Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1968 Mar;47(3):488–501. doi: 10.1172/JCI105745

Effect of hemorrhage and retransfusion on intrarenal distribution of blood flow in dogs

Knut Aukland 1,2, Mats Wolgast 1,2
PMCID: PMC297195  PMID: 5637138

Abstract

Distribution of intrarenal blood flow was studied in 12 dogs anesthetized with Nembutal. Medullary blood flow was estimated by local clearance of hydrogen gas from the outer medulla measured polarographically with needleshaped platinum electrodes, and by local clearance of 85Kr and mean transit time of 32P-labeled erythrocytes measured with a small semiconductor detector placed in the outer medulla. Cortical blood flow was estimated from cortical red cell transit time and from total renal blood flow measured by electromagnetic flowmeter.

Bleeding to a mean arterial pressure of 50-65 mm Hg in the course of 8-20 min reduced cortical and medullary blood flow on the average to the same extent. In half of the experiments both cortical and medullary blood flow were reduced proportionately less than mean arterial pressure during the first half hour of bleeding. Maintenance of mean arterial pressure at 50-65 mm Hg in all cases led to progressive reduction of both cortical and medullary blood flow, out of proportion to the reduction of arterial pressure. A two step bleeding procedure used in two experiments also led to uniform reduction of renal blood flow. Reinfusion of blood after 2-3 hr of hypotension increased total renal blood flow to an average of 82% and outer medullary hydrogen clearance to an average of 92% of control values. All dogs survived the experiment without evidence of renal failure.

It is concluded that hemorrhagic hypotension in dogs leads to a progressive and fairly uniform rise in renal vascular resistance, without any selective hemodynamic response in the juxtamedullary circulation.

Full text

PDF
488

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AUKLAND K., BERLINER R. W. RENAL MEDULLARY COUNTERCURRENT SYSTEM STUDIED WITH HYDROGEN GAS. Circ Res. 1964 Nov;15:430–442. doi: 10.1161/01.res.15.5.430. [DOI] [PubMed] [Google Scholar]
  2. AUKLAND K., BOWER B. F., BERLINER R. W. MEASUREMENT OF LOCAL BLOOD FLOW WITH HYDROGEN GAS. Circ Res. 1964 Feb;14:164–187. doi: 10.1161/01.res.14.2.164. [DOI] [PubMed] [Google Scholar]
  3. AXELROD D. R., PITTS R. F. Effects of hypoxia on renal tubular function. J Appl Physiol. 1952 Jan;4(7):593–601. doi: 10.1152/jappl.1952.4.7.593. [DOI] [PubMed] [Google Scholar]
  4. Aukland K., Kiil F., Kjekshus J., Semb G. Local myocardial blood flow measured by hydrogen polarography; distribution and effect of hypoxia. Acta Physiol Scand. 1967 May;70(1):99–111. doi: 10.1111/j.1748-1716.1967.tb03604.x. [DOI] [PubMed] [Google Scholar]
  5. BALSLOV J. T., JORGENSEN H. E. A survey of 499 patients with acute anuric renal insufficiency. Causes, treatment, complications and mortality. Am J Med. 1963 Jun;34:753–764. doi: 10.1016/0002-9343(63)90084-6. [DOI] [PubMed] [Google Scholar]
  6. BERLINER R. W., LEVINSKY N. G., DAVIDSON D. G., EDEN M. Dilution and concentration of the urine and the action of antidiuretic hormone. Am J Med. 1958 May;24(5):730–744. doi: 10.1016/0002-9343(58)90377-2. [DOI] [PubMed] [Google Scholar]
  7. COELHO J. B., BRADLEY S. E. FUNCTION OF THE NEPHRON POPULATION DURING HEMORRHAGIC HYPOTENSION IN THE DOG, WITH SPECIAL REFERENCE TO THE EFFECTS OF OSMOTIC DIURESIS. J Clin Invest. 1964 Mar;43:386–400. doi: 10.1172/JCI104923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chien S. Role of the sympathetic nervous system in hemorrhage. Physiol Rev. 1967 Apr;47(2):214–288. doi: 10.1152/physrev.1967.47.2.214. [DOI] [PubMed] [Google Scholar]
  9. DANIEL P. M., PEABODY C. N., PRICHARD M. M. L. Cortical ischaemia of the kidney with maintained blood flow through the medulla. Q J Exp Physiol Cogn Med Sci. 1952;37(1):11–18. doi: 10.1113/expphysiol.1952.sp000977. [DOI] [PubMed] [Google Scholar]
  10. DEETJEN P., BRECHTELSBAUER H., KRAMER K. HAEMODYNAMIK DES NIERENMARKS. 3. FARBSTOFFPASSAGEZEITEN IN AEUSSERER MARKZONE UND V. RENALIS. DIE DURCHBLUTUNGSVERTEILUNG IN DER NIERE. Pflugers Arch Gesamte Physiol Menschen Tiere. 1964 May 15;279:281–293. [PubMed] [Google Scholar]
  11. DEETJEN P., KRAMER K. [The relation of O2 consumption by the kidney to Na re-resorption]. Pflugers Arch Gesamte Physiol Menschen Tiere. 1961;273:636–650. [PubMed] [Google Scholar]
  12. EDWARDS J. G. Efferent arterioles of glomeruli in the juxtamedullary zone of the human kidney. Anat Rec. 1956 Jul;125(3):521–529. doi: 10.1002/ar.1091250309. [DOI] [PubMed] [Google Scholar]
  13. EMERY E. W., GOWENLOCK A. H., RIDDELL A. G., BLACK D. A. Intrarenal variations in haematocrit. Clin Sci. 1959 May;18:205–221. [PubMed] [Google Scholar]
  14. Fieschi C., Bozzao L., Agnoli A., Kety S. S. Misurazioni regionali del flusso sanguigno cerebrale mediante registrazioni in profondità delle curve di "clearance" di idrogeno. Boll Soc Ital Biol Sper. 1964 Dec 15;40(23):1505–1509. [PubMed] [Google Scholar]
  15. Grängsjö G., Ulfendahl H. R., Wolgast M. Determination of regional blood flow by means of small semiconductor detectors and red cells tagged with phosphorus-32. Nature. 1966 Sep 24;211(5056):1411–1412. doi: 10.1038/2111411a0. [DOI] [PubMed] [Google Scholar]
  16. HADDY F. J., SCOTT J. B., MOLNAR J. I. MECHANISM OF VOLUME REPLACEMENT AND VASCULAR CONSTRICTION FOLLOWING HEMORRHAGE. Am J Physiol. 1965 Jan;208:169–181. doi: 10.1152/ajplegacy.1965.208.1.169. [DOI] [PubMed] [Google Scholar]
  17. HERD J. A., BARGER A. C. SIMPLIFIED TECHNIQUE FOR CHRONIC CATHETERIZATION OF BLOOD VESSELS. J Appl Physiol. 1964 Jul;19:791–792. doi: 10.1152/jappl.1964.19.4.791. [DOI] [PubMed] [Google Scholar]
  18. Hársing L., Pelley K. Die Bestimmung der Nierenmarkdurchblutung auf Grund der Ablagerung und Verteilung von 86-Rb. Pflugers Arch Gesamte Physiol Menschen Tiere. 1965 Sep 15;285(4):302–312. [PubMed] [Google Scholar]
  19. JIRKA J., GANZ V., FENCL V., CORT J. H., TRAVNICEK R. Measurement of renal blood-flow in the intact kidney by local thermodilution during haemorrhagic hypotension. Lancet. 1961 Sep 23;2(7204):692–693. doi: 10.1016/s0140-6736(61)92839-2. [DOI] [PubMed] [Google Scholar]
  20. KAHN J. R., SKEGGS L. T., SHUMWAY N. P. Studies of the renal circulation. Circulation. 1950 Mar;1(3):445–453. doi: 10.1161/01.cir.1.3.445. [DOI] [PubMed] [Google Scholar]
  21. LAMPORT H. The intrinsic independence of blood flow through cortical and juxtamedullary glomeruli. J Physiol. 1950 Oct 16;111(3-4):394–398. doi: 10.1113/jphysiol.1950.sp004490. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. LILIENFIELD L. S., PORFIDO F. A., ROSE J. C. Evidence for a red cell shunting mechanism in the kidney. Circ Res. 1957 Jan;5(1):64–68. doi: 10.1161/01.res.5.1.64. [DOI] [PubMed] [Google Scholar]
  23. LILIENFIELD L. S., ROSE J. C., LASSEN N. A. Diverse distribution of red cells and albumin in the dog kidney. Circ Res. 1958 Nov;6(6):810–815. doi: 10.1161/01.res.6.6.810. [DOI] [PubMed] [Google Scholar]
  24. Ladefoged J. Measurements of the renal blood flow in man with the 133 xenon wash-out technique. A description of the method. Scand J Clin Lab Invest. 1966;18(3):299–315. doi: 10.3109/00365516609087200. [DOI] [PubMed] [Google Scholar]
  25. Lauson H. D., Bradley S. E., Cournand A., Andrews V. V. THE RENAL CIRCULATION IN SHOCK. J Clin Invest. 1944 May;23(3):381–402. doi: 10.1172/JCI101506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. MILLS L. C., STEPPACHER R. HEMODYNAMIC EFFECTS OF VASOPRESSOR AGENTS IN HEMORRHAGIC SHOCK. Am J Cardiol. 1963 Nov;12:614–618. doi: 10.1016/0002-9149(63)90245-5. [DOI] [PubMed] [Google Scholar]
  27. MOLLISON P. L., ROBINSON M. A., HUNTER D. A. Improved method of labelling red cells with radioactive phosphorus. Lancet. 1958 Apr 12;1(7024):766–769. doi: 10.1016/s0140-6736(58)91576-9. [DOI] [PubMed] [Google Scholar]
  28. MUNCK O., LASSEN N. A., DEETJEN P., KRAMER K. Evidence against renal hypoxia in acute haemorrhagic shock. Pflugers Arch Gesamte Physiol Menschen Tiere. 1962;274:356–363. doi: 10.1007/BF00363077. [DOI] [PubMed] [Google Scholar]
  29. NEELY W. A., TURNER M. D., HARDY J. D., GODFREY W. D. THE USE OF THE HYDROGEN ELECTRODE TO MEASURE TISSUE BLOOD FLOW. J Surg Res. 1965 Aug;5:363–369. doi: 10.1016/s0022-4804(65)80023-3. [DOI] [PubMed] [Google Scholar]
  30. OCHWADT B. Durchflusszeiten von Plasma und Erythrocyten, intrarenaler Hamatokrit und Widerstandsregulation der isolierten Niere. Pflugers Arch. 1957;265(2):112–116. doi: 10.1007/BF00364561. [DOI] [PubMed] [Google Scholar]
  31. PILKINGTON L. A., BINDER R., DEHAAS J. C., PITTS R. F. INTRARENAL DISTRIBUTION OF BLOOD FLOW. Am J Physiol. 1965 Jun;208:1107–1113. doi: 10.1152/ajplegacy.1965.208.6.1107. [DOI] [PubMed] [Google Scholar]
  32. SCORNIK O. A., PALADINI A. C. ANGIOTENSIN BLOOD LEVELS IN HEMORRHAGIC HYPOTENSION AND OTHER RELATED CONDITIONS. Am J Physiol. 1964 Mar;206:553–556. doi: 10.1152/ajplegacy.1964.206.3.553. [DOI] [PubMed] [Google Scholar]
  33. SELKURT E. E., ELPERS M. J. Influence of hemorrhagic shock on renal hemodynamics and osmolar clearance in the dog. Am J Physiol. 1963 Jul;205:147–152. doi: 10.1152/ajplegacy.1963.205.1.147. [DOI] [PubMed] [Google Scholar]
  34. THAYSEN J. H., LASSEN N. A., MUNCK O. Sodium transport and oxygen consumption in the mammalian kidney. Nature. 1961 Jun 3;190:919–921. doi: 10.1038/190919a0. [DOI] [PubMed] [Google Scholar]
  35. THORBURN G. D., KOPALD H. H., HERD J. A., HOLLENBERG M., O'MORCHOE C. C., BARGER A. C. INTRARENAL DISTRIBUTION OF NUTRIENT BLOOD FLOW DETERMINED WITH KRYPTON 85 IN THE UNANESTHETIZED DOG. Circ Res. 1963 Oct;13:290–307. doi: 10.1161/01.res.13.4.290. [DOI] [PubMed] [Google Scholar]
  36. THURAU K., DEETJEN P. [Diuresis in arterial pressure increases. Importance of hemodynamics of the renal medulla for urine concentration. With a theoretical contribution concerning H. Guenzler: "Counterflow systems with administration of substance through the external wall"]. Pflugers Arch Gesamte Physiol Menschen Tiere. 1962;274:567–580. [PubMed] [Google Scholar]
  37. Truniger B., Rosen S. M., Oken D. E. Renale Hämodynamik und hämorrhagische Hypotension. Klin Wochenschr. 1966 Aug 1;44(15):857–862. doi: 10.1007/BF01711961. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES