Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Nov 14;65(Pt 12):o3096. doi: 10.1107/S160053680904745X

Methyl 4-nitro­benzoate

Hao Wu a,*, Min-Hao Xie a, Pei Zou a, Ya-Ling Liu a, Yong-Jun He a
PMCID: PMC2971861  PMID: 21578824

Abstract

In the mol­ecule of the title compound, C8H7NO4, the nitro group is approximately coplanar with the benzene ring [dihedral angle = 0.6 (1)°], while the dihedral angle between the methoxy­carbonyl group and the benzene ring is 8.8 (1)°. In the crystal structure, weak inter­molecular aromatic C—H⋯Ocarbox­yl and C—H⋯Onitro hydrogen-bonding inter­actions are present.

Related literature

For related literature on benzoates, see: Zhang (1992); Zhang et al. (1990); Zhang et al. (1995).graphic file with name e-65-o3096-scheme1.jpg

Experimental

Crystal data

  • C8H7NO4

  • M r = 181.15

  • Monoclinic, Inline graphic

  • a = 7.109 (3) Å

  • b = 17.092 (6) Å

  • c = 7.193 (3) Å

  • β = 116.292 (4)°

  • V = 783.6 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 93 K

  • 0.43 × 0.40 × 0.10 mm

Data collection

  • Rigaku SPIDER CCD-detector diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.948, T max = 0.988

  • 6176 measured reflections

  • 1787 independent reflections

  • 1445 reflections with I > 2σ(I)

  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.080

  • S = 1.00

  • 1787 reflections

  • 119 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: RAPID-AUTO (Rigaku, 2004); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680904745X/zs2018sup1.cif

e-65-o3096-sup1.cif (14.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680904745X/zs2018Isup2.hkl

e-65-o3096-Isup2.hkl (88KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O2i 0.95 2.59 3.384 (2) 141
C5—H5⋯O4ii 0.95 2.58 3.378 (2) 142

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors acknowledge financial support from Jiangsu Institute of Nuclear Medicine.

supplementary crystallographic information

Comment

Benzoates are important intermediates in the chemistry of pigments and pharmaceuticals, which are used worldwide (Zhang, 1992; Zhang et al., 1990; Zhang et al., 1995). We report here the crystal structure of methyl 4-nitrobenzoate, C8H7NO4 (I). In the structure of the title compound (Fig. 1) the bond lengths and angles are within expected ranges. The nitro substituent group is nearly coplanar with the benzene ring [dihedral angle, 0.6 (1)°], while the methoxycarbonyl group forms a dihedral angle of 8.8 (1)° with the benzene ring. In the crystal structure, adjacent molecules are linked by weak intermolecular aromatic C—H···Ocarboxyl and Onitro hydrogen bonds (Table 1).

Experimental

4-Nitrobenzoic acid (5.0 g, 30 mmol) was dissolved in hot methanol (10 ml), then six drops of concentrated sulfuric acid were added. The mixture was stirred at 353 K for 4 h, poured into ice water and stirred for 3 min. After filtering, washing with water and drying in vacuum, a white powder was then obtained (yield: 73%). The crude product was purified by recrystallization from methanol (yield: 51%). Colourless plate-shaped crystals [m.p. 369 (2) K] were obtained after several days, by slow evaporation of a 1:1 (v/v) methanol-water solution. .

Refinement

Positional parameters of all H atoms were calculated geometrically and were allowed to ride on the C atoms to which they are bonded, with Caryl—H = 0.95 Å, and Cmethyl—H = 0.98 Å, and with Uiso(H) = 1.2Ueq(C)

Figures

Fig. 1.

Fig. 1.

Atom numbering scheme for the title compound (I) with the displacement ellipsoids drawn at the 30% probability level.

Crystal data

C8H7NO4 F(000) = 376
Mr = 181.15 Dx = 1.536 Mg m3
Monoclinic, P21/c Melting point: 369(2) K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 7.109 (3) Å Cell parameters from 2257 reflections
b = 17.092 (6) Å θ = 3.2–27.4°
c = 7.193 (3) Å µ = 0.13 mm1
β = 116.292 (4)° T = 93 K
V = 783.6 (5) Å3 Plate, colorless
Z = 4 0.43 × 0.40 × 0.10 mm

Data collection

Rigaku SPIDER CCD-detector diffractometer 1787 independent reflections
Radiation source: rotating anode 1445 reflections with I > 2σ(I)
graphite Rint = 0.023
ω scans θmax = 27.5°, θmin = 3.2°
Absorption correction: ψ scan (North et al., 1968) h = −9→9
Tmin = 0.948, Tmax = 0.988 k = −20→22
6176 measured reflections l = −9→9

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0303P)2 + 0.336P] where P = (Fo2 + 2Fc2)/3
1787 reflections (Δ/σ)max < 0.001
119 parameters Δρmax = 0.31 e Å3
0 restraints Δρmin = −0.18 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.35100 (15) 0.66883 (5) 0.67509 (14) 0.0205 (2)
O2 0.30933 (15) 0.59510 (5) 0.91414 (14) 0.0216 (2)
O3 0.14128 (16) 0.28185 (5) 0.23700 (16) 0.0265 (2)
O4 0.14076 (17) 0.36321 (6) 0.00524 (15) 0.0275 (2)
N1 0.15702 (17) 0.34819 (6) 0.17881 (17) 0.0185 (2)
C1 0.25319 (19) 0.54972 (7) 0.39808 (19) 0.0155 (3)
H1 0.2638 0.6016 0.3563 0.019*
C2 0.21513 (19) 0.48826 (7) 0.2601 (2) 0.0160 (3)
H2 0.2007 0.4971 0.1240 0.019*
C3 0.19872 (19) 0.41347 (7) 0.3264 (2) 0.0155 (3)
C4 0.21927 (19) 0.39748 (7) 0.5240 (2) 0.0167 (3)
H4 0.2065 0.3456 0.5643 0.020*
C5 0.25907 (19) 0.45958 (7) 0.6606 (2) 0.0160 (3)
H5 0.2749 0.4503 0.7970 0.019*
C6 0.27592 (18) 0.53560 (7) 0.59852 (19) 0.0149 (3)
C7 0.31372 (19) 0.60132 (7) 0.7484 (2) 0.0162 (3)
C8 0.3760 (2) 0.73724 (8) 0.8036 (2) 0.0239 (3)
H8A 0.2532 0.7425 0.8310 0.029*
H8B 0.3890 0.7840 0.7313 0.029*
H8C 0.5025 0.7314 0.9351 0.029*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0302 (5) 0.0155 (5) 0.0190 (5) −0.0039 (4) 0.0139 (4) −0.0029 (4)
O2 0.0259 (5) 0.0241 (5) 0.0167 (5) −0.0026 (4) 0.0111 (4) −0.0005 (4)
O3 0.0390 (6) 0.0150 (5) 0.0290 (6) −0.0025 (4) 0.0182 (5) 0.0006 (4)
O4 0.0437 (6) 0.0225 (5) 0.0202 (5) −0.0009 (5) 0.0177 (5) −0.0016 (4)
N1 0.0196 (5) 0.0163 (5) 0.0211 (6) 0.0005 (4) 0.0102 (5) 0.0002 (4)
C1 0.0151 (6) 0.0144 (6) 0.0172 (7) −0.0002 (5) 0.0075 (5) 0.0022 (5)
C2 0.0152 (6) 0.0189 (6) 0.0142 (6) 0.0007 (5) 0.0067 (5) 0.0024 (5)
C3 0.0132 (6) 0.0160 (6) 0.0172 (6) 0.0011 (5) 0.0066 (5) −0.0008 (5)
C4 0.0152 (6) 0.0153 (6) 0.0204 (7) 0.0008 (5) 0.0088 (5) 0.0033 (5)
C5 0.0143 (6) 0.0196 (6) 0.0150 (6) 0.0012 (5) 0.0071 (5) 0.0036 (5)
C6 0.0115 (5) 0.0175 (6) 0.0152 (6) 0.0003 (5) 0.0055 (5) −0.0002 (5)
C7 0.0134 (6) 0.0181 (6) 0.0162 (6) 0.0005 (5) 0.0059 (5) 0.0017 (5)
C8 0.0339 (8) 0.0176 (6) 0.0243 (7) −0.0055 (6) 0.0167 (6) −0.0060 (5)

Geometric parameters (Å, °)

O1—C7 1.3429 (15) C2—H2 0.9500
O1—C8 1.4517 (15) C3—C4 1.3901 (18)
O2—C7 1.2111 (16) C4—C5 1.3880 (18)
O3—N1 1.2308 (14) C4—H4 0.9500
O4—N1 1.2290 (15) C5—C6 1.3962 (18)
N1—C3 1.4770 (16) C5—H5 0.9500
C1—C2 1.3872 (18) C6—C7 1.4965 (18)
C1—C6 1.3988 (18) C8—H8A 0.9800
C1—H1 0.9500 C8—H8B 0.9800
C2—C3 1.3873 (17) C8—H8C 0.9800
C7—O1—C8 115.59 (10) C4—C5—C6 120.30 (12)
O4—N1—O3 123.79 (11) C4—C5—H5 119.8
O4—N1—C3 118.11 (10) C6—C5—H5 119.8
O3—N1—C3 118.10 (11) C5—C6—C1 120.22 (12)
C2—C1—C6 120.25 (12) C5—C6—C7 118.78 (11)
C2—C1—H1 119.9 C1—C6—C7 120.98 (11)
C6—C1—H1 119.9 O2—C7—O1 123.89 (12)
C1—C2—C3 118.10 (12) O2—C7—C6 124.65 (11)
C1—C2—H2 121.0 O1—C7—C6 111.46 (11)
C3—C2—H2 121.0 O1—C8—H8A 109.5
C2—C3—C4 123.11 (12) O1—C8—H8B 109.5
C2—C3—N1 118.00 (11) H8A—C8—H8B 109.5
C4—C3—N1 118.89 (11) O1—C8—H8C 109.5
C5—C4—C3 118.01 (12) H8A—C8—H8C 109.5
C5—C4—H4 121.0 H8B—C8—H8C 109.5
C3—C4—H4 121.0
C6—C1—C2—C3 0.59 (18) C4—C5—C6—C1 −0.12 (18)
C1—C2—C3—C4 −0.22 (18) C4—C5—C6—C7 178.53 (11)
C1—C2—C3—N1 179.66 (11) C2—C1—C6—C5 −0.43 (18)
O4—N1—C3—C2 0.62 (17) C2—C1—C6—C7 −179.05 (11)
O3—N1—C3—C2 −179.62 (11) C8—O1—C7—O2 −3.17 (18)
O4—N1—C3—C4 −179.49 (12) C8—O1—C7—C6 176.11 (10)
O3—N1—C3—C4 0.27 (17) C5—C6—C7—O2 −8.15 (19)
C2—C3—C4—C5 −0.31 (18) C1—C6—C7—O2 170.48 (12)
N1—C3—C4—C5 179.80 (11) C5—C6—C7—O1 172.58 (11)
C3—C4—C5—C6 0.48 (18) C1—C6—C7—O1 −8.78 (16)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C1—H1···O1 0.95 2.39 2.7149 (19) 100
C2—H2···O2i 0.95 2.59 3.384 (2) 141
C5—H5···O4ii 0.95 2.58 3.378 (2) 142

Symmetry codes: (i) x, y, z−1; (ii) x, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2018).

References

  1. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  2. Rigaku (2004). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
  3. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  4. Zhang, S. G. (1992). Technical Book of Fine Chemicals. Beijing: Science Publishing.
  5. Zhang, A. Y., Qian, B., Min, J. & Fang, Q. X. (1995). J. Shanxi Normal Univ. (Nat. Sci. Ed.), 23, 44–47.
  6. Zhang, Z. S., Wu, J. G. & Deng, R. W. (1990). J. Lanzhou Univ. (Nat. Sci. Ed.), 26, 69–75.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680904745X/zs2018sup1.cif

e-65-o3096-sup1.cif (14.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680904745X/zs2018Isup2.hkl

e-65-o3096-Isup2.hkl (88KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES