Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Nov 21;65(Pt 12):o3174. doi: 10.1107/S1600536809048910

(E)-1-Bromo-4-(2-nitro­prop-1-en­yl)benzene

Bailin Li a,*
PMCID: PMC2971981  PMID: 21578889

Abstract

The title compound, C9H8BrNO2, which was synthesized by the condensation of 4-bromo­benzaldehyde with nitro­ethane, possesses a trans configuration. The dihedral angle between the benzene ring and the mean plane of the double bond is 7.31 (3)°. The crystal structure is stabilized by short inter­molecular Br⋯O contacts [3.168 (4) Å].

Related literature

For general background to nitro­alkenes as inter­mediates in the preparation of numerous products including insecticides and pharmacologically active substances, see: Boelle et al. (1998); Vallejos et al. (2005). For related structures, see: Boys et al. (1993); Mugnoli et al. (1991).graphic file with name e-65-o3174-scheme1.jpg

Experimental

Crystal data

  • C9H8BrNO2

  • M r = 242.07

  • Triclinic, Inline graphic

  • a = 6.9787 (5) Å

  • b = 7.4123 (5) Å

  • c = 9.7659 (6) Å

  • α = 105.435 (2)°

  • β = 95.087 (2)°

  • γ = 104.323 (2)°

  • V = 465.31 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.38 mm−1

  • T = 296 K

  • 0.21 × 0.19 × 0.08 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.388, T max = 0.703

  • 4605 measured reflections

  • 2112 independent reflections

  • 1303 reflections with I > 2σ(I)

  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.094

  • S = 1.00

  • 2112 reflections

  • 120 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.71 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 2006); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809048910/zq2017sup1.cif

e-65-o3174-sup1.cif (14.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809048910/zq2017Isup2.hkl

e-65-o3174-Isup2.hkl (101.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Nitroalkenes are valuable intermediates for preparation of numerous products including insecticides and pharmacologically active substances (Boelle et al., 1998 and Vallejos et al., 2005) in which the nitro group can be easily transformed into a variety of groups with different functionalities, such as amine, carbonyl groups, etc.. In this article, the crystal structure of the title compound (E)-1-bromo-4-(2-nitroprop-1-enyl)benzene is presented (Fig. 1). The dihedral angle between the benzene ring and the mean plan of the double bond H7/C7/C8/C9 is 7.31 (3) °. The crystal structure is stabilized by short intermolecular Br—O contacts [3.168 (4) Å].

Experimental

To a solution of 4-bromobenzaldehyde (50 mmol) in AcOH (25 ml), nitroethane (75 mmol) was added, followed by butylamine (100 mmol, 7.4 ml). The mixture was sonicated at 333 K, until TLC showed full conversion of aldehyde. The mixture was poured into ice water, the precipitate was filtered off, washed with water and recrystallized from EtOH to give (E)-1-bromo-4-(2-nitroprop-1-enyl)benzene. Suitable crystals of the title compound were obtained by slow evaporation of an ethanol solution at room temperature.

Refinement

All carbon-bonded H atoms were placed in calculated positions with C—H = 0.93 Å (aromatic), C—H = 0.96 Å (sp) and refined using a riding model, with Uiso(H) = 1.2eq(C).

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound (I) with the atomic labeling scheme. Displacement ellipsoids are drawn at the 40% probability level.

Fig. 2.

Fig. 2.

Molecular packing of the title compound (I) viewed down the a axis.

Crystal data

C9H8BrNO2 Z = 2
Mr = 242.07 F(000) = 240
Triclinic, P1 Dx = 1.728 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 6.9787 (5) Å Cell parameters from 3184 reflections
b = 7.4123 (5) Å θ = 3.1–27.4°
c = 9.7659 (6) Å µ = 4.38 mm1
α = 105.435 (2)° T = 296 K
β = 95.087 (2)° Platelet, yellow
γ = 104.323 (2)° 0.21 × 0.19 × 0.08 mm
V = 465.31 (5) Å3

Data collection

Rigaku R-AXIS RAPID diffractometer 2112 independent reflections
Radiation source: rolling anode 1303 reflections with I > 2σ(I)
graphite Rint = 0.027
Detector resolution: 10.00 pixels mm-1 θmax = 27.4°, θmin = 3.1°
ω scans h = −9→9
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) k = −9→8
Tmin = 0.388, Tmax = 0.703 l = −12→12
4605 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035 H-atom parameters constrained
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.012P)2 + 0.950P] where P = (Fo2 + 2Fc2)/3
S = 1.00 (Δ/σ)max < 0.001
2112 reflections Δρmax = 0.46 e Å3
120 parameters Δρmin = −0.71 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0149 (13)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.90197 (7) 0.24927 (9) 0.09032 (5) 0.0754 (2)
N1 0.2076 (6) 0.2311 (6) 0.7592 (4) 0.0660 (10)
O1 0.2341 (5) 0.2609 (6) 0.8891 (4) 0.0937 (12)
O2 0.0411 (5) 0.1719 (7) 0.6875 (4) 0.1038 (14)
C8 0.3870 (6) 0.2659 (6) 0.6875 (4) 0.0514 (9)
C1 0.7334 (6) 0.2408 (6) 0.2327 (4) 0.0567 (10)
C5 0.4097 (6) 0.1824 (7) 0.2989 (4) 0.0631 (12)
H5 0.2712 0.1456 0.2720 0.076*
C7 0.3513 (6) 0.2154 (7) 0.5461 (4) 0.0594 (11)
H7 0.2165 0.1633 0.5051 0.071*
C4 0.4907 (6) 0.2283 (6) 0.4430 (4) 0.0524 (10)
C3 0.6976 (6) 0.2770 (8) 0.4767 (5) 0.0776 (15)
H3 0.7569 0.3055 0.5720 0.093*
C9 0.5777 (7) 0.3501 (9) 0.7900 (5) 0.0825 (16)
H9A 0.6349 0.2476 0.7987 0.099*
H9B 0.5528 0.4165 0.8825 0.099*
H9C 0.6694 0.4409 0.7555 0.099*
C2 0.8179 (6) 0.2840 (8) 0.3723 (5) 0.0742 (14)
H2 0.9565 0.3183 0.3976 0.089*
C6 0.5299 (6) 0.1901 (7) 0.1943 (4) 0.0680 (13)
H6 0.4727 0.1609 0.0985 0.082*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0560 (3) 0.1058 (5) 0.0598 (3) 0.0136 (2) 0.0153 (2) 0.0237 (3)
N1 0.055 (2) 0.081 (3) 0.055 (2) 0.0147 (19) 0.0103 (18) 0.014 (2)
O1 0.076 (2) 0.142 (4) 0.056 (2) 0.019 (2) 0.0205 (17) 0.025 (2)
O2 0.0467 (19) 0.173 (4) 0.074 (2) 0.017 (2) 0.0114 (17) 0.020 (2)
C8 0.045 (2) 0.056 (3) 0.050 (2) 0.0112 (18) 0.0092 (17) 0.0142 (19)
C1 0.052 (2) 0.066 (3) 0.052 (2) 0.013 (2) 0.0100 (19) 0.019 (2)
C5 0.042 (2) 0.087 (3) 0.050 (2) 0.012 (2) −0.0015 (18) 0.012 (2)
C7 0.043 (2) 0.077 (3) 0.051 (2) 0.015 (2) 0.0032 (17) 0.012 (2)
C4 0.042 (2) 0.064 (3) 0.048 (2) 0.0140 (19) 0.0039 (16) 0.013 (2)
C3 0.050 (2) 0.134 (5) 0.044 (2) 0.024 (3) −0.0013 (19) 0.022 (3)
C9 0.052 (3) 0.122 (5) 0.055 (3) 0.008 (3) 0.003 (2) 0.015 (3)
C2 0.038 (2) 0.123 (4) 0.055 (3) 0.018 (2) 0.0015 (19) 0.022 (3)
C6 0.047 (2) 0.103 (4) 0.045 (2) 0.013 (2) 0.0013 (18) 0.017 (2)

Geometric parameters (Å, °)

Br1—C1 1.902 (4) C7—C4 1.466 (5)
N1—O2 1.214 (5) C7—H7 0.9300
N1—O1 1.217 (4) C4—C3 1.385 (6)
N1—C8 1.488 (5) C3—C2 1.380 (6)
C8—C7 1.314 (5) C3—H3 0.9300
C8—C9 1.478 (6) C9—H9A 0.9600
C1—C2 1.357 (6) C9—H9B 0.9600
C1—C6 1.366 (6) C9—H9C 0.9600
C5—C6 1.381 (6) C2—H2 0.9300
C5—C4 1.388 (5) C6—H6 0.9300
C5—H5 0.9300
O2—N1—O1 122.1 (4) C5—C4—C7 117.7 (4)
O2—N1—C8 119.7 (4) C2—C3—C4 121.6 (4)
O1—N1—C8 118.2 (4) C2—C3—H3 119.2
C7—C8—C9 130.9 (4) C4—C3—H3 119.2
C7—C8—N1 115.8 (4) C8—C9—H9A 109.5
C9—C8—N1 113.2 (3) C8—C9—H9B 109.5
C2—C1—C6 120.5 (4) H9A—C9—H9B 109.5
C2—C1—Br1 119.2 (3) C8—C9—H9C 109.5
C6—C1—Br1 120.3 (3) H9A—C9—H9C 109.5
C6—C5—C4 121.6 (4) H9B—C9—H9C 109.5
C6—C5—H5 119.2 C1—C2—C3 119.9 (4)
C4—C5—H5 119.2 C1—C2—H2 120.0
C8—C7—C4 130.1 (4) C3—C2—H2 120.0
C8—C7—H7 115.0 C1—C6—C5 119.5 (4)
C4—C7—H7 115.0 C1—C6—H6 120.2
C3—C4—C5 116.9 (4) C5—C6—H6 120.2
C3—C4—C7 125.4 (4)
O2—N1—C8—C7 −4.8 (6) C8—C7—C4—C5 −173.5 (5)
O1—N1—C8—C7 174.2 (5) C5—C4—C3—C2 1.5 (8)
O2—N1—C8—C9 176.1 (5) C7—C4—C3—C2 179.4 (5)
O1—N1—C8—C9 −4.9 (6) C6—C1—C2—C3 −0.1 (8)
C9—C8—C7—C4 −0.7 (9) Br1—C1—C2—C3 −179.5 (4)
N1—C8—C7—C4 −179.7 (4) C4—C3—C2—C1 −0.6 (8)
C6—C5—C4—C3 −1.8 (7) C2—C1—C6—C5 −0.2 (8)
C6—C5—C4—C7 −179.8 (4) Br1—C1—C6—C5 179.2 (4)
C8—C7—C4—C3 8.7 (8) C4—C5—C6—C1 1.1 (8)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZQ2017).

References

  1. Boelle, J., Schneider, R., Gerardin, P., Loubinoux, B., Maienfish, P. & Rindlisbacher, A. (1998). Pestic. Sci. 54, 304–307.
  2. Boys, D., Manríquez, V. & Cassels, B. K. (1993). Acta Cryst. C49, 387–388.
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  5. Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
  6. Mugnoli, A., Pani, M., Carnasciali, M. M. & Speranza, G. (1991). Z. Kristallogr. 196, 291–293.
  7. Rigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
  8. Rigaku/MSC (2007). CrystalStructure. Rigaku/MSC, The Woodlands, texas, USA.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Vallejos, G., Fierro, A., Rezende, M. C., Sepulveda-Boza, S. & Reyes-Parada, M. (2005). Bioorg. Med. Chem. 13, 4450–4457. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809048910/zq2017sup1.cif

e-65-o3174-sup1.cif (14.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809048910/zq2017Isup2.hkl

e-65-o3174-Isup2.hkl (101.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES