Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Nov 4;65(Pt 12):o2990. doi: 10.1107/S1600536809043086

3-Hydr­oxy-N′-(2-methoxy­benzyl­idene)-2-naphthohydrazide

Yu-Mei Hao a,*
PMCID: PMC2971856  PMID: 21578730

Abstract

In the title Schiff base compound, C19H16N2O3, the dihedral angle between the mean planes of the benzene ring and the naphthyl ring system is 0.8 (2)°. The mean plane of the hydrazide group forms dihedral angles of 2.0 (2) and 2.2 (2)°, respectively, with the mean planes of the benzene ring and the naphthyl ring system. A strong intra­molecular N—H⋯O hydrogen bond is present. In the crystal, inter­molecular O—H⋯O hydrogen bonds form chains along the c axis and help to provide stability in the crystal packing.

Related literature

For the pharmaceutical and medicinal activities of Schiff bases, see: Dao et al. (2000); Sriram et al. (2006); Karthikeyan et al. (2006). For the coordination chemistry of Schiff bases, see: Ali et al. (2008); Kargar et al. (2009); Yeap et al. (2009). For the crystal structures of Schiff base compounds, see: Fun et al. (2009); Nadeem et al. (2009); Eltayeb et al. (2008); Hao (2009a ,b ). For bond-length data, see: Allen et al. (1987).graphic file with name e-65-o2990-scheme1.jpg

Experimental

Crystal data

  • C19H16N2O3

  • M r = 320.34

  • Monoclinic, Inline graphic

  • a = 7.4990 (6) Å

  • b = 15.4256 (13) Å

  • c = 13.3903 (12) Å

  • β = 96.709 (4)°

  • V = 1538.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.18 × 0.17 × 0.17 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.983, T max = 0.984

  • 9323 measured reflections

  • 3349 independent reflections

  • 2520 reflections with I > 2σ(I)

  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.119

  • S = 1.04

  • 3349 reflections

  • 223 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809043086/jj2010sup1.cif

e-65-o2990-sup1.cif (17.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809043086/jj2010Isup2.hkl

e-65-o2990-Isup2.hkl (164.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O3 0.892 (9) 1.929 (14) 2.6613 (14) 138.3 (16)
O3—H3⋯O2i 0.82 1.86 2.6689 (13) 167

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

Schiff base compounds, important to the pharmaceutical and medicinal fields (Dao et al., 2000; Sriram et al., 2006; Karthikeyan et al., 2006), have been used as versatile ligands in a variety of coordination chemistry applications (Ali et al., 2008; Kargar et al., 2009; Yeap et al., 2009). A number of contributions to these areas have been recently reported (Fun et al., 2009; Nadeem et al., 2009; Eltayeb et al., 2008). With our continued interest in the structural chararcterization of these compounds (Hao, 2009a,b) the title compound, C19H16N2O3, (I), is reported.

In the title compound,(I), the mean plane of the hydrazide group, O2/C9/N2/N1/C8, forms dihedral angles of 2.0 (2) and 2.2 (2)°, with the mean planes of the benzene (C1–C6) and naphthyl rings (C10–C19), respectively (Fig. 1). The dihedral angle between the mean planes of the benzene and naphthyl rings is 0.9 (2)°, indicating the planarity of the molecule. All the bond lengths and angles are within normal values (Allen et al., 1987). Crystal packing is enhanced by strong intramolecular N—H···O and intermolecular O—H···O hydrogen bonds (Table 1), forming infinite one-dimensional chains running along the c axis of the unit cell (Fig. 2).

Experimental

2-Methoxybenzaldehyde (0.1 mmol, 13.6 mg) and 3-hydroxy-2-naphthohydrazide (0.1 mmol) were refluxed in a 30 ml methanol solution for 30 min to give a clear colorless solution. Colorless block-shaped single crystals of the compound were formed by slow evaporation of the solvent over several days at room temperature.

Refinement

H2 was located from a difference Fourier map and refined isotropically, with the N—H distance restrained to 0.90 (1)Å, and with Uiso restrained to 0.08Å2. Other H atoms were constrained to ideal geometries, with d(C—H) = 0.93-0.96 Å, d(O—H) = 0.82 Å, and with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O3 and C7).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with 30% probability ellipsoids. A strong intramolecular N—H···O hydrogen bond is shown as a dashed line.

Fig. 2.

Fig. 2.

Molecular packing of the title compound. Strong intramolecular N—H···O and intermolecular O—H···O hydrogen bonds (shown as dashed lines) form chains of molecules along the c axis of the unit cell help to provide stability in crystal packing. .

Crystal data

C19H16N2O3 F(000) = 672
Mr = 320.34 Dx = 1.383 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3028 reflections
a = 7.4990 (6) Å θ = 2.6–30.0°
b = 15.4256 (13) Å µ = 0.10 mm1
c = 13.3903 (12) Å T = 298 K
β = 96.709 (4)° Block, yellow
V = 1538.3 (2) Å3 0.18 × 0.17 × 0.17 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer 3349 independent reflections
Radiation source: fine-focus sealed tube 2520 reflections with I > 2σ(I)
graphite Rint = 0.023
ω scans θmax = 27.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −9→9
Tmin = 0.983, Tmax = 0.984 k = −19→19
9323 measured reflections l = −17→14

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0572P)2 + 0.2454P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.001
3349 reflections Δρmax = 0.20 e Å3
223 parameters Δρmin = −0.16 e Å3
1 restraint Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0080 (13)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.12815 (15) 1.07729 (7) 0.87156 (7) 0.0541 (3)
O2 0.53258 (17) 0.75013 (6) 1.13388 (7) 0.0558 (3)
O3 0.43652 (16) 0.74188 (7) 0.81939 (7) 0.0526 (3)
H3 0.4525 0.7391 0.7599 0.079*
N1 0.36704 (15) 0.89208 (7) 1.04707 (8) 0.0409 (3)
N2 0.41657 (16) 0.82106 (7) 0.99432 (8) 0.0408 (3)
C1 0.23017 (18) 1.03244 (9) 1.03531 (10) 0.0394 (3)
C2 0.14420 (18) 1.09540 (9) 0.97151 (10) 0.0399 (3)
C3 0.0791 (2) 1.17049 (10) 1.01086 (12) 0.0502 (4)
H3A 0.0221 1.2122 0.9682 0.060*
C4 0.0989 (3) 1.18316 (11) 1.11277 (13) 0.0663 (5)
H4 0.0542 1.2334 1.1391 0.080*
C5 0.1840 (3) 1.12260 (12) 1.17626 (12) 0.0731 (6)
H5 0.1976 1.1321 1.2453 0.088*
C6 0.2491 (2) 1.04788 (10) 1.13819 (11) 0.0553 (4)
H6 0.3067 1.0071 1.1818 0.066*
C7 0.0339 (3) 1.13737 (12) 0.80462 (11) 0.0631 (5)
H7A −0.0867 1.1436 0.8210 0.095*
H7B 0.0313 1.1166 0.7369 0.095*
H7C 0.0934 1.1925 0.8107 0.095*
C8 0.29350 (19) 0.95271 (9) 0.99292 (10) 0.0422 (3)
H8 0.2795 0.9460 0.9234 0.051*
C9 0.49987 (18) 0.75329 (8) 1.04213 (9) 0.0371 (3)
C10 0.55517 (17) 0.68060 (8) 0.97827 (9) 0.0348 (3)
C11 0.52607 (18) 0.67543 (9) 0.87108 (9) 0.0381 (3)
C12 0.5848 (2) 0.60516 (9) 0.82249 (10) 0.0439 (3)
H12 0.5655 0.6030 0.7526 0.053*
C13 0.67397 (19) 0.53573 (9) 0.87531 (10) 0.0410 (3)
C14 0.7369 (2) 0.46152 (10) 0.82747 (12) 0.0561 (4)
H14 0.7206 0.4577 0.7577 0.067*
C15 0.8204 (2) 0.39614 (10) 0.88198 (14) 0.0615 (5)
H15 0.8599 0.3480 0.8490 0.074*
C16 0.8481 (2) 0.39985 (10) 0.98705 (13) 0.0558 (4)
H16 0.9060 0.3546 1.0235 0.067*
C17 0.79016 (19) 0.46984 (9) 1.03570 (11) 0.0459 (3)
H17 0.8084 0.4720 1.1056 0.055*
C18 0.70267 (17) 0.53921 (8) 0.98165 (10) 0.0370 (3)
C19 0.64040 (17) 0.61253 (9) 1.02959 (9) 0.0376 (3)
H19 0.6579 0.6150 1.0994 0.045*
H2 0.398 (2) 0.8200 (12) 0.9273 (7) 0.080*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0763 (8) 0.0503 (6) 0.0362 (5) 0.0137 (5) 0.0089 (5) 0.0025 (4)
O2 0.0943 (9) 0.0461 (6) 0.0267 (5) 0.0082 (5) 0.0067 (5) −0.0025 (4)
O3 0.0792 (8) 0.0541 (6) 0.0249 (5) 0.0150 (5) 0.0074 (5) 0.0044 (4)
N1 0.0482 (7) 0.0378 (6) 0.0375 (6) −0.0002 (5) 0.0085 (5) −0.0037 (5)
N2 0.0546 (7) 0.0381 (6) 0.0302 (6) 0.0043 (5) 0.0072 (5) −0.0025 (5)
C1 0.0418 (7) 0.0381 (7) 0.0388 (7) −0.0053 (6) 0.0063 (6) −0.0028 (6)
C2 0.0435 (8) 0.0392 (7) 0.0375 (7) −0.0052 (6) 0.0059 (6) −0.0016 (6)
C3 0.0600 (9) 0.0390 (8) 0.0502 (8) 0.0048 (7) 0.0007 (7) −0.0027 (6)
C4 0.0891 (13) 0.0515 (10) 0.0554 (10) 0.0164 (9) −0.0042 (9) −0.0200 (8)
C5 0.1083 (15) 0.0666 (12) 0.0402 (9) 0.0207 (11) −0.0087 (9) −0.0189 (8)
C6 0.0726 (11) 0.0507 (9) 0.0398 (8) 0.0091 (8) −0.0047 (7) −0.0034 (7)
C7 0.0817 (12) 0.0653 (11) 0.0412 (8) 0.0150 (9) 0.0030 (8) 0.0094 (8)
C8 0.0514 (8) 0.0423 (8) 0.0338 (7) 0.0004 (6) 0.0087 (6) 0.0007 (6)
C9 0.0471 (8) 0.0370 (7) 0.0279 (6) −0.0065 (6) 0.0071 (5) −0.0007 (5)
C10 0.0398 (7) 0.0376 (7) 0.0274 (6) −0.0055 (5) 0.0060 (5) −0.0005 (5)
C11 0.0457 (8) 0.0412 (7) 0.0279 (6) −0.0021 (6) 0.0063 (5) 0.0036 (5)
C12 0.0595 (9) 0.0474 (8) 0.0261 (6) −0.0037 (7) 0.0102 (6) −0.0022 (6)
C13 0.0468 (8) 0.0398 (7) 0.0385 (7) −0.0054 (6) 0.0137 (6) −0.0024 (6)
C14 0.0767 (11) 0.0485 (9) 0.0469 (9) −0.0011 (8) 0.0237 (8) −0.0075 (7)
C15 0.0700 (11) 0.0409 (9) 0.0788 (12) 0.0036 (8) 0.0303 (9) −0.0059 (8)
C16 0.0529 (9) 0.0421 (9) 0.0737 (11) 0.0035 (7) 0.0128 (8) 0.0066 (8)
C17 0.0446 (8) 0.0430 (8) 0.0498 (8) −0.0024 (6) 0.0039 (6) 0.0051 (6)
C18 0.0362 (7) 0.0372 (7) 0.0381 (7) −0.0056 (5) 0.0068 (5) 0.0009 (5)
C19 0.0427 (7) 0.0415 (7) 0.0280 (6) −0.0058 (6) 0.0023 (5) 0.0003 (5)

Geometric parameters (Å, °)

O1—C2 1.3587 (16) C7—H7B 0.9600
O1—C7 1.4190 (18) C7—H7C 0.9600
O2—C9 1.2253 (15) C8—H8 0.9300
O3—C11 1.3683 (16) C9—C10 1.4978 (18)
O3—H3 0.8200 C10—C19 1.3713 (18)
N1—C8 1.2693 (17) C10—C11 1.4287 (17)
N1—N2 1.3778 (15) C11—C12 1.3635 (19)
N2—C9 1.3415 (17) C12—C13 1.409 (2)
N2—H2 0.892 (9) C12—H12 0.9300
C1—C6 1.3889 (19) C13—C18 1.4160 (18)
C1—C2 1.4000 (19) C13—C14 1.419 (2)
C1—C8 1.4571 (19) C14—C15 1.355 (2)
C2—C3 1.385 (2) C14—H14 0.9300
C3—C4 1.369 (2) C15—C16 1.399 (2)
C3—H3A 0.9300 C15—H15 0.9300
C4—C5 1.369 (2) C16—C17 1.358 (2)
C4—H4 0.9300 C16—H16 0.9300
C5—C6 1.373 (2) C17—C18 1.4101 (19)
C5—H5 0.9300 C17—H17 0.9300
C6—H6 0.9300 C18—C19 1.4069 (19)
C7—H7A 0.9600 C19—H19 0.9300
C2—O1—C7 117.92 (11) O2—C9—N2 122.48 (12)
C11—O3—H3 109.5 O2—C9—C10 120.42 (12)
C8—N1—N2 114.72 (11) N2—C9—C10 117.10 (11)
C9—N2—N1 120.89 (11) C19—C10—C11 117.92 (12)
C9—N2—H2 118.3 (12) C19—C10—C9 115.53 (11)
N1—N2—H2 120.7 (12) C11—C10—C9 126.54 (12)
C6—C1—C2 118.21 (13) C12—C11—O3 121.40 (11)
C6—C1—C8 122.06 (13) C12—C11—C10 120.25 (12)
C2—C1—C8 119.71 (12) O3—C11—C10 118.34 (11)
O1—C2—C3 123.52 (13) C11—C12—C13 121.71 (12)
O1—C2—C1 116.10 (12) C11—C12—H12 119.1
C3—C2—C1 120.38 (13) C13—C12—H12 119.1
C4—C3—C2 119.77 (14) C12—C13—C18 118.92 (12)
C4—C3—H3A 120.1 C12—C13—C14 123.37 (13)
C2—C3—H3A 120.1 C18—C13—C14 117.71 (13)
C3—C4—C5 120.65 (15) C15—C14—C13 120.96 (15)
C3—C4—H4 119.7 C15—C14—H14 119.5
C5—C4—H4 119.7 C13—C14—H14 119.5
C4—C5—C6 120.15 (15) C14—C15—C16 121.09 (15)
C4—C5—H5 119.9 C14—C15—H15 119.5
C6—C5—H5 119.9 C16—C15—H15 119.5
C5—C6—C1 120.84 (15) C17—C16—C15 119.77 (15)
C5—C6—H6 119.6 C17—C16—H16 120.1
C1—C6—H6 119.6 C15—C16—H16 120.1
O1—C7—H7A 109.5 C16—C17—C18 120.85 (14)
O1—C7—H7B 109.5 C16—C17—H17 119.6
H7A—C7—H7B 109.5 C18—C17—H17 119.6
O1—C7—H7C 109.5 C19—C18—C17 122.36 (12)
H7A—C7—H7C 109.5 C19—C18—C13 118.02 (12)
H7B—C7—H7C 109.5 C17—C18—C13 119.62 (12)
N1—C8—C1 122.61 (12) C10—C19—C18 123.16 (12)
N1—C8—H8 118.7 C10—C19—H19 118.4
C1—C8—H8 118.7 C18—C19—H19 118.4

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2···O3 0.89 (1) 1.93 (1) 2.6613 (14) 138 (2)
O3—H3···O2i 0.82 1.86 2.6689 (13) 167

Symmetry codes: (i) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2010).

References

  1. Ali, H. M., Mohamed Mustafa, M. I., Rizal, M. R. & Ng, S. W. (2008). Acta Cryst. E64, m718–m719. [DOI] [PMC free article] [PubMed]
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  3. Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Dao, V.-T., Gaspard, C., Mayer, M., Werner, G. H., Nguyen, S. N. & Michelot, R. J. (2000). Eur. J. Med. Chem. 35, 805–813. [DOI] [PubMed]
  5. Eltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Adnan, R. (2008). Acta Cryst. E64, o576–o577. [DOI] [PMC free article] [PubMed]
  6. Fun, H.-K., Kia, R., Vijesh, A. M. & Isloor, A. M. (2009). Acta Cryst. E65, o349–o350. [DOI] [PMC free article] [PubMed]
  7. Hao, Y.-M. (2009a). Acta Cryst. E65, o1400. [DOI] [PMC free article] [PubMed]
  8. Hao, Y.-M. (2009b). Acta Cryst. E65, o2098. [DOI] [PMC free article] [PubMed]
  9. Kargar, H., Jamshidvand, A., Fun, H.-K. & Kia, R. (2009). Acta Cryst. E65, m403–m404. [DOI] [PMC free article] [PubMed]
  10. Karthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482–7489. [DOI] [PubMed]
  11. Nadeem, S., Shah, M. R. & VanDerveer, D. (2009). Acta Cryst. E65, o897. [DOI] [PMC free article] [PubMed]
  12. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Sriram, D., Yogeeswari, P., Myneedu, N. S. & Saraswat, V. (2006). Bioorg. Med. Chem. Lett. 16, 2127–2129. [DOI] [PubMed]
  15. Yeap, C. S., Kia, R., Kargar, H. & Fun, H.-K. (2009). Acta Cryst. E65, m570–m571. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809043086/jj2010sup1.cif

e-65-o2990-sup1.cif (17.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809043086/jj2010Isup2.hkl

e-65-o2990-Isup2.hkl (164.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES