Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Oct 17;65(Pt 11):o2758. doi: 10.1107/S1600536809041026

N-[2-Chloro-6-(4-chloro-6-methoxy­pyrimidin-2-ylsulfan­yl)benz­yl]-3,4-dimethyl­aniline

Weijun Fu a,*, Mei Zhu a, Dongfeng Hong a
PMCID: PMC2971454  PMID: 21578352

Abstract

In the title mol­ecule, C20H19Cl2N3OS, the dihedral angle between the two benzene rings is 79.3 (7)°. The 4-chloro-6-methoxy­pyrimidine group is rotationally disordered over two sites by approximately 180°, the ratio of the refined occupancies being 0.6772 (15):0.3228 (15). Both disorder components of disorder are involved in intra­molecular N—H⋯N hydrogen bonds.

Related literature

For the biological functions of pyrimidine derivatives, see: Joffe et al. (1989); Petersen & Schmidt (2003); Blum (2001); Gompper et al. (2004); Michael (2005); Nadal & Olavarria (2004).graphic file with name e-65-o2758-scheme1.jpg

Experimental

Crystal data

  • C20H19Cl2N3OS

  • M r = 420.34

  • Monoclinic, Inline graphic

  • a = 12.3653 (12) Å

  • b = 14.1332 (14) Å

  • c = 11.8276 (11) Å

  • β = 97.340 (1)°

  • V = 2050.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.43 mm−1

  • T = 296 K

  • 0.37 × 0.28 × 0.25 mm

Data collection

  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.856, T max = 0.899

  • 15364 measured reflections

  • 3804 independent reflections

  • 2727 reflections with I > 2σ(I)

  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.139

  • S = 1.04

  • 3804 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.48 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809041026/lh2926sup1.cif

e-65-o2758-sup1.cif (24.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809041026/lh2926Isup2.hkl

e-65-o2758-Isup2.hkl (186.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N3′ 0.87 2.31 3.089 (3) 150
N1—H1⋯N2 0.87 2.45 3.203 (4) 145

Acknowledgments

This work was supported by the Doctoral Foundation of Luoyang Normal University.

supplementary crystallographic information

Comment

Pyrimidine derivatives are widespread in medicinal and natural product chemistry. A number of natural products, pharmaceuticals, and functional materials incorporate this heterocycle (Michael, 2005). Several examples of pharmaceutically important compounds include trimethoprim (Joffe et al., 1989), sulfadiazine (Petersen & Schmidt, 2003),Gleevec (imatinib mesilate) (Nadal & Olavarria, 2004), and Xeloda (capecitabine) (Blum, 2001). Natural and unnatural polymers also contain pyrimidine derivatives (Gompper et al., 2004). The potent physiological properties of these pyrimidine derivatives has led to their vast use as medicines in the field of pharmaceutical chemistry. In this context, we report the crystal structure of the title compound.

The molecular structure is shown in Fig. 1. The bond lengths and angles are as expected. The the dihedral angle between the two benzene rings is 79.3 (7)°. The 4-chloro-6-methoxypyrimidine group is rotationlly disordered over two sites by approximately 180° with the ratio of the refined occupancies being 0.6772 (15):0.3228 (15). Both the major and minor components of disorder are involved in intramolecular N-H···N hydrogen bonds.

Experimental

To a solution of 2,4-dichloro-6-methoxypyrimidine (0.5 mmol) and 2-((3,4-dimethylphenylamino)methyl)-3-chlorobenzenethiol (0.5 mmol) in dry methylbenzene NaH (0.6 mmol) was added. The mixture was stirred for 12 h at room temperature. After evaporation of the solvent, the residue was purified by column chromatography on silica gel to afford the title compound as a colorless solid (yield 90%). The title compound was recrystallized from CH2Cl2 at room temperature to give the desired crystals suitable for single-crystal X-ray diffraction.

Refinement

All H atoms were positioned geometrically and treated as riding, with C—H bond lengths constrained to 0.93 Å (aromatic CH); 0.97 Å (methylene CH2); 0.96 Å (methyl), and with Uĩso~(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme and 30% probability displacement ellipsoids. The disorder is not shown.

Fig. 2.

Fig. 2.

The molecular structure of the title compound with the atom numbering scheme and 30% probability displacement ellipsoids. The minor component of disorder is shown with open bonds and the dashed line represents a hydrogen bond.

Crystal data

C20H19Cl2N3OS F(000) = 872
Mr = 420.34 Dx = 1.362 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3665 reflections
a = 12.3653 (12) Å θ = 2.7–21.7°
b = 14.1332 (14) Å µ = 0.43 mm1
c = 11.8276 (11) Å T = 296 K
β = 97.340 (1)° Block, colourless
V = 2050.1 (3) Å3 0.37 × 0.28 × 0.25 mm
Z = 4

Data collection

Bruker APEXII diffractometer 3804 independent reflections
Radiation source: fine-focus sealed tube 2727 reflections with I > 2σ(I)
graphite Rint = 0.026
φ and ω scans θmax = 25.5°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −14→14
Tmin = 0.856, Tmax = 0.899 k = −17→17
15364 measured reflections l = −14→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0558P)2 + 1.1287P] where P = (Fo2 + 2Fc2)/3
3804 reflections (Δ/σ)max = 0.001
235 parameters Δρmax = 0.29 e Å3
0 restraints Δρmin = −0.48 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C16 0.15712 (12) 0.08616 (19) 0.48299 (12) 0.0579 (7) 0.6772 (15)
C17 0.06084 (10) 0.14779 (8) 0.61811 (10) 0.0540 (9) 0.6772 (15)
C18 −0.03179 (7) 0.15182 (8) 0.54001 (8) 0.0582 (11) 0.6772 (15)
H18 −0.0985 0.1704 0.5612 0.070* 0.6772 (15)
C19 −0.02176 (7) 0.12790 (7) 0.43258 (8) 0.0573 (10) 0.6772 (15)
C20 0.15013 (16) 0.16340 (13) 0.81220 (15) 0.0654 (12) 0.6772 (15)
H20A 0.1749 0.0991 0.8113 0.098* 0.6772 (15)
H20B 0.1299 0.1779 0.8860 0.098* 0.6772 (15)
H20C 0.2076 0.2051 0.7962 0.098* 0.6772 (15)
Cl2 −0.13131 (8) 0.13451 (9) 0.32716 (10) 0.0852 (4) 0.6772 (15)
O1 0.05547 (12) 0.17589 (12) 0.72538 (12) 0.0680 (7) 0.6772 (15)
C16' 0.16085 (11) 0.10476 (18) 0.49634 (11) 0.0579 (7) 0.3228 (15)
C19' 0.08829 (11) 0.14785 (9) 0.66157 (11) 0.0573 (10) 0.3228 (15)
C18' −0.01246 (9) 0.15594 (9) 0.60104 (9) 0.0582 (11) 0.3228 (15)
H18' −0.0706 0.1800 0.6348 0.070* 0.3228 (15)
C17' −0.02647 (7) 0.12816 (7) 0.49021 (8) 0.0540 (9) 0.3228 (15)
C20' −0.11725 (8) 0.11835 (10) 0.30480 (11) 0.0654 (12) 0.3228 (15)
H20D −0.0699 0.1627 0.2741 0.098* 0.3228 (15)
H20E −0.1888 0.1221 0.2626 0.098* 0.3228 (15)
H20F −0.0891 0.0555 0.2991 0.098* 0.3228 (15)
Cl2' 0.11223 (15) 0.18012 (14) 0.80264 (15) 0.0852 (4) 0.3228 (15)
N3' 0.17432 (13) 0.11642 (15) 0.61125 (12) 0.0625 (9) 0.3228 (15)
N2' 0.05936 (9) 0.09825 (12) 0.43865 (9) 0.0551 (8) 0.3228 (15)
O1' −0.12330 (7) 0.14091 (10) 0.42454 (9) 0.0680 (7) 0.3228 (15)
C1 0.3169 (2) 0.35870 (18) 0.5611 (2) 0.0509 (6)
C2 0.2300 (2) 0.39912 (19) 0.6075 (2) 0.0554 (6)
H2 0.1937 0.3634 0.6569 0.067*
C3 0.1958 (2) 0.4909 (2) 0.5823 (2) 0.0605 (7)
C4 0.2502 (3) 0.5451 (2) 0.5075 (2) 0.0667 (8)
C5 0.3344 (3) 0.5040 (2) 0.4610 (2) 0.0682 (8)
H5 0.3702 0.5392 0.4106 0.082*
C6 0.3687 (2) 0.4123 (2) 0.4860 (2) 0.0606 (7)
H6 0.4262 0.3867 0.4525 0.073*
C7 0.1032 (3) 0.5315 (3) 0.6380 (3) 0.0932 (11)
H7A 0.0722 0.4828 0.6806 0.140*
H7B 0.0483 0.5556 0.5805 0.140*
H7C 0.1299 0.5818 0.6885 0.140*
C8 0.2164 (4) 0.6463 (2) 0.4800 (3) 0.1028 (13)
H8A 0.2595 0.6714 0.4250 0.154*
H8B 0.2276 0.6837 0.5482 0.154*
H8C 0.1407 0.6479 0.4492 0.154*
C9 0.4226 (2) 0.2140 (2) 0.5326 (2) 0.0664 (8)
H9A 0.4922 0.2459 0.5339 0.080*
H9B 0.3901 0.2079 0.4538 0.080*
C10 0.3725 (2) 0.0407 (2) 0.5510 (2) 0.0580 (7)
C11 0.4391 (2) 0.11761 (19) 0.5862 (2) 0.0560 (7)
C12 0.5198 (2) 0.1017 (2) 0.6773 (2) 0.0591 (7)
C13 0.5361 (2) 0.0153 (2) 0.7298 (2) 0.0649 (8)
H13 0.5909 0.0077 0.7906 0.078*
C14 0.4713 (2) −0.0591 (2) 0.6921 (3) 0.0668 (8)
H14 0.4821 −0.1179 0.7268 0.080*
C15 0.3897 (2) −0.0469 (2) 0.6025 (3) 0.0655 (8)
H15 0.3459 −0.0979 0.5764 0.079*
Cl1 0.60797 (8) 0.19268 (7) 0.72836 (9) 0.1024 (4)
N1 0.35165 (18) 0.26822 (15) 0.59613 (19) 0.0620 (6)
H1 0.3029 0.2357 0.6261 0.093*
N2 0.1576 (3) 0.1175 (2) 0.5905 (3) 0.0551 (8) 0.6772 (15)
N3 0.0724 (3) 0.0956 (3) 0.3984 (3) 0.0625 (9) 0.6772 (15)
S1 0.27000 (6) 0.04895 (7) 0.43144 (7) 0.0834 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C16 0.0475 (15) 0.0469 (17) 0.079 (2) 0.0063 (13) 0.0058 (14) −0.0074 (15)
C17 0.049 (2) 0.054 (2) 0.059 (2) 0.0051 (17) 0.0072 (18) 0.0076 (17)
C18 0.0427 (19) 0.065 (2) 0.064 (3) 0.0067 (16) −0.004 (2) 0.000 (2)
C19 0.0444 (19) 0.059 (2) 0.069 (3) 0.0032 (16) 0.0065 (17) 0.0124 (18)
C20 0.049 (2) 0.096 (3) 0.050 (2) 0.019 (2) 0.0033 (17) 0.007 (2)
Cl2 0.0551 (6) 0.1185 (10) 0.0778 (8) 0.0104 (6) −0.0073 (5) −0.0032 (7)
O1 0.0512 (14) 0.098 (2) 0.0554 (15) 0.0186 (14) 0.0076 (11) 0.0065 (14)
C16' 0.0475 (15) 0.0469 (17) 0.079 (2) 0.0063 (13) 0.0058 (14) −0.0074 (15)
C19' 0.0444 (19) 0.059 (2) 0.069 (3) 0.0032 (16) 0.0065 (17) 0.0124 (18)
C18' 0.0427 (19) 0.065 (2) 0.064 (3) 0.0067 (16) −0.004 (2) 0.000 (2)
C17' 0.049 (2) 0.054 (2) 0.059 (2) 0.0051 (17) 0.0072 (18) 0.0076 (17)
C20' 0.049 (2) 0.096 (3) 0.050 (2) 0.019 (2) 0.0033 (17) 0.007 (2)
Cl2' 0.0551 (6) 0.1185 (10) 0.0778 (8) 0.0104 (6) −0.0073 (5) −0.0032 (7)
N3' 0.0452 (18) 0.076 (2) 0.067 (2) 0.0063 (17) 0.0107 (15) −0.0018 (17)
N2' 0.0462 (17) 0.056 (2) 0.0644 (19) 0.0078 (15) 0.0129 (14) 0.0073 (15)
O1' 0.0512 (14) 0.098 (2) 0.0554 (15) 0.0186 (14) 0.0076 (11) 0.0065 (14)
C1 0.0480 (13) 0.0527 (14) 0.0502 (14) 0.0020 (12) −0.0013 (11) −0.0005 (11)
C2 0.0524 (15) 0.0616 (16) 0.0518 (14) 0.0043 (12) 0.0048 (12) −0.0005 (12)
C3 0.0595 (16) 0.0671 (18) 0.0523 (15) 0.0159 (14) −0.0028 (13) −0.0078 (13)
C4 0.084 (2) 0.0598 (17) 0.0520 (15) 0.0133 (15) −0.0067 (15) 0.0033 (13)
C5 0.081 (2) 0.0665 (19) 0.0563 (16) −0.0022 (16) 0.0069 (15) 0.0107 (14)
C6 0.0588 (16) 0.0663 (17) 0.0569 (16) 0.0037 (14) 0.0081 (13) 0.0029 (13)
C7 0.096 (3) 0.099 (3) 0.087 (2) 0.039 (2) 0.019 (2) −0.005 (2)
C8 0.153 (4) 0.068 (2) 0.082 (2) 0.030 (2) −0.004 (2) 0.0116 (18)
C9 0.0664 (17) 0.0695 (18) 0.0647 (17) 0.0221 (14) 0.0140 (14) 0.0099 (14)
C10 0.0439 (14) 0.0737 (19) 0.0578 (15) 0.0164 (13) 0.0118 (12) −0.0061 (14)
C11 0.0530 (15) 0.0644 (17) 0.0522 (15) 0.0182 (13) 0.0124 (12) 0.0033 (12)
C12 0.0542 (15) 0.0612 (17) 0.0615 (16) 0.0092 (13) 0.0058 (12) −0.0004 (13)
C13 0.0612 (17) 0.077 (2) 0.0569 (16) 0.0209 (15) 0.0070 (13) 0.0076 (15)
C14 0.0713 (19) 0.0633 (18) 0.0693 (18) 0.0155 (15) 0.0227 (15) 0.0130 (15)
C15 0.0545 (16) 0.0673 (19) 0.079 (2) 0.0039 (14) 0.0258 (15) −0.0090 (15)
Cl1 0.0947 (7) 0.0804 (6) 0.1220 (8) −0.0042 (5) −0.0248 (6) −0.0057 (5)
N1 0.0617 (14) 0.0545 (13) 0.0732 (15) 0.0142 (11) 0.0217 (12) 0.0084 (11)
N2 0.0462 (17) 0.056 (2) 0.0644 (19) 0.0078 (15) 0.0129 (14) 0.0073 (15)
N3 0.0452 (18) 0.076 (2) 0.067 (2) 0.0063 (17) 0.0107 (15) −0.0018 (17)
S1 0.0551 (4) 0.1282 (8) 0.0650 (5) 0.0243 (5) 0.0012 (4) −0.0217 (5)

Geometric parameters (Å, °)

C16—N2 1.345 (4) C2—C3 1.385 (4)
C16—N3 1.360 (4) C2—H2 0.9300
C16—S1 1.6775 (16) C3—C4 1.405 (4)
C17—O1 1.3392 C3—C7 1.505 (4)
C17—N2 1.350 (3) C4—C5 1.368 (4)
C17—C18 1.3777 C4—C8 1.513 (4)
C18—C19 1.3358 C5—C6 1.385 (4)
C18—H18 0.9300 C5—H5 0.9300
C19—N3 1.360 (3) C6—H6 0.9300
C19—Cl2 1.7224 C7—H7A 0.9600
C20—O1 1.4659 C7—H7B 0.9600
C20—H20A 0.9600 C7—H7C 0.9600
C20—H20B 0.9600 C8—H8A 0.9600
C20—H20C 0.9600 C8—H8B 0.9600
C16'—N2' 1.3529 C8—H8C 0.9600
C16'—N3' 1.3581 C9—N1 1.446 (3)
C16'—S1 1.8159 (16) C9—C11 1.505 (4)
C19'—N3' 1.3582 C9—H9A 0.9700
C19'—C18' 1.3601 C9—H9B 0.9700
C19'—Cl2' 1.7185 C10—C15 1.384 (4)
C18'—C17' 1.3581 C10—C11 1.395 (4)
C18'—H18' 0.9300 C10—S1 1.778 (3)
C17'—O1' 1.3535 C11—C12 1.390 (4)
C17'—N2' 1.3573 C12—C13 1.373 (4)
C20'—O1' 1.4629 C12—Cl1 1.743 (3)
C20'—H20D 0.9600 C13—C14 1.362 (4)
C20'—H20E 0.9600 C13—H13 0.9300
C20'—H20F 0.9600 C14—C15 1.377 (4)
C1—C6 1.384 (4) C14—H14 0.9300
C1—C2 1.390 (3) C15—H15 0.9300
C1—N1 1.395 (3) N1—H1 0.8684
N2—C16—N3 125.0 (2) C6—C5—H5 118.6
N2—C16—S1 122.89 (17) C1—C6—C5 119.7 (3)
N3—C16—S1 111.19 (16) C1—C6—H6 120.2
O1—C17—N2 118.44 (16) C5—C6—H6 120.2
O1—C17—C18 119.0 C3—C7—H7A 109.5
N2—C17—C18 122.52 (16) C3—C7—H7B 109.5
C19—C18—C17 117.2 H7A—C7—H7B 109.5
C19—C18—H18 121.4 C3—C7—H7C 109.5
C17—C18—H18 121.4 H7A—C7—H7C 109.5
C18—C19—N3 123.72 (16) H7B—C7—H7C 109.5
C18—C19—Cl2 121.0 C4—C8—H8A 109.5
N3—C19—Cl2 115.28 (16) C4—C8—H8B 109.5
C17—O1—C20 119.8 H8A—C8—H8B 109.5
N2'—C16'—N3' 120.0 C4—C8—H8C 109.5
N2'—C16'—S1 116.68 (7) H8A—C8—H8C 109.5
N3'—C16'—S1 118.23 (6) H8B—C8—H8C 109.5
N3'—C19'—C18' 120.9 N1—C9—C11 108.6 (2)
N3'—C19'—Cl2' 117.7 N1—C9—H9A 110.0
C18'—C19'—Cl2' 121.4 C11—C9—H9A 110.0
C17'—C18'—C19' 118.6 N1—C9—H9B 110.0
C17'—C18'—H18' 120.7 C11—C9—H9B 110.0
C19'—C18'—H18' 120.7 H9A—C9—H9B 108.3
O1'—C17'—N2' 118.0 C15—C10—C11 121.0 (3)
O1'—C17'—C18' 120.6 C15—C10—S1 117.5 (2)
N2'—C17'—C18' 120.9 C11—C10—S1 121.3 (2)
O1'—C20'—H20D 109.5 C12—C11—C10 116.3 (2)
O1'—C20'—H20E 109.5 C12—C11—C9 121.2 (3)
H20D—C20'—H20E 109.5 C10—C11—C9 122.5 (2)
O1'—C20'—H20F 109.5 C13—C12—C11 122.9 (3)
H20D—C20'—H20F 109.5 C13—C12—Cl1 116.8 (2)
H20E—C20'—H20F 109.5 C11—C12—Cl1 120.3 (2)
C16'—N3'—C19' 118.4 C14—C13—C12 119.5 (3)
C16'—N2'—C17' 118.7 C14—C13—H13 120.2
C17'—O1'—C20' 112.1 C12—C13—H13 120.2
C6—C1—C2 118.2 (2) C13—C14—C15 119.9 (3)
C6—C1—N1 122.8 (2) C13—C14—H14 120.1
C2—C1—N1 118.9 (2) C15—C14—H14 120.1
C3—C2—C1 122.0 (3) C14—C15—C10 120.4 (3)
C3—C2—H2 119.0 C14—C15—H15 119.8
C1—C2—H2 119.0 C10—C15—H15 119.8
C2—C3—C4 119.2 (3) C1—N1—C9 121.0 (2)
C2—C3—C7 119.4 (3) C1—N1—H1 113.8
C4—C3—C7 121.3 (3) C9—N1—H1 115.5
C5—C4—C3 118.1 (3) C16—N2—C17 115.8 (3)
C5—C4—C8 121.2 (3) C16—N3—C19 115.0 (3)
C3—C4—C8 120.6 (3) C16—S1—C10 105.87 (10)
C4—C5—C6 122.7 (3) C16—S1—C16' 9.0
C4—C5—H5 118.6 C10—S1—C16' 100.69 (9)
O1—C17—C18—C19 176.6 S1—C10—C11—C9 5.4 (3)
N2—C17—C18—C19 −2.7 (2) N1—C9—C11—C12 −85.8 (3)
C17—C18—C19—N3 3.5 (2) N1—C9—C11—C10 91.6 (3)
C17—C18—C19—Cl2 −177.7 C10—C11—C12—C13 1.2 (4)
N2—C17—O1—C20 −6.7 (2) C9—C11—C12—C13 178.7 (3)
C18—C17—O1—C20 174.0 C10—C11—C12—Cl1 179.91 (19)
N3'—C19'—C18'—C17' 2.7 C9—C11—C12—Cl1 −2.5 (3)
Cl2'—C19'—C18'—C17' −179.2 C11—C12—C13—C14 0.2 (4)
C19'—C18'—C17'—O1' −175.4 Cl1—C12—C13—C14 −178.6 (2)
C19'—C18'—C17'—N2' −3.9 C12—C13—C14—C15 −0.5 (4)
N2'—C16'—N3'—C19' −18.4 C13—C14—C15—C10 −0.5 (4)
S1—C16'—N3'—C19' −172.43 (17) C11—C10—C15—C14 1.9 (4)
C18'—C19'—N3'—C16' 8.3 S1—C10—C15—C14 177.0 (2)
Cl2'—C19'—N3'—C16' −169.9 C6—C1—N1—C9 −18.3 (4)
N3'—C16'—N2'—C17' 17.4 C2—C1—N1—C9 165.0 (3)
S1—C16'—N2'—C17' 171.73 (17) C11—C9—N1—C1 −176.0 (2)
O1'—C17'—N2'—C16' 165.7 N3—C16—N2—C17 10.0 (6)
C18'—C17'—N2'—C16' −6.0 S1—C16—N2—C17 177.98 (17)
N2'—C17'—O1'—C20' 0.4 O1—C17—N2—C16 177.1 (2)
C18'—C17'—O1'—C20' 172.2 C18—C17—N2—C16 −3.6 (4)
C6—C1—C2—C3 −1.2 (4) N2—C16—N3—C19 −9.2 (6)
N1—C1—C2—C3 175.7 (2) S1—C16—N3—C19 −178.4 (2)
C1—C2—C3—C4 0.1 (4) C18—C19—N3—C16 2.0 (4)
C1—C2—C3—C7 −178.3 (3) Cl2—C19—N3—C16 −176.9 (2)
C2—C3—C4—C5 0.9 (4) N2—C16—S1—C10 10.2 (3)
C7—C3—C4—C5 179.2 (3) N3—C16—S1—C10 179.7 (3)
C2—C3—C4—C8 −178.8 (3) N2—C16—S1—C16' −45.6 (3)
C7—C3—C4—C8 −0.4 (4) N3—C16—S1—C16' 123.9 (3)
C3—C4—C5—C6 −0.9 (4) C15—C10—S1—C16 95.5 (2)
C8—C4—C5—C6 178.8 (3) C11—C10—S1—C16 −89.4 (2)
C2—C1—C6—C5 1.2 (4) C15—C10—S1—C16' 103.1 (2)
N1—C1—C6—C5 −175.5 (3) C11—C10—S1—C16' −81.9 (2)
C4—C5—C6—C1 −0.2 (4) N2'—C16'—S1—C16 −35.93 (14)
C15—C10—C11—C12 −2.2 (4) N3'—C16'—S1—C16 118.9
S1—C10—C11—C12 −177.06 (19) N2'—C16'—S1—C10 −161.89 (12)
C15—C10—C11—C9 −179.7 (2) N3'—C16'—S1—C10 −7.04 (15)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···N3' 0.87 2.31 3.089 (3) 150
N1—H1···N2 0.87 2.45 3.203 (4) 145

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2926).

References

  1. Blum, J. L. (2001). Oncologist, 6, 56–64. [DOI] [PubMed]
  2. Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Gompper, R., Mair, H.-J. & Polborn, K. (2004). Synthesis, pp. 696–708.
  4. Joffe, A. M., Farley, J. D., Linden, D. & Goldsand, G. (1989). Am. J. Med.87, 332–338. [DOI] [PubMed]
  5. Michael, J. P. (2005). Nat. Prod. Rep.22, 627–646. [DOI] [PubMed]
  6. Nadal, E. & Olavarria, E. (2004). Int. J. Clin. Pract.58, 511–516. [DOI] [PubMed]
  7. Petersen, E. & Schmidt, D. R. (2003). Expert Rev. Anti Infect. Ther.1, 175–182. [DOI] [PubMed]
  8. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809041026/lh2926sup1.cif

e-65-o2758-sup1.cif (24.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809041026/lh2926Isup2.hkl

e-65-o2758-Isup2.hkl (186.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES