Abstract
Employing an isolated perfused rat heart preparation, we investigated the contribution of anaerobic metabolic energy to the performance, recoverability, and ultrastructure of the heart perfused at 32°C in 5% albumin in Krebs-Ringer Bicarbonate solution. During exposure to anoxia for 30 min, inclusion in the perfusate of the anaerobic substrate, glucose, resulted in marked improvement in electrical and mechanical performance of the heart and in enhanced recovery during the subsequent period of reoxygenation. Lactate production was fivefold greater in the glucose-supported anoxic heart than in the anoxic heart without glucose. Electron microscope sections of the hearts exposed to anoxia in the absence of glucose revealed alterations in mitochondrial morphology and dilatation of the longitudinal tubules. These morphologic changes during anoxia were averted by inclusion of glucose in the perfusion fluid. The data are consistent with the hypothesis that anaerobic energy generation plays a significant role in preserving myocardial function and structure and in promoting recoverability of the anoxic mammalian heart.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- AUSTEN W. G., GREENBERG J. J., PICCININI J. C. MYOCARDIAL FUNCTION AND CONTRACTILE FORCE AFFECTED BY GLUCOSE LOADING OF THE HEART DURING ANOXIA. Surgery. 1965 Jun;57:839–845. [PubMed] [Google Scholar]
- BALLINGER W. F., 2nd, TEMPLETON J. Y., 3rd, VOLLENWEIDER H. Anaerobic metabolism of heart. Circ Res. 1962 Oct;11:681–685. doi: 10.1161/01.res.11.4.681. [DOI] [PubMed] [Google Scholar]
- BRYANT R. E., THOMAS W. A., O'NEAL R. M. An electron microscopic study of myocardial ischemia in the rat. Circ Res. 1958 Nov;6(6):699–709. doi: 10.1161/01.res.6.6.699. [DOI] [PubMed] [Google Scholar]
- CAULFIELD J., KLIONSKY B. Myocardial ischemia and early infarction: an electron microscopic study. Am J Pathol. 1959 May-Jun;35(3):489–523. [PMC free article] [PubMed] [Google Scholar]
- COFFMAN J. D., GREGG D. E. Oxygen metabolism and oxygen debt repayment after myocardial ischemia. Am J Physiol. 1961 Nov;201:881–887. doi: 10.1152/ajplegacy.1961.201.5.881. [DOI] [PubMed] [Google Scholar]
- COSTANTIN L. L., FRANZINI-ARMSTRONG C., PODOLSKY R. J. LOCALIZATION OF CALCIUM-ACCUMULATING STRUCTURES IN STRIATED MUSCLE FIBERS. Science. 1965 Jan 8;147(3654):158–160. doi: 10.1126/science.147.3654.158. [DOI] [PubMed] [Google Scholar]
- Cohen L. S., Elliott W. C., Klein M. D., Gorlin R. Coronary heart disease. Clinical, cinearteriographic and metabolic correlations. Am J Cardiol. 1966 Feb;17(2):153–168. doi: 10.1016/0002-9149(66)90347-x. [DOI] [PubMed] [Google Scholar]
- Fahimi H. D., Karnovsky M. J. Cytochemical localization of two glycolytic dehydrogenases in white skeletal muscle. J Cell Biol. 1966 Apr;29(1):113–128. doi: 10.1083/jcb.29.1.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GUDBJARNASON S., BING R. J. The redox-potential of the lactate-pyruvate system in blood as an indicator of the functional state of cellular oxidation. Biochim Biophys Acta. 1962 Jun 18;60:158–162. doi: 10.1016/0006-3002(62)90382-7. [DOI] [PubMed] [Google Scholar]
- GUDBJARNASON S., HAYDEN R. O., WENDT V. E., STOCK T. B., BING R. J. Oxidation reduction in heart muscle. Theoretical and clinical considerations. Circulation. 1962 Nov;26:937–945. doi: 10.1161/01.cir.26.5.937. [DOI] [PubMed] [Google Scholar]
- HECHT A., KORB G., DAVID H. [Comparative histochemical, fluorescent microscopic and electronoptic studies on the early diagnosis of heart infarction in the rat]. Virchows Arch Pathol Anat Physiol Klin Med. 1961;334:267–284. [PubMed] [Google Scholar]
- HUCKABEE W. E. Relationship of pyruvate and lactate during anaerobic metabolism. V. Coronary adequacy. Am J Physiol. 1961 Jun;200:1169–1176. doi: 10.1152/ajplegacy.1961.200.6.1169. [DOI] [PubMed] [Google Scholar]
- Herman M. V., Elliott W. C., Gorlin R. An electrocardiographic, anatomic, and metabolic study of zonal myocardial ischemia in coronary heart disease. Circulation. 1967 May;35(5):834–846. doi: 10.1161/01.cir.35.5.834. [DOI] [PubMed] [Google Scholar]
- JENNINGS R. B., BAUM J. H., HERDSON P. B. FINE STRUCTURAL CHANGES IN MYOCARDIAL ISCHEMIC INJURY. Arch Pathol. 1965 Feb;79:135–143. [PubMed] [Google Scholar]
- LOCKWOOD W. R. A RELIABLE AND EASILY SECTIONED EPOXY EMBEDDING MEDIUM. Anat Rec. 1964 Oct;150:129–139. doi: 10.1002/ar.1091500204. [DOI] [PubMed] [Google Scholar]
- MARTIN A. M., Jr, HACKEL D. B., KURTZ S. M. THE ULTRASTRUCTURE OF ZONAL LESIONS OF THE MYOCARDIUM IN HEMORRHAGIC SHOCK. Am J Pathol. 1964 Jan;44:127–140. [PMC free article] [PubMed] [Google Scholar]
- Peachey L. D. The sarcoplasmic reticulum and transverse tubules of the frog's sartorius. J Cell Biol. 1965 Jun;25(3 Suppl):209–231. doi: 10.1083/jcb.25.3.209. [DOI] [PubMed] [Google Scholar]
- REEVES R. B. Energy cost of work in aerobic and anaerobic turtle heart muscle. Am J Physiol. 1963 Jul;205:17–22. doi: 10.1152/ajplegacy.1963.205.1.17. [DOI] [PubMed] [Google Scholar]
- REGEN D. M., DAVIS W. W., MORGAN H. E., PARK C. R. THE REGULATION OF HEXOKINASE AND PHOSPHOFRUCTOKINASE ACTIVITY IN HEART MUSCLE. EFFECTS OF ALLOXAN DIABETES, GROWTH HORMONE, CORTISOL, AND ANOXIA. J Biol Chem. 1964 Jan;239:43–49. [PubMed] [Google Scholar]
- REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SABATINI D. D., BENSCH K., BARRNETT R. J. Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. J Cell Biol. 1963 Apr;17:19–58. doi: 10.1083/jcb.17.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SODI-PALLARES D., TESTELLI M. R., FISHLEDER B. L., BISTENI A., MEDRANO G. A., FRIEDLAND C., DE MICHELI A. Effects of an intravenous infusion of a potassium-glucose-insulin solution on the electrocardiographic signs of myocardial infarction. A preliminary clinical report. Am J Cardiol. 1962 Feb;9:166–181. doi: 10.1016/0002-9149(62)90035-8. [DOI] [PubMed] [Google Scholar]
- WINBURY M. M. Influence of glucose on contractile activity of papillary muscle during and after anoxia. Am J Physiol. 1956 Sep;187(1):135–138. doi: 10.1152/ajplegacy.1956.187.1.135. [DOI] [PubMed] [Google Scholar]
- Winegrad S. Role of intracellular calcium movements in excitation-contraction coupling in skeletal muscle. Fed Proc. 1965 Sep-Oct;24(5):1146–1152. [PubMed] [Google Scholar]
- YANG W. C. ANAEROBIC FUNCTIONAL ACTIVITY OF ISOLATED RABBIT ATRIA. Am J Physiol. 1963 Oct;205:781–784. doi: 10.1152/ajplegacy.1963.205.4.781. [DOI] [PubMed] [Google Scholar]