Abstract
The title compound, C9H8BrNO2, which was synthesized by the condensation of 4-bromobenzaldehyde with nitroethane, possesses a trans configuration. The dihedral angle between the benzene ring and the mean plane of the double bond is 7.31 (3)°. The crystal structure is stabilized by short intermolecular Br⋯O contacts [3.168 (4) Å].
Related literature
For general background to nitroalkenes as intermediates in the preparation of numerous products including insecticides and pharmacologically active substances, see: Boelle et al. (1998 ▶); Vallejos et al. (2005 ▶). For related structures, see: Boys et al. (1993 ▶); Mugnoli et al. (1991 ▶).
Experimental
Crystal data
C9H8BrNO2
M r = 242.07
Triclinic,
a = 6.9787 (5) Å
b = 7.4123 (5) Å
c = 9.7659 (6) Å
α = 105.435 (2)°
β = 95.087 (2)°
γ = 104.323 (2)°
V = 465.31 (5) Å3
Z = 2
Mo Kα radiation
μ = 4.38 mm−1
T = 296 K
0.21 × 0.19 × 0.08 mm
Data collection
Rigaku R-AXIS RAPID diffractometer
Absorption correction: multi-scan (ABSCOR; Higashi, 1995 ▶) T min = 0.388, T max = 0.703
4605 measured reflections
2112 independent reflections
1303 reflections with I > 2σ(I)
R int = 0.027
Refinement
R[F 2 > 2σ(F 2)] = 0.035
wR(F 2) = 0.094
S = 1.00
2112 reflections
120 parameters
H-atom parameters constrained
Δρmax = 0.46 e Å−3
Δρmin = −0.71 e Å−3
Data collection: PROCESS-AUTO (Rigaku, 2006 ▶); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2007 ▶); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 ▶); software used to prepare material for publication: WinGX (Farrugia, 1999 ▶).
Supplementary Material
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809048910/zq2017sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536809048910/zq2017Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
supplementary crystallographic information
Comment
Nitroalkenes are valuable intermediates for preparation of numerous products including insecticides and pharmacologically active substances (Boelle et al., 1998 and Vallejos et al., 2005) in which the nitro group can be easily transformed into a variety of groups with different functionalities, such as amine, carbonyl groups, etc.. In this article, the crystal structure of the title compound (E)-1-bromo-4-(2-nitroprop-1-enyl)benzene is presented (Fig. 1). The dihedral angle between the benzene ring and the mean plan of the double bond H7/C7/C8/C9 is 7.31 (3) °. The crystal structure is stabilized by short intermolecular Br—O contacts [3.168 (4) Å].
Experimental
To a solution of 4-bromobenzaldehyde (50 mmol) in AcOH (25 ml), nitroethane (75 mmol) was added, followed by butylamine (100 mmol, 7.4 ml). The mixture was sonicated at 333 K, until TLC showed full conversion of aldehyde. The mixture was poured into ice water, the precipitate was filtered off, washed with water and recrystallized from EtOH to give (E)-1-bromo-4-(2-nitroprop-1-enyl)benzene. Suitable crystals of the title compound were obtained by slow evaporation of an ethanol solution at room temperature.
Refinement
All carbon-bonded H atoms were placed in calculated positions with C—H = 0.93 Å (aromatic), C—H = 0.96 Å (sp) and refined using a riding model, with Uiso(H) = 1.2eq(C).
Figures
Fig. 1.
The asymmetric unit of the title compound (I) with the atomic labeling scheme. Displacement ellipsoids are drawn at the 40% probability level.
Fig. 2.
Molecular packing of the title compound (I) viewed down the a axis.
Crystal data
| C9H8BrNO2 | Z = 2 |
| Mr = 242.07 | F(000) = 240 |
| Triclinic, P1 | Dx = 1.728 Mg m−3 |
| Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
| a = 6.9787 (5) Å | Cell parameters from 3184 reflections |
| b = 7.4123 (5) Å | θ = 3.1–27.4° |
| c = 9.7659 (6) Å | µ = 4.38 mm−1 |
| α = 105.435 (2)° | T = 296 K |
| β = 95.087 (2)° | Platelet, yellow |
| γ = 104.323 (2)° | 0.21 × 0.19 × 0.08 mm |
| V = 465.31 (5) Å3 |
Data collection
| Rigaku R-AXIS RAPID diffractometer | 2112 independent reflections |
| Radiation source: rolling anode | 1303 reflections with I > 2σ(I) |
| graphite | Rint = 0.027 |
| Detector resolution: 10.00 pixels mm-1 | θmax = 27.4°, θmin = 3.1° |
| ω scans | h = −9→9 |
| Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | k = −9→8 |
| Tmin = 0.388, Tmax = 0.703 | l = −12→12 |
| 4605 measured reflections |
Refinement
| Refinement on F2 | Secondary atom site location: difference Fourier map |
| Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
| R[F2 > 2σ(F2)] = 0.035 | H-atom parameters constrained |
| wR(F2) = 0.094 | w = 1/[σ2(Fo2) + (0.012P)2 + 0.950P] where P = (Fo2 + 2Fc2)/3 |
| S = 1.00 | (Δ/σ)max < 0.001 |
| 2112 reflections | Δρmax = 0.46 e Å−3 |
| 120 parameters | Δρmin = −0.71 e Å−3 |
| 0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
| Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0149 (13) |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Br1 | 0.90197 (7) | 0.24927 (9) | 0.09032 (5) | 0.0754 (2) | |
| N1 | 0.2076 (6) | 0.2311 (6) | 0.7592 (4) | 0.0660 (10) | |
| O1 | 0.2341 (5) | 0.2609 (6) | 0.8891 (4) | 0.0937 (12) | |
| O2 | 0.0411 (5) | 0.1719 (7) | 0.6875 (4) | 0.1038 (14) | |
| C8 | 0.3870 (6) | 0.2659 (6) | 0.6875 (4) | 0.0514 (9) | |
| C1 | 0.7334 (6) | 0.2408 (6) | 0.2327 (4) | 0.0567 (10) | |
| C5 | 0.4097 (6) | 0.1824 (7) | 0.2989 (4) | 0.0631 (12) | |
| H5 | 0.2712 | 0.1456 | 0.2720 | 0.076* | |
| C7 | 0.3513 (6) | 0.2154 (7) | 0.5461 (4) | 0.0594 (11) | |
| H7 | 0.2165 | 0.1633 | 0.5051 | 0.071* | |
| C4 | 0.4907 (6) | 0.2283 (6) | 0.4430 (4) | 0.0524 (10) | |
| C3 | 0.6976 (6) | 0.2770 (8) | 0.4767 (5) | 0.0776 (15) | |
| H3 | 0.7569 | 0.3055 | 0.5720 | 0.093* | |
| C9 | 0.5777 (7) | 0.3501 (9) | 0.7900 (5) | 0.0825 (16) | |
| H9A | 0.6349 | 0.2476 | 0.7987 | 0.099* | |
| H9B | 0.5528 | 0.4165 | 0.8825 | 0.099* | |
| H9C | 0.6694 | 0.4409 | 0.7555 | 0.099* | |
| C2 | 0.8179 (6) | 0.2840 (8) | 0.3723 (5) | 0.0742 (14) | |
| H2 | 0.9565 | 0.3183 | 0.3976 | 0.089* | |
| C6 | 0.5299 (6) | 0.1901 (7) | 0.1943 (4) | 0.0680 (13) | |
| H6 | 0.4727 | 0.1609 | 0.0985 | 0.082* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Br1 | 0.0560 (3) | 0.1058 (5) | 0.0598 (3) | 0.0136 (2) | 0.0153 (2) | 0.0237 (3) |
| N1 | 0.055 (2) | 0.081 (3) | 0.055 (2) | 0.0147 (19) | 0.0103 (18) | 0.014 (2) |
| O1 | 0.076 (2) | 0.142 (4) | 0.056 (2) | 0.019 (2) | 0.0205 (17) | 0.025 (2) |
| O2 | 0.0467 (19) | 0.173 (4) | 0.074 (2) | 0.017 (2) | 0.0114 (17) | 0.020 (2) |
| C8 | 0.045 (2) | 0.056 (3) | 0.050 (2) | 0.0112 (18) | 0.0092 (17) | 0.0142 (19) |
| C1 | 0.052 (2) | 0.066 (3) | 0.052 (2) | 0.013 (2) | 0.0100 (19) | 0.019 (2) |
| C5 | 0.042 (2) | 0.087 (3) | 0.050 (2) | 0.012 (2) | −0.0015 (18) | 0.012 (2) |
| C7 | 0.043 (2) | 0.077 (3) | 0.051 (2) | 0.015 (2) | 0.0032 (17) | 0.012 (2) |
| C4 | 0.042 (2) | 0.064 (3) | 0.048 (2) | 0.0140 (19) | 0.0039 (16) | 0.013 (2) |
| C3 | 0.050 (2) | 0.134 (5) | 0.044 (2) | 0.024 (3) | −0.0013 (19) | 0.022 (3) |
| C9 | 0.052 (3) | 0.122 (5) | 0.055 (3) | 0.008 (3) | 0.003 (2) | 0.015 (3) |
| C2 | 0.038 (2) | 0.123 (4) | 0.055 (3) | 0.018 (2) | 0.0015 (19) | 0.022 (3) |
| C6 | 0.047 (2) | 0.103 (4) | 0.045 (2) | 0.013 (2) | 0.0013 (18) | 0.017 (2) |
Geometric parameters (Å, °)
| Br1—C1 | 1.902 (4) | C7—C4 | 1.466 (5) |
| N1—O2 | 1.214 (5) | C7—H7 | 0.9300 |
| N1—O1 | 1.217 (4) | C4—C3 | 1.385 (6) |
| N1—C8 | 1.488 (5) | C3—C2 | 1.380 (6) |
| C8—C7 | 1.314 (5) | C3—H3 | 0.9300 |
| C8—C9 | 1.478 (6) | C9—H9A | 0.9600 |
| C1—C2 | 1.357 (6) | C9—H9B | 0.9600 |
| C1—C6 | 1.366 (6) | C9—H9C | 0.9600 |
| C5—C6 | 1.381 (6) | C2—H2 | 0.9300 |
| C5—C4 | 1.388 (5) | C6—H6 | 0.9300 |
| C5—H5 | 0.9300 | ||
| O2—N1—O1 | 122.1 (4) | C5—C4—C7 | 117.7 (4) |
| O2—N1—C8 | 119.7 (4) | C2—C3—C4 | 121.6 (4) |
| O1—N1—C8 | 118.2 (4) | C2—C3—H3 | 119.2 |
| C7—C8—C9 | 130.9 (4) | C4—C3—H3 | 119.2 |
| C7—C8—N1 | 115.8 (4) | C8—C9—H9A | 109.5 |
| C9—C8—N1 | 113.2 (3) | C8—C9—H9B | 109.5 |
| C2—C1—C6 | 120.5 (4) | H9A—C9—H9B | 109.5 |
| C2—C1—Br1 | 119.2 (3) | C8—C9—H9C | 109.5 |
| C6—C1—Br1 | 120.3 (3) | H9A—C9—H9C | 109.5 |
| C6—C5—C4 | 121.6 (4) | H9B—C9—H9C | 109.5 |
| C6—C5—H5 | 119.2 | C1—C2—C3 | 119.9 (4) |
| C4—C5—H5 | 119.2 | C1—C2—H2 | 120.0 |
| C8—C7—C4 | 130.1 (4) | C3—C2—H2 | 120.0 |
| C8—C7—H7 | 115.0 | C1—C6—C5 | 119.5 (4) |
| C4—C7—H7 | 115.0 | C1—C6—H6 | 120.2 |
| C3—C4—C5 | 116.9 (4) | C5—C6—H6 | 120.2 |
| C3—C4—C7 | 125.4 (4) | ||
| O2—N1—C8—C7 | −4.8 (6) | C8—C7—C4—C5 | −173.5 (5) |
| O1—N1—C8—C7 | 174.2 (5) | C5—C4—C3—C2 | 1.5 (8) |
| O2—N1—C8—C9 | 176.1 (5) | C7—C4—C3—C2 | 179.4 (5) |
| O1—N1—C8—C9 | −4.9 (6) | C6—C1—C2—C3 | −0.1 (8) |
| C9—C8—C7—C4 | −0.7 (9) | Br1—C1—C2—C3 | −179.5 (4) |
| N1—C8—C7—C4 | −179.7 (4) | C4—C3—C2—C1 | −0.6 (8) |
| C6—C5—C4—C3 | −1.8 (7) | C2—C1—C6—C5 | −0.2 (8) |
| C6—C5—C4—C7 | −179.8 (4) | Br1—C1—C6—C5 | 179.2 (4) |
| C8—C7—C4—C3 | 8.7 (8) | C4—C5—C6—C1 | 1.1 (8) |
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZQ2017).
References
- Boelle, J., Schneider, R., Gerardin, P., Loubinoux, B., Maienfish, P. & Rindlisbacher, A. (1998). Pestic. Sci. 54, 304–307.
- Boys, D., Manríquez, V. & Cassels, B. K. (1993). Acta Cryst. C49, 387–388.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Mugnoli, A., Pani, M., Carnasciali, M. M. & Speranza, G. (1991). Z. Kristallogr. 196, 291–293.
- Rigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2007). CrystalStructure. Rigaku/MSC, The Woodlands, texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Vallejos, G., Fierro, A., Rezende, M. C., Sepulveda-Boza, S. & Reyes-Parada, M. (2005). Bioorg. Med. Chem. 13, 4450–4457. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809048910/zq2017sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536809048910/zq2017Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


