 | 0.0680 (15) | 0.0488 (13) | 0.0489 (12) | 0.0079 (11) | 0.0092 (10) | 0.0065 (10) |
| C13 | 0.096 (2) | 0.0789 (17) | 0.0410 (12) | 0.0077 (14) | −0.0001 (12) | −0.0051 (12) |
| C14 | 0.0462 (14) | 0.0788 (17) | 0.0677 (15) | −0.0021 (12) | −0.0080 (10) | 0.0215 (13) |
| C15 | 0.0554 (13) | 0.0428 (11) | 0.0402 (10) | 0.0039 (9) | −0.0023 (9) | 0.0113 (9) |
| C16 | 0.0711 (16) | 0.0504 (13) | 0.0572 (14) | 0.0011 (11) | 0.0117 (12) | 0.0015 (11) |
| C17 | 0.096 (2) | 0.0644 (16) | 0.0565 (14) | 0.0135 (14) | 0.0155 (13) | −0.0003 (12) |
| C18 | 0.110 (2) | 0.0549 (14) | 0.0486 (14) | 0.0124 (15) | −0.0144 (11) | 0.0005 (11) |
| C19 | 0.0874 (18) | 0.0583 (15) | 0.0652 (15) | −0.0101 (13) | −0.0227 (10) | 0.0058 (12) |
| C20 | 0.0625 (15) | 0.0627 (15) | 0.0569 (14) | −0.0055 (12) | −0.0061 (11) | 0.0103 (11) |
| N1 | 0.0562 (11) | 0.0423 (10) | 0.0321 (9) | 0.0055 (8) | 0.0016 (7) | 0.0071 (7) |
| O1 | 0.0743 (11) | 0.0921 (12) | 0.0396 (8) | −0.0042 (9) | 0.0012 (7) | 0.0223 (8) |
Geometric parameters (Å, °)
| C2—N1 | 1.458 (2) | C10—H10 | 0.9300 |
| C2—C7 | 1.504 (3) | C11—C12 | 1.380 (3) |
| C2—C3 | 1.555 (3) | C11—H11 | 0.9300 |
| C2—H2 | 0.9800 | C12—H12 | 0.9300 |
| C3—C4 | 1.520 (3) | C13—H13A | 0.9600 |
| C3—C13 | 1.525 (3) | C13—H13B | 0.9600 |
| C3—C14 | 1.528 (3) | C13—H13C | 0.9600 |
| C4—O1 | 1.209 (2) | C14—H14A | 0.9600 |
| C4—C5 | 1.499 (3) | C14—H14B | 0.9600 |
| C5—C6 | 1.522 (3) | C14—H14C | 0.9600 |
| C5—H5A | 0.9700 | C15—C16 | 1.372 (3) |
| C5—H5B | 0.9700 | C15—C20 | 1.377 (3) |
| C6—N1 | 1.457 (2) | C16—C17 | 1.372 (3) |
| C6—C15 | 1.504 (3) | C16—H16 | 0.9300 |
| C6—H6 | 0.9800 | C17—C18 | 1.362 (4) |
| C7—C12 | 1.381 (3) | C17—H17 | 0.9300 |
| C7—C8 | 1.382 (3) | C18—C19 | 1.360 (4) |
| C8—C9 | 1.371 (3) | C18—H18 | 0.9300 |
| C8—H8 | 0.9300 | C19—C20 | 1.383 (3) |
| C9—C10 | 1.361 (4) | C19—H19 | 0.9300 |
| C9—H9 | 0.9300 | C20—H20 | 0.9300 |
| C10—C11 | 1.374 (4) | N1—H1 | 0.85 (2) |
| N1—C2—C7 | 109.70 (15) | C10—C11—C12 | 119.8 (2) |
| N1—C2—C3 | 109.78 (16) | C10—C11—H11 | 120.1 |
| C7—C2—C3 | 114.76 (15) | C12—C11—H11 | 120.1 |
| N1—C2—H2 | 107.4 | C11—C12—C7 | 121.2 (2) |
| C7—C2—H2 | 107.4 | C11—C12—H12 | 119.4 |
| C3—C2—H2 | 107.4 | C7—C12—H12 | 119.4 |
| C4—C3—C13 | 109.95 (17) | C3—C13—H13A | 109.5 |
| C4—C3—C14 | 106.01 (17) | C3—C13—H13B | 109.5 |
| C13—C3—C14 | 110.43 (18) | H13A—C13—H13B | 109.5 |
| C4—C3—C2 | 108.99 (15) | C3—C13—H13C | 109.5 |
| C13—C3—C2 | 109.16 (18) | H13A—C13—H13C | 109.5 |
| C14—C3—C2 | 112.25 (16) | H13B—C13—H13C | 109.5 |
| O1—C4—C5 | 120.6 (2) | C3—C14—H14A | 109.5 |
| O1—C4—C3 | 121.75 (19) | C3—C14—H14B | 109.5 |
| C5—C4—C3 | 117.57 (16) | H14A—C14—H14B | 109.5 |
| C4—C5—C6 | 112.35 (17) | C3—C14—H14C | 109.5 |
| C4—C5—H5A | 109.1 | H14A—C14—H14C | 109.5 |
| C6—C5—H5A | 109.1 | H14B—C14—H14C | 109.5 |
| C4—C5—H5B | 109.1 | C16—C15—C20 | 118.2 (2) |
| C6—C5—H5B | 109.1 | C16—C15—C6 | 121.47 (18) |
| H5A—C5—H5B | 107.9 | C20—C15—C6 | 120.3 (2) |
| N1—C6—C15 | 111.07 (15) | C17—C16—C15 | 121.0 (2) |
| N1—C6—C5 | 107.32 (16) | C17—C16—H16 | 119.5 |
| C15—C6—C5 | 111.89 (17) | C15—C16—H16 | 119.5 |
| N1—C6—H6 | 108.8 | C18—C17—C16 | 120.4 (2) |
| C15—C6—H6 | 108.8 | C18—C17—H17 | 119.8 |
| C5—C6—H6 | 108.8 | C16—C17—H17 | 119.8 |
| C12—C7—C8 | 117.4 (2) | C17—C18—C19 | 119.4 (2) |
| C12—C7—C2 | 121.77 (19) | C17—C18—H18 | 120.3 |
| C8—C7—C2 | 120.70 (19) | C19—C18—H18 | 120.3 |
| C9—C8—C7 | 121.6 (2) | C18—C19—C20 | 120.5 (2) |
| C9—C8—H8 | 119.2 | C18—C19—H19 | 119.8 |
| C7—C8—H8 | 119.2 | C20—C19—H19 | 119.8 |
| C10—C9—C8 | 120.0 (3) | C15—C20—C19 | 120.4 (2) |
| C10—C9—H9 | 120.0 | C15—C20—H20 | 119.8 |
| C8—C9—H9 | 120.0 | C19—C20—H20 | 119.8 |
| C9—C10—C11 | 119.9 (2) | C6—N1—C2 | 111.51 (15) |
| C9—C10—H10 | 120.0 | C6—N1—H1 | 107.9 (14) |
| C11—C10—H10 | 120.0 | C2—N1—H1 | 111.3 (15) |
| N1—C2—C3—C4 | −50.7 (2) | C7—C8—C9—C10 | 0.4 (4) |
| C7—C2—C3—C4 | −174.77 (16) | C8—C9—C10—C11 | −0.8 (4) |
| N1—C2—C3—C13 | −170.78 (17) | C9—C10—C11—C12 | 0.8 (4) |
| C7—C2—C3—C13 | 65.1 (2) | C10—C11—C12—C7 | −0.5 (3) |
| N1—C2—C3—C14 | 66.4 (2) | C8—C7—C12—C11 | 0.0 (3) |
| C7—C2—C3—C14 | −57.6 (2) | C2—C7—C12—C11 | 176.84 (19) |
| C13—C3—C4—O1 | −22.3 (3) | N1—C6—C15—C16 | 39.6 (3) |
| C14—C3—C4—O1 | 97.1 (2) | C5—C6—C15—C16 | −80.3 (2) |
| C2—C3—C4—O1 | −141.9 (2) | N1—C6—C15—C20 | −141.7 (2) |
| C13—C3—C4—C5 | 160.91 (19) | C5—C6—C15—C20 | 98.4 (2) |
| C14—C3—C4—C5 | −79.7 (2) | C20—C15—C16—C17 | −0.3 (3) |
| C2—C3—C4—C5 | 41.3 (2) | C6—C15—C16—C17 | 178.5 (2) |
| O1—C4—C5—C6 | 139.4 (2) | C15—C16—C17—C18 | 0.2 (4) |
| C3—C4—C5—C6 | −43.7 (2) | C16—C17—C18—C19 | −0.3 (4) |
| C4—C5—C6—N1 | 53.0 (2) | C17—C18—C19—C20 | 0.5 (4) |
| C4—C5—C6—C15 | 175.09 (16) | C16—C15—C20—C19 | 0.5 (3) |
| N1—C2—C7—C12 | −41.6 (2) | C6—C15—C20—C19 | −178.3 (2) |
| C3—C2—C7—C12 | 82.6 (2) | C18—C19—C20—C15 | −0.6 (4) |
| N1—C2—C7—C8 | 135.14 (19) | C15—C6—N1—C2 | 170.45 (16) |
| C3—C2—C7—C8 | −100.7 (2) | C5—C6—N1—C2 | −67.0 (2) |
| C12—C7—C8—C9 | 0.0 (3) | C7—C2—N1—C6 | −165.75 (16) |
| C2—C7—C8—C9 | −176.82 (19) | C3—C2—N1—C6 | 67.3 (2) |
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| C10—H10···Cg3i | 0.93 | 2.95 | 3.648 | 133 |
Symmetry codes: (i) x, y+1, z.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5058).
References
- Badorrey, R., Cativiela, C., Diaz-de-Villegas, M. D. & Galvez, J. A. (1999). Tetrahedron, 55, 7601–7612.
- Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787–797.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
- Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
- Elena, K., Yechezkel, B., Dan, G. & Yousef, N. (2002). J. Med. Chem.45, 5196–5204.
- Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
- Nalanishi, M., Shiraki, M., Kobayakawa, T. & Kobayashi, R. (1974). Jpn Patent 74-03987.
- Nardelli, M. (1983). Acta Cryst. C39, 1141–1142.
- Noller, C. & Baliah, V. (1948). J. Am. Chem. Soc.70, 3853–3855. [DOI] [PubMed]
- Sheldrick, G. M. (2001). SADABS University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809041580/bt5058sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536809041580/bt5058Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


