Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Nov 7;65(Pt 12):m1536. doi: 10.1107/S1600536809046261

trans-Dichloridobis[tris­(4-methoxy­phen­yl)phosphine]palladium(II) benzene monosolvate

Charmaine van Blerk a,*, Cedric W Holzapfel a
PMCID: PMC2971806  PMID: 21578578

Abstract

The structure of the title compound, [PdCl2(C21H21O3P)2]·C6H6, shows a square-planar geometry for the PdII atom within a Cl2[P(PhOMe)3]2 ligand set. The crystal structure contains benzene as solvent. The PdII atom sits on a centre of inversion and therefore the asymmetric unit contains the PdII atom, one Cl atom, one tris­(4-methoxy­phen­yl)phosphine ligand and one half of the benzene solvent mol­ecule.

Related literature

For related structures and literature on similar palladium complexes, see: Robertson & Cole-Hamilton (2002); Van Leeuwen et al. (2003); Williams et al. (2008).graphic file with name e-65-m1536-scheme1.jpg

Experimental

Crystal data

  • [PdCl2(C21H21O3P)2]·C6H6

  • M r = 960.10

  • Triclinic, Inline graphic

  • a = 7.9338 (2) Å

  • b = 12.1886 (3) Å

  • c = 12.5268 (3) Å

  • α = 85.981 (3)°

  • β = 78.840 (2)°

  • γ = 76.155 (2)°

  • V = 1153.57 (5) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.63 mm−1

  • T = 295 K

  • 0.34 × 0.24 × 0.10 mm

Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (APEX2 AX-Scale; Bruker, 2008) T min = 0.813, T max = 0.939

  • 31847 measured reflections

  • 5781 independent reflections

  • 4546 reflections with I > 2σ(I)

  • R int = 0.046

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.097

  • S = 1.08

  • 5781 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 1.26 e Å−3

  • Δρmin = −0.53 e Å−3

Data collection: SMART-NT (Bruker, 1999); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001) and Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2009).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809046261/ez2192sup1.cif

e-65-m1536-sup1.cif (22.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809046261/ez2192Isup2.hkl

e-65-m1536-Isup2.hkl (283KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the University of the Witwatersrand for their facilities and the use of the diffractometer in the Jan Boeyens Structural Chemistry Laboratory.

supplementary crystallographic information

Comment

The palladium-catalysed methoxycarbonylation (Robertson & Cole-Hamilton, 2002) of 1-alkenes is an active area of research. The palladium complexes (Ar3P)2PdX2 (X = Cl, DMS, OTf etc.) are the preferred catalysts but most quantitative studies have been carried out with complexes where the phosphine ligand is limited to triphenylphosphine. The X-ray structures (Van Leeuwen et al., 2003 and Williams et al., 2008) of several of this class of palladium(II) complexes have been determined. Our studies (Williams et al., 2008) on the effect of substituents on the triarylphosphine ligands on regioselectivity and reaction rate showed trans-dichloro-bis[tris-(4-methoxy)phosphine] palladium(II) to be an exceptionally efficient catalyst for the production of linear esters from 1-alkenes at high rates.

The structure of the title compound (I), [PdCl2(C42H42P2O6).C6H6] shows a square planar geometry for the PdII atom within the Cl2(P(PhOMe)3) ligand set. The crystal structure contains benzene as a solvate. The solvent molecule exhibits noticeable disorder but this disorder was not modelled. The palladium atom sits on a centre of inversion and therefore the asymmetric unit contains the palladium atom, one chlorine atom, one tris-(4-methoxyphenyl)phenylphosphine ligand and one half of the benzene solvent molecule.

Experimental

Tris-(4-methoxyphenyl)phosphine (704 mg, 0.2 mmol) was added to a solution of lithium chloride (85 mg, 0.2 mmol) and palladium(II) chloride (177 mg, 0.1 mmol) in 15 ml me thanol. The mixture was heated under reflux in an atmosphere of nitrogen for 1 h resulting in the formation of the product as a yellow precipitate. The solution was allowed to cool to room temperature and the product (710 mg) was collected by filtration, washed with fresh methanol and dried under vacuum. The product was recrystallized from 1:1 ethyl acetate:benzene to furnish yellow plates (m. p. > 250°C, decomp.) A suitable single-crystal was selected for the single-crystal X-ray diffraction analysis.

Refinement

H atoms were geometrically positioned and refined in the riding-model approximation, with C—H = 0.97 Å, N—H = 0.89 Å, and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(N). For (I), the highest peak in the final difference map is 0.98Å from C15 and the deepest hole is 0.01Å from Pd1.

Figures

Fig. 1.

Fig. 1.

: Molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level. Atoms labelled with (i) are at symmetry position (– x, – y, – z) and atoms labelled with (ii) are at symmetry position (– x + 1, – y + 1, – z + 1)

Crystal data

[PdCl2(C21H21O3P)2]·C6H6 Z = 1
Mr = 960.10 F(000) = 494
Triclinic, P1 Dx = 1.382 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.9338 (2) Å Cell parameters from 9954 reflections
b = 12.1886 (3) Å θ = 1.7–28.3°
c = 12.5268 (3) Å µ = 0.63 mm1
α = 85.981 (3)° T = 295 K
β = 78.840 (2)° Flat, yellow
γ = 76.155 (2)° 0.34 × 0.24 × 0.10 mm
V = 1153.57 (5) Å3

Data collection

Bruker SMART CCD diffractometer 5781 independent reflections
Radiation source: fine-focus sealed tube 4546 reflections with I > 2σ(I)
graphite Rint = 0.046
φ and ω scans θmax = 28.4°, θmin = 1.7°
Absorption correction: multi-scan (APEX2 Ax-Scale; Bruker, 2008) h = −10→10
Tmin = 0.813, Tmax = 0.939 k = −16→16
31847 measured reflections l = −16→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097 H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.04P)2 + 0.8985P] where P = (Fo2 + 2Fc2)/3
5781 reflections (Δ/σ)max < 0.001
271 parameters Δρmax = 1.26 e Å3
0 restraints Δρmin = −0.53 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.4425 (16) 0.4281 (7) 0.5761 (6) 0.155 (3)
H1 0.4046 0.3780 0.6295 0.186*
C2 0.5827 (15) 0.4708 (8) 0.5889 (6) 0.157 (3)
H2 0.6361 0.4503 0.6495 0.188*
C3 0.3558 (14) 0.4537 (7) 0.4915 (8) 0.164 (3)
H3 0.2608 0.4232 0.4866 0.197*
C11 0.0548 (3) 0.1003 (2) −0.2660 (2) 0.0322 (5)
C12 −0.0842 (4) 0.0505 (3) −0.2715 (2) 0.0394 (6)
H12 −0.1180 0.0008 −0.2162 0.047*
C13 −0.1725 (4) 0.0744 (3) −0.3587 (2) 0.0457 (7)
H13 −0.2650 0.0406 −0.3614 0.055*
C14 −0.1248 (4) 0.1475 (3) −0.4413 (2) 0.0415 (6)
C15 0.0146 (4) 0.1971 (3) −0.4377 (2) 0.0491 (8)
H15 0.0490 0.2459 −0.4937 0.059*
C16 0.1017 (4) 0.1736 (3) −0.3504 (2) 0.0451 (7)
H16 0.1941 0.2076 −0.3481 0.054*
C17 −0.1700 (5) 0.2373 (4) −0.6136 (3) 0.0663 (10)
H17A −0.1778 0.3112 −0.5882 0.099*
H17B −0.2476 0.2429 −0.6647 0.099*
H17C −0.0508 0.2058 −0.6484 0.099*
C21 0.2612 (3) 0.1876 (2) −0.1422 (2) 0.0319 (5)
C22 0.4426 (4) 0.1803 (2) −0.1504 (2) 0.0379 (6)
H22 0.5220 0.1107 −0.1627 0.046*
C23 0.5046 (4) 0.2750 (3) −0.1406 (3) 0.0462 (7)
H23 0.6252 0.2685 −0.1460 0.055*
C24 0.3887 (4) 0.3800 (2) −0.1227 (2) 0.0419 (7)
C25 0.2087 (4) 0.3885 (2) −0.1136 (2) 0.0417 (7)
H25 0.1297 0.4582 −0.1011 0.050*
C26 0.1472 (4) 0.2935 (2) −0.1233 (2) 0.0383 (6)
H26 0.0264 0.3004 −0.1169 0.046*
C27 0.3489 (6) 0.5791 (3) −0.1038 (4) 0.0781 (13)
H27A 0.2900 0.5975 −0.1650 0.117*
H27B 0.4168 0.6336 −0.0997 0.117*
H27C 0.2628 0.5801 −0.0382 0.117*
C31 0.3704 (3) −0.0450 (2) −0.2019 (2) 0.0305 (5)
C32 0.4241 (4) −0.0750 (2) −0.3103 (2) 0.0381 (6)
H32 0.3637 −0.0348 −0.3627 0.046*
C33 0.5670 (4) −0.1644 (3) −0.3409 (2) 0.0465 (7)
H33 0.6017 −0.1840 −0.4136 0.056*
C34 0.6591 (4) −0.2253 (2) −0.2634 (3) 0.0408 (6)
C35 0.6116 (4) −0.1934 (3) −0.1561 (3) 0.0438 (7)
H35 0.6766 −0.2308 −0.1046 0.053*
C36 0.4660 (4) −0.1053 (2) −0.1256 (2) 0.0406 (6)
H36 0.4315 −0.0861 −0.0528 0.049*
C37 0.8756 (5) −0.3895 (3) −0.2234 (4) 0.0722 (11)
H37A 0.9291 −0.3483 −0.1822 0.108*
H37B 0.9644 −0.4495 −0.2604 0.108*
H37C 0.7882 −0.4206 −0.1751 0.108*
O1 −0.2204 (3) 0.1654 (2) −0.52266 (18) 0.0592 (6)
O2 0.4641 (3) 0.46844 (19) −0.1165 (2) 0.0626 (7)
O3 0.7933 (3) −0.31468 (19) −0.3017 (2) 0.0576 (6)
P1 0.17506 (8) 0.06402 (5) −0.15376 (5) 0.02933 (15)
Cl1 −0.05138 (11) 0.16975 (6) 0.08394 (6) 0.04878 (19)
Pd1 0.0000 0.0000 0.0000 0.02850 (9)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.264 (12) 0.110 (5) 0.087 (5) −0.034 (6) −0.030 (6) −0.009 (4)
C2 0.244 (11) 0.137 (7) 0.080 (5) −0.018 (7) −0.037 (6) −0.015 (5)
C3 0.256 (11) 0.129 (6) 0.109 (6) −0.046 (7) −0.024 (7) −0.038 (5)
C11 0.0305 (13) 0.0349 (14) 0.0304 (13) −0.0055 (11) −0.0069 (10) 0.0006 (10)
C12 0.0387 (15) 0.0453 (16) 0.0373 (14) −0.0170 (13) −0.0083 (12) 0.0075 (12)
C13 0.0408 (16) 0.0573 (19) 0.0461 (16) −0.0236 (14) −0.0117 (13) 0.0031 (14)
C14 0.0414 (15) 0.0484 (17) 0.0375 (15) −0.0109 (13) −0.0138 (12) 0.0001 (13)
C15 0.0554 (19) 0.066 (2) 0.0372 (15) −0.0340 (16) −0.0158 (14) 0.0154 (14)
C16 0.0459 (16) 0.0534 (18) 0.0454 (16) −0.0264 (14) −0.0173 (13) 0.0123 (14)
C17 0.078 (3) 0.084 (3) 0.051 (2) −0.036 (2) −0.0331 (19) 0.0202 (19)
C21 0.0367 (14) 0.0303 (13) 0.0295 (12) −0.0101 (11) −0.0070 (10) 0.0036 (10)
C22 0.0368 (14) 0.0323 (14) 0.0446 (15) −0.0063 (11) −0.0088 (12) −0.0016 (12)
C23 0.0355 (15) 0.0440 (17) 0.063 (2) −0.0147 (13) −0.0126 (14) 0.0005 (14)
C24 0.0517 (17) 0.0324 (15) 0.0478 (16) −0.0156 (13) −0.0181 (14) 0.0039 (12)
C25 0.0450 (16) 0.0287 (14) 0.0496 (16) −0.0043 (12) −0.0109 (13) 0.0018 (12)
C26 0.0340 (14) 0.0343 (14) 0.0464 (16) −0.0079 (11) −0.0089 (12) 0.0042 (12)
C27 0.079 (3) 0.0346 (18) 0.129 (4) −0.0176 (18) −0.033 (3) 0.000 (2)
C31 0.0321 (13) 0.0273 (13) 0.0333 (13) −0.0080 (10) −0.0079 (10) 0.0000 (10)
C32 0.0359 (14) 0.0416 (16) 0.0358 (14) −0.0051 (12) −0.0091 (11) −0.0008 (12)
C33 0.0428 (16) 0.0565 (19) 0.0360 (15) −0.0031 (14) −0.0041 (12) −0.0101 (13)
C34 0.0316 (14) 0.0369 (15) 0.0525 (17) −0.0071 (12) −0.0040 (12) −0.0053 (13)
C35 0.0431 (16) 0.0401 (16) 0.0491 (17) −0.0053 (13) −0.0182 (13) 0.0048 (13)
C36 0.0462 (16) 0.0403 (16) 0.0345 (14) −0.0048 (13) −0.0124 (12) −0.0008 (12)
C37 0.061 (2) 0.054 (2) 0.090 (3) 0.0119 (18) −0.018 (2) −0.001 (2)
O1 0.0633 (15) 0.0806 (17) 0.0476 (13) −0.0328 (13) −0.0299 (11) 0.0164 (12)
O2 0.0640 (15) 0.0374 (12) 0.0955 (19) −0.0198 (11) −0.0262 (14) −0.0028 (12)
O3 0.0453 (12) 0.0516 (13) 0.0654 (15) 0.0089 (10) −0.0076 (11) −0.0073 (11)
P1 0.0311 (3) 0.0287 (3) 0.0285 (3) −0.0080 (3) −0.0054 (3) 0.0009 (3)
Cl1 0.0675 (5) 0.0326 (4) 0.0444 (4) −0.0180 (3) 0.0051 (3) −0.0086 (3)
Pd1 0.03329 (16) 0.02494 (15) 0.02737 (15) −0.00770 (11) −0.00467 (11) −0.00023 (10)

Geometric parameters (Å, °)

C1—C3 1.351 (11) C24—O2 1.366 (4)
C1—C2 1.375 (12) C24—C25 1.390 (4)
C1—H1 0.9300 C25—C26 1.380 (4)
C2—C3i 1.413 (11) C25—H25 0.9300
C2—H2 0.9300 C26—H26 0.9300
C3—C2i 1.413 (11) C27—O2 1.436 (4)
C3—H3 0.9300 C27—H27A 0.9600
C11—C16 1.388 (4) C27—H27B 0.9600
C11—C12 1.395 (4) C27—H27C 0.9600
C11—P1 1.820 (3) C31—C32 1.389 (4)
C12—C13 1.387 (4) C31—C36 1.394 (4)
C12—H12 0.9300 C31—P1 1.815 (3)
C13—C14 1.374 (4) C32—C33 1.386 (4)
C13—H13 0.9300 C32—H32 0.9300
C14—O1 1.360 (3) C33—C34 1.393 (4)
C14—C15 1.392 (4) C33—H33 0.9300
C15—C16 1.382 (4) C34—O3 1.368 (3)
C15—H15 0.9300 C34—C35 1.381 (4)
C16—H16 0.9300 C35—C36 1.388 (4)
C17—O1 1.441 (4) C35—H35 0.9300
C17—H17A 0.9600 C36—H36 0.9300
C17—H17B 0.9600 C37—O3 1.434 (4)
C17—H17C 0.9600 C37—H37A 0.9600
C21—C26 1.394 (4) C37—H37B 0.9600
C21—C22 1.404 (4) C37—H37C 0.9600
C21—P1 1.821 (3) P1—Pd1 2.3496 (6)
C22—C23 1.380 (4) Cl1—Pd1 2.2995 (7)
C22—H22 0.9300 Pd1—Cl1ii 2.2995 (7)
C23—C24 1.389 (4) Pd1—P1ii 2.3496 (6)
C23—H23 0.9300
C3—C1—C2 124.8 (9) C25—C26—C21 121.8 (3)
C3—C1—H1 117.6 C25—C26—H26 119.1
C2—C1—H1 117.6 C21—C26—H26 119.1
C1—C2—C3i 118.8 (8) O2—C27—H27A 109.5
C1—C2—H2 120.6 O2—C27—H27B 109.5
C3i—C2—H2 120.6 H27A—C27—H27B 109.5
C1—C3—C2i 116.3 (9) O2—C27—H27C 109.5
C1—C3—H3 121.8 H27A—C27—H27C 109.5
C2i—C3—H3 121.8 H27B—C27—H27C 109.5
C16—C11—C12 118.0 (2) C32—C31—C36 118.4 (2)
C16—C11—P1 121.9 (2) C32—C31—P1 123.13 (19)
C12—C11—P1 120.1 (2) C36—C31—P1 118.4 (2)
C13—C12—C11 120.5 (3) C33—C32—C31 120.5 (3)
C13—C12—H12 119.7 C33—C32—H32 119.8
C11—C12—H12 119.7 C31—C32—H32 119.8
C14—C13—C12 120.7 (3) C32—C33—C34 120.4 (3)
C14—C13—H13 119.6 C32—C33—H33 119.8
C12—C13—H13 119.6 C34—C33—H33 119.8
O1—C14—C13 116.0 (3) O3—C34—C35 124.8 (3)
O1—C14—C15 124.5 (3) O3—C34—C33 115.6 (3)
C13—C14—C15 119.5 (3) C35—C34—C33 119.7 (3)
C16—C15—C14 119.6 (3) C34—C35—C36 119.5 (3)
C16—C15—H15 120.2 C34—C35—H35 120.2
C14—C15—H15 120.2 C36—C35—H35 120.2
C15—C16—C11 121.6 (3) C35—C36—C31 121.4 (3)
C15—C16—H16 119.2 C35—C36—H36 119.3
C11—C16—H16 119.2 C31—C36—H36 119.3
O1—C17—H17A 109.5 O3—C37—H37A 109.5
O1—C17—H17B 109.5 O3—C37—H37B 109.5
H17A—C17—H17B 109.5 H37A—C37—H37B 109.5
O1—C17—H17C 109.5 O3—C37—H37C 109.5
H17A—C17—H17C 109.5 H37A—C37—H37C 109.5
H17B—C17—H17C 109.5 H37B—C37—H37C 109.5
C26—C21—C22 117.5 (2) C14—O1—C17 118.0 (2)
C26—C21—P1 120.6 (2) C24—O2—C27 117.4 (3)
C22—C21—P1 122.0 (2) C34—O3—C37 117.7 (3)
C23—C22—C21 120.9 (3) C31—P1—C11 106.73 (12)
C23—C22—H22 119.5 C31—P1—C21 104.02 (12)
C21—C22—H22 119.5 C11—P1—C21 104.27 (12)
C22—C23—C24 120.6 (3) C31—P1—Pd1 111.03 (8)
C22—C23—H23 119.7 C11—P1—Pd1 111.08 (9)
C24—C23—H23 119.7 C21—P1—Pd1 118.81 (9)
O2—C24—C23 115.9 (3) Cl1ii—Pd1—Cl1 180.00 (4)
O2—C24—C25 124.9 (3) Cl1ii—Pd1—P1 88.38 (2)
C23—C24—C25 119.2 (3) Cl1—Pd1—P1 91.62 (2)
C26—C25—C24 120.0 (3) Cl1ii—Pd1—P1ii 91.62 (2)
C26—C25—H25 120.0 Cl1—Pd1—P1ii 88.38 (2)
C24—C25—H25 120.0 P1—Pd1—P1ii 180.00 (3)
C3—C1—C2—C3i −0.6 (15) P1—C31—C36—C35 176.8 (2)
C2—C1—C3—C2i 0.5 (15) C13—C14—O1—C17 −177.2 (3)
C16—C11—C12—C13 −0.3 (4) C15—C14—O1—C17 2.6 (5)
P1—C11—C12—C13 −177.6 (2) C23—C24—O2—C27 176.8 (3)
C11—C12—C13—C14 0.0 (5) C25—C24—O2—C27 −2.5 (5)
C12—C13—C14—O1 −179.7 (3) C35—C34—O3—C37 8.5 (5)
C12—C13—C14—C15 0.6 (5) C33—C34—O3—C37 −171.3 (3)
O1—C14—C15—C16 179.4 (3) C32—C31—P1—C11 10.3 (3)
C13—C14—C15—C16 −0.9 (5) C36—C31—P1—C11 −166.3 (2)
C14—C15—C16—C11 0.6 (5) C32—C31—P1—C21 −99.6 (2)
C12—C11—C16—C15 0.0 (5) C36—C31—P1—C21 83.8 (2)
P1—C11—C16—C15 177.2 (3) C32—C31—P1—Pd1 131.5 (2)
C26—C21—C22—C23 −0.3 (4) C36—C31—P1—Pd1 −45.2 (2)
P1—C21—C22—C23 −179.5 (2) C16—C11—P1—C31 −80.9 (3)
C21—C22—C23—C24 −0.2 (5) C12—C11—P1—C31 96.3 (2)
C22—C23—C24—O2 −178.6 (3) C16—C11—P1—C21 28.8 (3)
C22—C23—C24—C25 0.6 (5) C12—C11—P1—C21 −154.0 (2)
O2—C24—C25—C26 178.8 (3) C16—C11—P1—Pd1 157.9 (2)
C23—C24—C25—C26 −0.4 (4) C12—C11—P1—Pd1 −24.9 (2)
C24—C25—C26—C21 −0.1 (4) C26—C21—P1—C31 170.1 (2)
C22—C21—C26—C25 0.5 (4) C22—C21—P1—C31 −10.8 (2)
P1—C21—C26—C25 179.7 (2) C26—C21—P1—C11 58.4 (2)
C36—C31—C32—C33 1.4 (4) C22—C21—P1—C11 −122.5 (2)
P1—C31—C32—C33 −175.3 (2) C26—C21—P1—Pd1 −65.9 (2)
C31—C32—C33—C34 −0.2 (5) C22—C21—P1—Pd1 113.2 (2)
C32—C33—C34—O3 177.4 (3) C31—P1—Pd1—Cl1ii −41.94 (9)
C32—C33—C34—C35 −2.4 (5) C11—P1—Pd1—Cl1ii 76.66 (10)
O3—C34—C35—C36 −176.1 (3) C21—P1—Pd1—Cl1ii −162.45 (10)
C33—C34—C35—C36 3.7 (5) C31—P1—Pd1—Cl1 138.06 (9)
C34—C35—C36—C31 −2.6 (5) C11—P1—Pd1—Cl1 −103.34 (10)
C32—C31—C36—C35 0.0 (4) C21—P1—Pd1—Cl1 17.55 (10)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2192).

References

  1. Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.
  2. Bruker (1999). SMART-NT. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2008). SAINT and APEX2 AX-Scale. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  5. Robertson, R. A. M. & Cole-Hamilton, D. J. (2002). Coord. Chem. Rev. 225, 67–90.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Van Leeuwen, P. W. N. M., Zuideveld, M. A., Swennenhuis, B. H., Freixa, Z., Kamer, P. C. J., Goubitz, K., Fraanje, J., Lutz, M. & Spek, A. L. (2003). J. Am. Chem. Soc 125, 5523–5539. [DOI] [PubMed]
  8. Westrip, S. P. (2009). publCIF. In preparation.
  9. Williams, D. B. G., Shaw, M. L., Green, M. J. & Holzapfel, C. W. (2008). Angew. Chem. Int. Ed 47, 560–563. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809046261/ez2192sup1.cif

e-65-m1536-sup1.cif (22.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809046261/ez2192Isup2.hkl

e-65-m1536-Isup2.hkl (283KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES