Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Nov 7;65(Pt 12):m1521. doi: 10.1107/S1600536809045905

Bis(quinolin-8-ol)silver(I) 2-hydr­oxy-3,5-dinitro­benzoate

Chun-Lan Zhang a, Fang-Fang Jian b,*
PMCID: PMC2971757  PMID: 21578567

Abstract

The title compound, [Ag(C9H7NO)2](C7H3N2O7), was prepared from 3,5-dinitro­salicylic acid (DNS), quinolin-8-ol and AgNO3. The AgI atom is coordinated by two N atoms and two O atoms from two quinolin-8-ols in a roughly planar [maximum deviation = 0.223 (2) Å] environment. The two quinolin-8-ol ligands are bent slightly with respect to each other, making a dihedral angle of 9.55 (9)°. The DNS anion inter­acts with the silver complex through O—H⋯O hydrogen bonds

Related literature

For related structures, see: Smith & Thomasson (1999); Smith et al. (2001); Wu et al. (2006).graphic file with name e-65-m1521-scheme1.jpg

Experimental

Crystal data

  • [Ag(C9H7NO)2](C7H3N2O7)

  • M r = 625.30

  • Monoclinic, Inline graphic

  • a = 9.0154 (18) Å

  • b = 7.6122 (15) Å

  • c = 17.138 (3) Å

  • β = 104.38 (3)°

  • V = 1139.3 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.95 mm−1

  • T = 293 K

  • 0.20 × 0.15 × 0.11 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 10841 measured reflections

  • 4602 independent reflections

  • 4356 reflections with I > 2σ(I)

  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.024

  • wR(F 2) = 0.057

  • S = 1.09

  • 4602 reflections

  • 353 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.30 e Å−3

  • Absolute structure: Flack (1983), 1770 Friedel pairs

  • Flack parameter: 0.006 (18)

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809045905/dn2508sup1.cif

e-65-m1521-sup1.cif (20.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809045905/dn2508Isup2.hkl

e-65-m1521-Isup2.hkl (220.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1AA⋯O8 1.00 1.60 2.602 (3) 175
O2—H2AA⋯O9 0.77 1.88 2.636 (3) 168
O3—H3B⋯O9 0.82 1.74 2.483 (3) 150

supplementary crystallographic information

Comment

Quinolin-8-ol [quinolin-8-ol (oxine)] is well known as a particularly versatile ligand for use in metal complex chemistry (G. Smith, et al.,2001). It is also known that most of AgI in biological systems is not in the form of free AgI ions, but is coordinated by the abundance of biological ligands (Wu, et al.,2006). As part of our search for new biologically active compounds the title compound has been synthesized and we report its crystal structure here.

Scheme I

The AgI atom is coordinated by two N atoms and two O atoms from two quinolin-8-ols in a roughly planar environment with the largest deviation from the mean plane of the non H atoms being 0.223 (2)Å at C14 (Fig. 1). However, the two quinolin-8-ols are slightly bent with respect to each other making a dihedral angle of 9.55 (9)°. In the DNS anion, the NO2 and CO2 groups are twisted with respect to the phenyl ring making dihedral angles of of 29.5 (1)° for C21, N4, O6, O7, 10.7 (2)° for C19, N3, O4, 05 and 10.0 (2)° for C23, C25, O8, O9. All of the bond lengths and bond angles are in normal ranges (Smith, et al.,1999; Smith, et al.,2001; Wu, et al., 2006).

There are O—H···O hydrogen-bond interactions between two quinolin-8-ol and DNS which stabilize the crystal structure (Table 1, Fig. 1).

Experimental

The title compound(I) was prepared by the process as following: A mixture of 3,5-Dinitrosalicylic acid (0.01 mol), salt of quinolin-8-ol and sulfuric acid (0.02 mol) was stirred in distilled water (30 ml) for 3 h to obtain yellow deposit. A mixture of the deposit and AgNO3(0.01 mol) was stirred in ethanol (20 ml) at 353 K for 5 h, then afford the title compound (yield 83%). Single crystals suitable for X-ray measurements were obtailed by recrystallization from ethanol at room temperature.

Refinement

H atoms were included in calculated positions, with C—H distances constrained to 0.93Å (aromatic CH) and O—H distances constrained to 0.86Å and with Uiso=1.2–1.5Ueq.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bonds are shown as dashed lines.

Crystal data

[Ag(C9H7NO)2](C7H3N2O7) F(000) = 628
Mr = 625.30 Dx = 1.823 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 4356 reflections
a = 9.0154 (18) Å θ = 3.6–27.6°
b = 7.6122 (15) Å µ = 0.95 mm1
c = 17.138 (3) Å T = 293 K
β = 104.38 (3)° Block, yellow
V = 1139.3 (4) Å3 0.20 × 0.15 × 0.11 mm
Z = 2

Data collection

Bruker SMART CCD area-detector diffractometer 4356 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.022
graphite θmax = 27.6°, θmin = 3.6°
φ and ω scans h = −11→11
10841 measured reflections k = −9→8
4602 independent reflections l = −22→22

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024 H-atom parameters constrained
wR(F2) = 0.057 w = 1/[σ2(Fo2) + (0.028P)2 + 0.3633P] where P = (Fo2 + 2Fc2)/3
S = 1.09 (Δ/σ)max < 0.001
4602 reflections Δρmax = 0.70 e Å3
353 parameters Δρmin = −0.30 e Å3
1 restraint Absolute structure: Flack (1983), 1770 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.006 (18)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ag1 0.062198 (19) 0.74284 (3) 0.668865 (11) 0.01870 (6)
O1 −0.0991 (2) 0.4624 (3) 0.64039 (12) 0.0199 (4)
H1AA −0.0950 0.3450 0.6670 0.030*
O2 0.1744 (2) 0.5065 (3) 0.77201 (12) 0.0217 (4)
H2AA 0.1409 0.4170 0.7790 0.033*
N1 −0.1155 (2) 0.7669 (4) 0.55612 (13) 0.0174 (5)
N2 0.2684 (3) 0.8371 (3) 0.75436 (14) 0.0163 (5)
C1 −0.1281 (3) 0.9178 (4) 0.51463 (19) 0.0223 (6)
H1A −0.0613 1.0090 0.5354 0.027*
C2 −0.2364 (4) 0.9449 (4) 0.44186 (18) 0.0246 (6)
H2A −0.2410 1.0519 0.4152 0.030*
C3 −0.3353 (3) 0.8132 (4) 0.41024 (19) 0.0211 (6)
H3A −0.4080 0.8297 0.3618 0.025*
C4 −0.3269 (3) 0.6506 (4) 0.45167 (18) 0.0170 (6)
C5 −0.4267 (3) 0.5080 (4) 0.42261 (17) 0.0209 (6)
H5A −0.5013 0.5186 0.3744 0.025*
C6 −0.4132 (3) 0.3552 (4) 0.46543 (18) 0.0214 (6)
H6A −0.4774 0.2614 0.4454 0.026*
C7 −0.3036 (3) 0.3371 (4) 0.53957 (17) 0.0187 (6)
H7A −0.2977 0.2327 0.5683 0.022*
C8 −0.2059 (3) 0.4719 (4) 0.56950 (16) 0.0149 (5)
C9 −0.2140 (3) 0.6332 (4) 0.52566 (16) 0.0141 (5)
C10 0.3161 (3) 0.9992 (4) 0.74638 (17) 0.0187 (6)
H10A 0.2572 1.0697 0.7061 0.022*
C11 0.4512 (3) 1.0703 (4) 0.79573 (19) 0.0222 (6)
H11A 0.4807 1.1847 0.7878 0.027*
C12 0.5375 (3) 0.9694 (4) 0.85498 (18) 0.0210 (6)
H12A 0.6277 1.0140 0.8878 0.025*
C13 0.4907 (3) 0.7962 (4) 0.86706 (17) 0.0172 (6)
C14 0.5745 (3) 0.6843 (4) 0.92847 (17) 0.0199 (6)
H14A 0.6655 0.7235 0.9626 0.024*
C15 0.5225 (3) 0.5197 (4) 0.93780 (17) 0.0206 (6)
H15A 0.5776 0.4479 0.9788 0.025*
C16 0.3864 (3) 0.4567 (4) 0.88625 (17) 0.0177 (6)
H16A 0.3520 0.3443 0.8937 0.021*
C17 0.3044 (3) 0.5596 (4) 0.82523 (16) 0.0144 (5)
C18 0.3541 (2) 0.7342 (6) 0.81437 (14) 0.0140 (4)
O3 0.1402 (2) −0.0140 (3) 0.92529 (13) 0.0260 (5)
H3B 0.1405 0.0793 0.9015 0.039*
O4 −0.4152 (2) −0.3754 (3) 0.69128 (14) 0.0284 (5)
O5 −0.3271 (2) −0.5962 (3) 0.76855 (13) 0.0273 (5)
O6 0.1239 (2) −0.5246 (3) 0.98348 (12) 0.0211 (4)
O7 0.1678 (2) −0.2656 (4) 1.03550 (11) 0.0289 (4)
O8 −0.0981 (2) 0.1498 (3) 0.70194 (12) 0.0242 (5)
O9 0.0667 (2) 0.2136 (3) 0.81890 (12) 0.0198 (5)
N3 −0.3217 (2) −0.4436 (3) 0.74770 (14) 0.0173 (5)
N4 0.1088 (2) −0.3646 (3) 0.98082 (14) 0.0151 (5)
C19 −0.1971 (3) −0.3338 (4) 0.79249 (18) 0.0131 (6)
C20 −0.1028 (3) −0.3990 (3) 0.86303 (16) 0.0128 (5)
H20A −0.1152 −0.5127 0.8803 0.015*
C21 0.0095 (3) −0.2909 (3) 0.90660 (15) 0.0118 (6)
C22 0.0328 (3) −0.1188 (4) 0.88193 (16) 0.0131 (5)
C23 −0.0605 (3) −0.0602 (3) 0.80700 (16) 0.0130 (5)
C24 −0.1769 (3) −0.1677 (4) 0.76339 (18) 0.0137 (6)
H24A −0.2405 −0.1286 0.7152 0.016*
C25 −0.0306 (3) 0.1145 (4) 0.77252 (16) 0.0150 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ag1 0.01624 (8) 0.01725 (9) 0.01946 (9) −0.00342 (12) −0.00152 (6) 0.00022 (11)
O1 0.0213 (10) 0.0127 (9) 0.0199 (10) −0.0063 (8) −0.0062 (8) 0.0045 (7)
O2 0.0185 (9) 0.0169 (10) 0.0244 (11) −0.0079 (8) −0.0046 (8) 0.0028 (8)
N1 0.0194 (9) 0.0143 (15) 0.0179 (10) −0.0003 (11) 0.0034 (8) 0.0009 (10)
N2 0.0138 (10) 0.0164 (12) 0.0191 (12) −0.0018 (9) 0.0047 (9) 0.0005 (9)
C1 0.0256 (14) 0.0145 (13) 0.0262 (16) −0.0040 (13) 0.0053 (12) 0.0045 (11)
C2 0.0331 (16) 0.0181 (15) 0.0238 (16) 0.0071 (14) 0.0092 (13) 0.0106 (12)
C3 0.0216 (13) 0.0248 (14) 0.0156 (15) 0.0061 (12) 0.0021 (11) 0.0024 (11)
C4 0.0139 (12) 0.0219 (15) 0.0152 (14) 0.0027 (11) 0.0036 (10) 0.0011 (12)
C5 0.0161 (13) 0.0293 (16) 0.0149 (14) 0.0008 (13) −0.0007 (10) −0.0035 (12)
C6 0.0154 (13) 0.0245 (15) 0.0215 (15) −0.0088 (12) −0.0008 (10) −0.0052 (12)
C7 0.0181 (13) 0.0179 (15) 0.0188 (14) −0.0042 (11) 0.0023 (10) 0.0014 (11)
C8 0.0142 (12) 0.0145 (13) 0.0143 (13) 0.0003 (11) 0.0002 (10) 0.0000 (10)
C9 0.0142 (12) 0.0143 (13) 0.0135 (13) −0.0007 (11) 0.0030 (9) 0.0009 (10)
C10 0.0208 (13) 0.0172 (14) 0.0199 (15) −0.0023 (12) 0.0082 (11) 0.0027 (11)
C11 0.0261 (14) 0.0167 (14) 0.0257 (16) −0.0085 (13) 0.0098 (12) −0.0039 (12)
C12 0.0182 (13) 0.0228 (15) 0.0231 (15) −0.0110 (12) 0.0071 (11) −0.0096 (12)
C13 0.0141 (11) 0.0225 (15) 0.0162 (13) −0.0030 (10) 0.0064 (10) −0.0058 (10)
C14 0.0112 (11) 0.0293 (15) 0.0177 (14) −0.0033 (11) 0.0005 (10) −0.0069 (10)
C15 0.0138 (12) 0.0278 (16) 0.0181 (14) 0.0033 (12) 0.0000 (10) 0.0019 (11)
C16 0.0162 (12) 0.0153 (13) 0.0207 (14) −0.0018 (11) 0.0032 (10) −0.0002 (10)
C17 0.0111 (11) 0.0143 (13) 0.0172 (14) −0.0019 (11) 0.0028 (10) −0.0028 (10)
C18 0.0113 (9) 0.0151 (11) 0.0166 (11) 0.0013 (17) 0.0052 (8) 0.0003 (15)
O3 0.0224 (10) 0.0222 (11) 0.0283 (12) −0.0065 (9) −0.0032 (9) 0.0033 (9)
O4 0.0209 (10) 0.0281 (12) 0.0268 (12) −0.0043 (9) −0.0115 (8) −0.0011 (9)
O5 0.0294 (11) 0.0195 (11) 0.0293 (12) −0.0131 (10) 0.0006 (9) 0.0017 (9)
O6 0.0213 (10) 0.0160 (10) 0.0235 (11) 0.0028 (8) 0.0008 (8) 0.0058 (8)
O7 0.0344 (9) 0.0225 (10) 0.0200 (9) 0.0054 (15) −0.0118 (7) −0.0024 (13)
O8 0.0317 (11) 0.0166 (11) 0.0195 (11) −0.0060 (9) −0.0027 (8) 0.0065 (8)
O9 0.0211 (8) 0.0132 (14) 0.0224 (9) −0.0063 (9) 0.0004 (7) 0.0004 (8)
N3 0.0140 (10) 0.0190 (12) 0.0169 (12) −0.0061 (10) 0.0004 (9) −0.0041 (9)
N4 0.0115 (10) 0.0166 (12) 0.0153 (11) 0.0017 (9) −0.0004 (8) 0.0023 (9)
C19 0.0078 (11) 0.0166 (13) 0.0139 (14) −0.0039 (10) 0.0007 (10) −0.0040 (11)
C20 0.0160 (12) 0.0084 (12) 0.0140 (13) −0.0004 (10) 0.0034 (9) 0.0006 (9)
C21 0.0095 (9) 0.0131 (18) 0.0109 (11) 0.0044 (10) −0.0009 (8) 0.0026 (9)
C22 0.0084 (11) 0.0151 (14) 0.0147 (13) −0.0009 (10) 0.0011 (9) −0.0027 (10)
C23 0.0130 (11) 0.0110 (13) 0.0139 (12) −0.0003 (11) 0.0013 (9) −0.0003 (10)
C24 0.0122 (12) 0.0145 (14) 0.0142 (14) 0.0023 (11) 0.0028 (10) 0.0010 (11)
C25 0.0151 (12) 0.0110 (12) 0.0182 (14) 0.0005 (11) 0.0030 (10) 0.0009 (10)

Geometric parameters (Å, °)

Ag1—N2 2.183 (2) C12—C13 1.415 (4)
Ag1—N1 2.190 (2) C12—H12A 0.9300
Ag1—O2 2.549 (2) C13—C18 1.415 (4)
Ag1—O1 2.561 (2) C13—C14 1.417 (4)
O1—C8 1.352 (3) C14—C15 1.361 (4)
O1—H1AA 0.9999 C14—H14A 0.9300
O2—C17 1.355 (3) C15—C16 1.406 (4)
O2—H2AA 0.7666 C15—H15A 0.9300
N1—C1 1.341 (4) C16—C17 1.367 (4)
N1—C9 1.366 (4) C16—H16A 0.9300
N2—C10 1.325 (4) C17—C18 1.430 (5)
N2—C18 1.368 (4) O3—C22 1.330 (3)
C1—C2 1.395 (4) O3—H3B 0.8193
C1—H1A 0.9300 O4—N3 1.229 (3)
C2—C3 1.361 (5) O5—N3 1.220 (3)
C2—H2A 0.9300 O6—N4 1.225 (3)
C3—C4 1.420 (4) O7—N4 1.217 (3)
C3—H3A 0.9300 O8—C25 1.241 (3)
C4—C5 1.419 (4) O9—C25 1.274 (3)
C4—C9 1.422 (4) N3—C19 1.457 (3)
C5—C6 1.364 (4) N4—C21 1.472 (3)
C5—H5A 0.9300 C19—C20 1.386 (4)
C6—C7 1.409 (4) C19—C24 1.387 (4)
C6—H6A 0.9300 C20—C21 1.373 (4)
C7—C8 1.366 (4) C20—H20A 0.9300
C7—H7A 0.9300 C21—C22 1.409 (4)
C8—C9 1.432 (4) C22—C23 1.421 (4)
C10—C11 1.407 (4) C23—C24 1.393 (4)
C10—H10A 0.9300 C23—C25 1.507 (4)
C11—C12 1.354 (4) C24—H24A 0.9300
C11—H11A 0.9300
N2—Ag1—N1 151.54 (9) C10—C11—H11A 120.6
N2—Ag1—O2 68.97 (8) C11—C12—C13 120.1 (3)
N1—Ag1—O2 138.45 (9) C11—C12—H12A 119.9
N2—Ag1—O1 138.63 (8) C13—C12—H12A 119.9
N1—Ag1—O1 69.23 (8) C18—C13—C12 117.5 (3)
O2—Ag1—O1 69.67 (6) C18—C13—C14 119.5 (3)
C8—O1—Ag1 111.74 (16) C12—C13—C14 123.0 (3)
C8—O1—H1AA 113.3 C15—C14—C13 120.3 (2)
Ag1—O1—H1AA 134.7 C15—C14—H14A 119.8
C17—O2—Ag1 112.59 (16) C13—C14—H14A 119.8
C17—O2—H2AA 117.9 C14—C15—C16 120.8 (3)
Ag1—O2—H2AA 129.2 C14—C15—H15A 119.6
C1—N1—C9 118.3 (2) C16—C15—H15A 119.6
C1—N1—Ag1 119.1 (2) C17—C16—C15 120.5 (3)
C9—N1—Ag1 122.58 (19) C17—C16—H16A 119.7
C10—N2—C18 118.3 (3) C15—C16—H16A 119.7
C10—N2—Ag1 118.73 (19) O2—C17—C16 123.9 (3)
C18—N2—Ag1 123.0 (2) O2—C17—C18 115.9 (2)
N1—C1—C2 123.3 (3) C16—C17—C18 120.3 (2)
N1—C1—H1A 118.4 N2—C18—C13 121.9 (3)
C2—C1—H1A 118.4 N2—C18—C17 119.6 (2)
C3—C2—C1 119.4 (3) C13—C18—C17 118.6 (3)
C3—C2—H2A 120.3 C22—O3—H3B 109.5
C1—C2—H2A 120.3 O5—N3—O4 124.3 (2)
C2—C3—C4 119.6 (3) O5—N3—C19 118.3 (2)
C2—C3—H3A 120.2 O4—N3—C19 117.4 (2)
C4—C3—H3A 120.2 O7—N4—O6 124.3 (2)
C5—C4—C3 122.8 (3) O7—N4—C21 119.0 (2)
C5—C4—C9 119.6 (3) O6—N4—C21 116.7 (2)
C3—C4—C9 117.7 (3) C20—C19—C24 122.2 (3)
C6—C5—C4 119.9 (3) C20—C19—N3 118.7 (3)
C6—C5—H5A 120.0 C24—C19—N3 119.1 (3)
C4—C5—H5A 120.0 C21—C20—C19 118.0 (2)
C5—C6—C7 121.2 (3) C21—C20—H20A 121.0
C5—C6—H6A 119.4 C19—C20—H20A 121.0
C7—C6—H6A 119.4 C20—C21—C22 122.6 (2)
C8—C7—C6 120.5 (3) C20—C21—N4 116.7 (2)
C8—C7—H7A 119.8 C22—C21—N4 120.7 (2)
C6—C7—H7A 119.8 O3—C22—C21 122.2 (2)
O1—C8—C7 123.1 (2) O3—C22—C23 120.1 (3)
O1—C8—C9 116.7 (2) C21—C22—C23 117.7 (2)
C7—C8—C9 120.2 (2) C24—C23—C22 119.9 (3)
N1—C9—C4 121.7 (2) C24—C23—C25 119.5 (2)
N1—C9—C8 119.7 (2) C22—C23—C25 120.5 (2)
C4—C9—C8 118.6 (2) C19—C24—C23 119.4 (3)
N2—C10—C11 123.4 (3) C19—C24—H24A 120.3
N2—C10—H10A 118.3 C23—C24—H24A 120.3
C11—C10—H10A 118.3 O8—C25—O9 125.1 (3)
C12—C11—C10 118.9 (3) O8—C25—C23 118.7 (2)
C12—C11—H11A 120.6 O9—C25—C23 116.1 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1AA···O8 1.00 1.60 2.602 (3) 175
O2—H2AA···O9 0.77 1.88 2.636 (3) 168
O3—H3B···O9 0.82 1.74 2.483 (3) 150

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2508).

References

  1. Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Smith, G. & Thomasson, J. H. (1999). Aust. J. Chem. 52, 317–324.
  7. Smith, G., Wermuth, U. D. & White, J. M. (2001). Aust. J. Chem. 54, 171–175.
  8. Wu, H., Dong, X.-W., Liu, H.-Y. & Ma, J.-F. (2006). Acta Cryst. E62, m281–m282.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809045905/dn2508sup1.cif

e-65-m1521-sup1.cif (20.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809045905/dn2508Isup2.hkl

e-65-m1521-Isup2.hkl (220.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES