Abstract
This study examined the ventilatory adjustment to chronic metabolic alkalosis induced under controlled conditions in normal human volunteers. Metabolic alkalosis induced by buffers (sodium bicarbonate, trishydroxymethylamine methane) or ethacrynic acid was associated with alveolar hypoventilation, as evidenced by a rise in arterial Pco2, a fall in arterial Po2, a reduced resting tidal volume, and a diminished ventilatory response to CO2 inhalation. Alveolar hypoventilation did not occur when metabolic alkalosis was induced in the same subjects by thiazide diuretics or aldosterone despite comparable elevations of the arterial blood pH and bicarbonate concentration.
The different ventilatory responses of the two groups could not be ascribed to differences among individuals comprising each group, pharmacological effects of the alkalinizing agents, differences in the composition of the lumber spinal fluid, changes in extracellular fluid volume, or sodium and chloride balance.
The differences in ventilatory adjustments were associated with differences in the patterns of hydrogen and potassium ion balance during the induction of alkalosis. Alveolar hypoventilation occurred when hydrogen ions were buffered (sodium bicarbonate, trishydroxymethylamine methane) or when renal hydrogen ion excretion was increased (ethacrynic acid). Alveolar hypoventilation did not occur when induction of similar degrees of extracellular alkalosis was accompanied by marked potassium loss and no demonstrable increase in external hydrogen loss (thiazides and aldosterone).
These observations suggest that respiratory depression does not necessarily accompany extracellular alkalosis but depends on the effect of the mode of induction of the alkalosis on the tissues involved in the control of ventilation.
Full text
PDF![188](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59df/297159/90de3bd29bb1/jcinvest00236-0190.png)
![189](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59df/297159/9c4deba28731/jcinvest00236-0191.png)
![190](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59df/297159/aab2c2183586/jcinvest00236-0192.png)
![191](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59df/297159/77c5c8feecc4/jcinvest00236-0193.png)
![192](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59df/297159/bbc585a69363/jcinvest00236-0194.png)
![193](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59df/297159/77394785d7ce/jcinvest00236-0195.png)
![194](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59df/297159/7416d7134d1c/jcinvest00236-0196.png)
![195](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59df/297159/74d8c6920c9c/jcinvest00236-0197.png)
![196](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59df/297159/2ab44f1e53fb/jcinvest00236-0198.png)
![197](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59df/297159/949c9ef3a973/jcinvest00236-0199.png)
![198](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59df/297159/d66d6fac698c/jcinvest00236-0200.png)
![199](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59df/297159/adeb0b2746e5/jcinvest00236-0201.png)
![200](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59df/297159/104af80549fc/jcinvest00236-0202.png)
![201](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59df/297159/19980d48d635/jcinvest00236-0203.png)
![202](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59df/297159/bc1f51c241f7/jcinvest00236-0204.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ABER G. M., SAMPSON P. A., WHITEHEAD T. P., BROOKE B. N. The role of chloride in the correction of alkalosis associated with potassium depletion. Lancet. 1962 Nov 17;2(7264):1028–1030. doi: 10.1016/s0140-6736(62)92709-5. [DOI] [PubMed] [Google Scholar]
- ADLER S., ROY A., RELMAN A. S. INTRACELLULAR ACID-BASE REGULATION. I. THE RESPONSE OF MUSCLE CELLS TO CHANGES IN CO2 TENSION OR EXTRACELLULAR BICARBONATE CONCENTRATION. J Clin Invest. 1965 Jan;44:8–20. doi: 10.1172/JCI105129. [DOI] [PMC free article] [PubMed] [Google Scholar]
- AUGUST J. T., NELSON D. H., THORN G. W. Response of normal subjects to large amounts of aldosterone. J Clin Invest. 1958 Nov;37(11):1549–1555. doi: 10.1172/JCI103747. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BLACK D. A. K., MILNE M. D. Experimental potassium depletion in man. Clin Sci. 1952 Nov;11(4):397–415. [PubMed] [Google Scholar]
- BRADLEY R. D., SEMPLE S. J. A comparison of certain acidbase characteristics of arterial blood, jugular venous blood and cerebrospinal fluid in man, and the effect on them of some acute and chronic acid-base disturbances. J Physiol. 1962 Mar;160:381–391. doi: 10.1113/jphysiol.1962.sp006853. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bleich H. L., Schwartz W. B. Tris buffer (THAM). An appraisal of its physiologic effects and clinical usefulness. N Engl J Med. 1966 Apr 7;274(14):782–787. doi: 10.1056/NEJM196604072741407. [DOI] [PubMed] [Google Scholar]
- CANNON P. J., HEINEMANN H. O., STASON W. B., LARAGH J. H. ETHACRYNIC ACID: EFFECTIVENESS AND MODE OF DIURETIC ACTION IN MAN. Circulation. 1965 Jan;31:5–18. doi: 10.1161/01.cir.31.1.5. [DOI] [PubMed] [Google Scholar]
- COOKE R. E., SEGAR W. E., CHEEK D. B., COVILLE F. E., DARROW D. C. The extrarenal correction of alkalosis associated with potassium deficiency. J Clin Invest. 1952 Aug;31(8):798–805. doi: 10.1172/JCI102665. [DOI] [PMC free article] [PubMed] [Google Scholar]
- COTLOVE E., TRANTHAM H. V., BOWMAN R. L. An instrument and method for automatic, rapid, accurate, and sensitive titration of chloride in biologic samples. J Lab Clin Med. 1958 Mar;51(3):461–468. [PubMed] [Google Scholar]
- Falchuk K. H., Lamb T. W., Tenney S. M. Ventilatory response to hypoxia and CO2 following CO2 exposure and NaHCO3 ingestion. J Appl Physiol. 1966 Mar;21(2):393–398. doi: 10.1152/jappl.1966.21.2.393. [DOI] [PubMed] [Google Scholar]
- Fencl V., Miller T. B., Pappenheimer J. R. Studies on the respiratory response to disturbances of acid-base balance, with deductions concerning the ionic composition of cerebral interstitial fluid. Am J Physiol. 1966 Mar;210(3):459–472. doi: 10.1152/ajplegacy.1966.210.3.459. [DOI] [PubMed] [Google Scholar]
- GRANTHAM J. J., SCHLOERB P. R. ACUTE SUBTRACTION ALKALOSIS FROM GASTRIC JUICE LOSS IN DOGS. Am J Physiol. 1964 Sep;207:619–626. doi: 10.1152/ajplegacy.1964.207.3.619. [DOI] [PubMed] [Google Scholar]
- HUTH E. J., SQUIRES R. D., ELKINTON J. R. Experimental potassium depletion in normal human subjects. II. Renal and hormonal factors in the development of extracellular alkalosis during depletion. J Clin Invest. 1959 Jul;38(7):1149–1165. doi: 10.1172/JCI103891. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KATSAROS B., LOESCHCKE H. H., LERCHE D., SCHOENTHAL H., HAHN N. [Effect of bicarbonate alkalosis on pulmonary ventilation in man. Determination of the partial effects of pH and CO2 pressure on the ventilation and comparison with the results in acidosis]. Pflugers Arch Gesamte Physiol Menschen Tiere. 1960;271:732–747. [PubMed] [Google Scholar]
- LEAF A., SANTOS R. F. Physiologic mechanisms in potassium deficiency. N Engl J Med. 1961 Feb 16;264:335–341. doi: 10.1056/NEJM196102162640706. [DOI] [PubMed] [Google Scholar]
- LEUSEN I. R. Chemosensitivity of the respiratory center influence of changes in the H+ and total buffer concentrations in the cerebral ventricles on respiration. Am J Physiol. 1954 Jan;176(1):45–51. doi: 10.1152/ajplegacy.1953.176.1.45. [DOI] [PubMed] [Google Scholar]
- Mitchell R. A., Carman C. T., Severinghaus J. W., Richardson B. W., Singer M. M., Shnider S. Stability of cerebrospinal fluid pH in chronic acid-base disturbances in blood. J Appl Physiol. 1965 May;20(3):443–452. doi: 10.1152/jappl.1965.20.3.443. [DOI] [PubMed] [Google Scholar]
- NAHAS G. G. Use of an organic carbon dioxide buffer in vivo. Science. 1959 Mar 20;129(3351):782–783. doi: 10.1126/science.129.3351.782. [DOI] [PubMed] [Google Scholar]
- ORLOFF J., KENNEDY T. J., Jr, BERLINER R. W. The effect of potassium in nephrectomized rats with hypokalemic alkalosis. J Clin Invest. 1953 Jun;32(6):538–542. doi: 10.1172/JCI102769. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PITTS R. F. Mechanisms for stabilizing the alkaline reserves of the body. Harvey Lect. 1952;48:172–209. [PubMed] [Google Scholar]
- ROBERTS K. E., POPPELL J. W., VANAMEE P., BEALS R., RANDALL H. T. Evaluation of respiratory compensation in metabolic alkalosis. J Clin Invest. 1956 Feb;35(2):261–266. doi: 10.1172/JCI103271. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ROBIN E. D., WHALEY R. D., CRUMP C. H., TRAVIS D. M., BICKELMANN A. G. Acid-base relations between spinal fluid and arterial blood with special reference to control of ventilation. J Appl Physiol. 1958 Nov;13(3):385–392. doi: 10.1152/jappl.1958.13.3.385. [DOI] [PubMed] [Google Scholar]
- SELIGSON D., HIRAHARA K. The measurement of ammonia in whole blood, erythrocytes, and plasma. J Lab Clin Med. 1957 Jun;49(6):962–974. [PubMed] [Google Scholar]
- SINGER R. B., DEERING R. C., CLARK J. K. The acute effects in man of a rapid intravenous infusion of hypertonic sodium bicarbonate solution. II. Changes in respiration and output of carbon dioxide. J Clin Invest. 1956 Feb;35(2):245–253. doi: 10.1172/JCI103269. [DOI] [PMC free article] [PubMed] [Google Scholar]
- STONE D. J. Respiration in man during metabolic alkalosis. J Appl Physiol. 1962 Jan;17:33–37. doi: 10.1152/jappl.1962.17.1.33. [DOI] [PubMed] [Google Scholar]