Abstract
Cholesterol synthesis has been extensively investigated in various tissues of lower mammals; however, there is little specific information concerning cholesterologenesis in the primate. Furthermore, experiments in whole animals suggest that important differences may exist in the features of cholesterologenesis in the dog and rat versus the monkey and man. Using the new world squirrel monkey, therefore, we performed the present studies to determine the rates of cholesterologenesis in various tissues per unit weight, to define the relative rates of whole organ synthesis, and to evaluate the operation of control mechanisms in these tissues.
In control animals fed a low cholesterol chow diet, the liver and ileum were the two most active sites for cholesterologenesis followed, in order, by the colon, esophagus, and proximal small bowel. Rates of synthesis in 10 other tissues tested were considerably lower than these found in the gastrointestinal tract. When rates of whole organ synthesis were calculated, three tissues, i.e., liver, bowel, and skin, accounted for 92% of the total demonstrable synthetic activity.
Following cholesterol feeding utilizing either a solid chow or liquid formula diet, marked suppression of hepatic cholesterologenesis occurred while synthesis in other organs remained essentially unaltered. Similarly, fasting animals for periods up to 96 hr resulted in suppression of synthesis in the liver, but not in various levels of the intestine. Finally, biliary diversion for 48 hr caused a twofold increase in hepatic cholesterologenesis and a six- to eightfold increase in sterol synthesis in the small but not the large intestine.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BHATTATHIRY E. P., SHIPERSTEIN M. D. FEEDBACK CONTROL OF CHOLESTEROL SYNTHESIS IN MAN. J Clin Invest. 1963 Oct;42:1613–1618. doi: 10.1172/JCI104846. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dietschy J. M., Siperstein M. D. Cholesterol synthesis by the gastrointestinal tract: localization and mechanisms of control. J Clin Invest. 1965 Aug;44(8):1311–1327. doi: 10.1172/JCI105237. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dietschy J. M., Siperstein M. D. Effect of cholesterol feeding and fasting on sterol synthesis in seventeen tissues of the rat. J Lipid Res. 1967 Mar;8(2):97–104. [PubMed] [Google Scholar]
- FRIEDMAN M., BYERS S. O., MICHAELIS F. Production and excretion of cholesterol in mammals. Iv. Role of liver in restoration of plasma cholesterol after experimentally induced hypocholesteremia. Am J Physiol. 1951 Mar;164(3):789–791. doi: 10.1152/ajplegacy.1951.164.3.789. [DOI] [PubMed] [Google Scholar]
- Fujiwara T., Hirono H., Arakawa T. Idiopathic hypercholesterolemia: demonstration of an impaired feedback control of cholesterol synthesis in vivo. Tohoku J Exp Med. 1965 Nov 25;87(2):155–167. doi: 10.1620/tjem.87.155. [DOI] [PubMed] [Google Scholar]
- GOULD R. G. Lipid metabolism and atherosclerosis. Am J Med. 1951 Aug;11(2):209–227. doi: 10.1016/0002-9343(51)90107-6. [DOI] [PubMed] [Google Scholar]
- HARPER P. V., Jr, NEAL W. B., Jr, HLAVACEK G. R. Lipid synthesis and transport in the dog. Metabolism. 1953 Jan;2(1):69–80. [PubMed] [Google Scholar]
- HOTTA S., CHAIKOFF I. L. The role of the liver in the turnover of plasma cholesterol. Arch Biochem Biophys. 1955 May;56(1):28–37. doi: 10.1016/0003-9861(55)90330-1. [DOI] [PubMed] [Google Scholar]
- KAPLAN J. A., COX G. E., TAYLOR C. B. CHOLESTEROL METABOLISM IN MAN. STUDIES ON ABSORPTION. Arch Pathol. 1963 Oct;76:359–368. [PubMed] [Google Scholar]
- LINDSEY C. A., Jr, WILSON J. D. EVIDENCE FOR A CONTRIBUTION BY THE INTESTINAL WALL TO THE SERUM CHOLESTEROL OF THE RAT. J Lipid Res. 1965 Apr;6:173–181. [PubMed] [Google Scholar]
- MORRIS M. D., CHAIKOFF I. L., FELTS J. M., ABRAHAM S., FANSAH N. O. The origin of serum cholesterol in the rat; diet versus synthesis. J Biol Chem. 1957 Feb;224(2):1039–1045. [PubMed] [Google Scholar]
- MacNintch J. E., St Clair R. W., Lehner N. D., Clarkson T. B., Lofland H. B. Cholesterol metabolism and atherosclerosis in Cebus monkeys in relation to age. Lab Invest. 1967 Mar;16(3):444–452. [PubMed] [Google Scholar]
- SIPERSTEIN M. D., GUEST M. J. Studies on the site of the feedback control of cholesterol synthesis. J Clin Invest. 1960 Apr;39:642–652. doi: 10.1172/JCI104079. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SPERRY W. M. QUANTITATIVE ISOLATION OF STEROLS. J Lipid Res. 1963 Apr;4:221–225. [PubMed] [Google Scholar]
- TAYLOR C. B., PATTON D., YOGI N., COX G. E. Diet as source of serum cholesterol in man. Proc Soc Exp Biol Med. 1960 Apr;103:768–772. doi: 10.3181/00379727-103-25664. [DOI] [PubMed] [Google Scholar]
- TOMKINS G. M., CHAIKOFF I. L. Cholesterol synthesis by liver. I. Influence of fasting and of diet. J Biol Chem. 1952 May;196(2):569–573. [PubMed] [Google Scholar]
- Wilson J. D. Biosynthetic origin of serum cholesterol in the squirrel monkey: evidence for a contribution by the intestinal wall. J Clin Invest. 1968 Jan;47(1):175–187. doi: 10.1172/JCI105707. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilson J. D., Lindsey C. A., Jr Studies on the influence of dietary cholesterol on cholesterol metabolism in the isotopic steady state in man. J Clin Invest. 1965 Nov;44(11):1805–1814. doi: 10.1172/JCI105288. [DOI] [PMC free article] [PubMed] [Google Scholar]