Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Nov 7;65(Pt 12):o3016. doi: 10.1107/S1600536809045863

3-(3-Methyl­phen­yl)-2-thioxo-1,3-thia­zolidin-4-one

Durre Shahwar a, M Nawaz Tahir b,a,*, Asma Yasmeen a, Naeem Ahmad a, Muhammad Akmal Khan a
PMCID: PMC2972004  PMID: 21578753

Abstract

In the title compound, C10H9NOS2, the dihedral angle between the rhodanine (2-thioxo-1,3-thia­zolidin-4-one) and 3-methyl­phenyl rings is 83.30 (3)°. The H atoms of the methyl group are disordered over two set of sites with an occupancy ratio of 0.58 (3):0.42 (3). In the crystal, the mol­ecules inter­act by way of C—H⋯π and C=O⋯π inter­actions.

Related literature

For related structures, see: Shahwar et al. (2009a ,b ,c ,d ,e ).graphic file with name e-65-o3016-scheme1.jpg

Experimental

Crystal data

  • C10H9NOS2

  • M r = 223.3

  • Monoclinic, Inline graphic

  • a = 8.0775 (3) Å

  • b = 6.4058 (2) Å

  • c = 21.4715 (7) Å

  • β = 106.068 (2)°

  • V = 1067.59 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.46 mm−1

  • T = 296 K

  • 0.32 × 0.24 × 0.22 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.849, T max = 0.897

  • 11841 measured reflections

  • 2666 independent reflections

  • 2116 reflections with I > 2σ(I)

  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.087

  • S = 1.03

  • 2666 reflections

  • 129 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809045863/hb5208sup1.cif

e-65-o3016-sup1.cif (16.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809045863/hb5208Isup2.hkl

e-65-o3016-Isup2.hkl (128.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8BCg2i 0.97 2.59 3.5219 (17) 162
C7—O1⋯Cg1i 1.20 (1) 2.94 (1) 4.1070 (16) 164 (1)

Symmetry code: (i) Inline graphic. Cg1 and Cg2 are the centroids of the S1/C8/C7/N1/C9 and C1—C6 rings, respectively.

Acknowledgments

DS is grateful to Government College University, Lahore, for providing funds under the GCU funded Research Projects Programme.

supplementary crystallographic information

Comment

We have reported the synthesis and crystal structures of various rhodanine derivatives such as (II) (5Z)-5-(2-Hydroxybenzylidene)-3-phenyl-2-thioxo-1,3-thiazolidin-4-one (Shahwar et al., 2009a), (III) (5E)-5-(4-Hydroxy-3-methoxybenzylidene)-2-thioxo-1, 3-thiazolidin-4-one methanol monosolvate (Shahwar et al., 2009b), (IV) (5Z)-5-(2-Hydroxybenzylidene)-2-thioxo-1,3-thiazolidin-4-one methanol hemisolvate (Shahwar et al., 2009c), (V) 3-(2-Methylphenyl)-2-thioxo-1,3-thiazolidin-4-one (Shahwar et al., 2009d) and (VI) 3-Cyclohexyl-2-thioxo-1,3-thiazolidin-4-one (Shahwar et al., 2009e). The purpose of synthesis of differet rhodanine derivatives is to study the biological activities. The title compound (I, Fig. 1) is being reported in this context.

In (I), the 3-methylphenyl A (C1–C6/C10) and the rhodanine group B (N1/C7/C8/S1/C9/O1/S2) are planar with maximum r. m. s. deviations of 0.0068 and 0.0171 Å respectively, from their mean square planes. The dihedral angle between A/B is 83.30 (3)°. The H-atoms of the methyl moiety are disordered over two set of sites with occupancy ratio of 0.58 (3):0.42 (3) in the monomers. There exist C–H···π and C==O···π interactions (Table 1) which stabilize the molecules.

Experimental

The title compound was prepared by a three step reaction procedure. In the first step meta toluidine aniline (10.7 g, 0.1 mol) and triethylamine (50.5 g, 0.5 mol) were stirred in ethanol (20 ml) followed by dropwise addition of CS2 (15.2 g, 0.2 mol) while keeping the flask in an ice bath. The precipitate obtained were filtered off and washed with diethyl ether.

In second step, a solution of sodium chloroacetate (11.6 g, 0.1 mol) and chloroacetic acid (18.9 g, 0.2 mol) was prepared in 50 ml distilled water. To this solution the precipitates obtained in first step were added gradually and stirred at 273 K. This mixture was stirred untill it turned light yellow.

In third step the yellow mixture was mixed in 140 ml hot (363–368 K) hydrochloric acid (6 N) and stirred for five minutes to obtain colorless crystalline precipitates. These precipitates were recrystalized in chloroform to get light yellow prisms of (I).

Refinement

The H-atoms were positioned geometrically (C–H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Figures

Fig. 1.

Fig. 1.

View of (I) with displacement ellipsoids drawn at the 50% probability level.

Crystal data

C10H9NOS2 F(000) = 464
Mr = 223.3 Dx = 1.389 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2666 reflections
a = 8.0775 (3) Å θ = 2.6–28.3°
b = 6.4058 (2) Å µ = 0.46 mm1
c = 21.4715 (7) Å T = 296 K
β = 106.068 (2)° Prism, light yellow
V = 1067.59 (6) Å3 0.32 × 0.24 × 0.22 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer 2666 independent reflections
Radiation source: fine-focus sealed tube 2116 reflections with I > 2σ(I)
graphite Rint = 0.026
Detector resolution: 7.40 pixels mm-1 θmax = 28.3°, θmin = 2.6°
ω scans h = −10→10
Absorption correction: multi-scan (SADABS; Bruker, 2005) k = −8→8
Tmin = 0.849, Tmax = 0.897 l = −28→28
11841 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0399P)2 + 0.2635P] where P = (Fo2 + 2Fc2)/3
2666 reflections (Δ/σ)max < 0.001
129 parameters Δρmax = 0.27 e Å3
0 restraints Δρmin = −0.22 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
S1 0.90452 (5) 0.42703 (7) 0.26996 (2) 0.0484 (1)
S2 0.85641 (6) 0.38555 (7) 0.12935 (2) 0.0511 (2)
O1 0.54228 (16) 0.04248 (19) 0.26950 (6) 0.0537 (4)
N1 0.67528 (14) 0.18699 (18) 0.19889 (5) 0.0324 (3)
C1 0.56186 (18) 0.0913 (2) 0.14230 (7) 0.0337 (4)
C2 0.5937 (2) −0.1103 (2) 0.12588 (8) 0.0419 (5)
C3 0.4818 (2) −0.1972 (3) 0.07148 (8) 0.0501 (6)
C4 0.3436 (2) −0.0858 (3) 0.03533 (8) 0.0518 (6)
C5 0.3103 (2) 0.1156 (3) 0.05186 (7) 0.0461 (5)
C6 0.42217 (18) 0.2036 (3) 0.10687 (7) 0.0391 (5)
C7 0.65129 (19) 0.1553 (2) 0.26005 (7) 0.0363 (4)
C8 0.77847 (19) 0.2774 (3) 0.31088 (7) 0.0410 (5)
C9 0.80207 (17) 0.3243 (2) 0.19488 (7) 0.0342 (4)
C10 0.1604 (2) 0.2403 (4) 0.01220 (10) 0.0730 (8)
H2 0.68758 −0.18517 0.15069 0.0502*
H3 0.50036 −0.33254 0.05925 0.0602*
H4 0.27025 −0.14709 −0.00126 0.0621*
H6 0.40257 0.33792 0.11964 0.0469*
H8A 0.85188 0.18403 0.34219 0.0492*
H8B 0.71912 0.36922 0.33352 0.0492*
H10A 0.06610 0.23026 0.03116 0.1095* 0.58 (3)
H10B 0.12550 0.18649 −0.03121 0.1095* 0.58 (3)
H10C 0.19388 0.38382 0.01132 0.1095* 0.58 (3)
H10D 0.19424 0.31376 −0.02127 0.1095* 0.42 (3)
H10E 0.12470 0.33875 0.03963 0.1095* 0.42 (3)
H10F 0.06653 0.14807 −0.00708 0.1095* 0.42 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0426 (2) 0.0565 (3) 0.0445 (2) −0.0166 (2) 0.0092 (2) −0.0128 (2)
S2 0.0545 (3) 0.0578 (3) 0.0449 (2) −0.0180 (2) 0.0202 (2) −0.0016 (2)
O1 0.0636 (8) 0.0544 (7) 0.0476 (7) −0.0196 (6) 0.0227 (6) 0.0006 (5)
N1 0.0328 (6) 0.0310 (5) 0.0331 (6) −0.0024 (5) 0.0088 (5) −0.0023 (5)
C1 0.0341 (7) 0.0342 (7) 0.0343 (7) −0.0077 (6) 0.0120 (6) −0.0027 (6)
C2 0.0433 (8) 0.0364 (8) 0.0482 (9) −0.0029 (6) 0.0166 (7) −0.0041 (7)
C3 0.0592 (10) 0.0442 (9) 0.0529 (10) −0.0167 (8) 0.0253 (8) −0.0169 (8)
C4 0.0521 (10) 0.0673 (11) 0.0375 (8) −0.0261 (9) 0.0150 (7) −0.0131 (8)
C5 0.0379 (8) 0.0627 (10) 0.0371 (8) −0.0096 (7) 0.0094 (6) 0.0066 (7)
C6 0.0385 (8) 0.0399 (8) 0.0395 (8) −0.0039 (6) 0.0119 (6) 0.0011 (6)
C7 0.0395 (8) 0.0343 (7) 0.0359 (7) 0.0028 (6) 0.0118 (6) 0.0018 (6)
C8 0.0388 (8) 0.0481 (9) 0.0351 (7) 0.0015 (7) 0.0087 (6) −0.0026 (7)
C9 0.0314 (7) 0.0319 (7) 0.0389 (7) −0.0006 (5) 0.0091 (6) −0.0025 (6)
C10 0.0505 (11) 0.0965 (17) 0.0611 (12) −0.0013 (11) −0.0027 (9) 0.0161 (11)

Geometric parameters (Å, °)

S1—C8 1.7952 (17) C7—C8 1.496 (2)
S1—C9 1.7258 (15) C2—H2 0.9300
S2—C9 1.6335 (15) C3—H3 0.9300
O1—C7 1.199 (2) C4—H4 0.9300
N1—C1 1.4406 (18) C6—H6 0.9300
N1—C7 1.3943 (18) C8—H8A 0.9700
N1—C9 1.3707 (18) C8—H8B 0.9700
C1—C2 1.3814 (19) C10—H10A 0.9600
C1—C6 1.376 (2) C10—H10B 0.9600
C2—C3 1.381 (2) C10—H10C 0.9600
C3—C4 1.371 (2) C10—H10D 0.9600
C4—C5 1.384 (3) C10—H10E 0.9600
C5—C6 1.392 (2) C10—H10F 0.9600
C5—C10 1.503 (3)
C8—S1—C9 93.63 (7) C2—C3—H3 120.00
C1—N1—C7 120.71 (12) C4—C3—H3 120.00
C1—N1—C9 122.13 (11) C3—C4—H4 119.00
C7—N1—C9 116.98 (11) C5—C4—H4 119.00
N1—C1—C2 119.55 (13) C1—C6—H6 120.00
N1—C1—C6 118.46 (13) C5—C6—H6 120.00
C2—C1—C6 121.98 (14) S1—C8—H8A 110.00
C1—C2—C3 117.92 (15) S1—C8—H8B 110.00
C2—C3—C4 120.60 (17) C7—C8—H8A 110.00
C3—C4—C5 121.72 (16) C7—C8—H8B 110.00
C4—C5—C6 117.93 (16) H8A—C8—H8B 109.00
C4—C5—C10 122.24 (16) C5—C10—H10A 109.00
C6—C5—C10 119.83 (17) C5—C10—H10B 109.00
C1—C6—C5 119.84 (16) C5—C10—H10C 109.00
O1—C7—N1 123.17 (14) C5—C10—H10D 109.00
O1—C7—C8 125.44 (14) C5—C10—H10E 109.00
N1—C7—C8 111.39 (12) C5—C10—H10F 109.00
S1—C8—C7 106.86 (10) H10A—C10—H10B 109.00
S1—C9—S2 122.64 (8) H10A—C10—H10C 109.00
S1—C9—N1 111.07 (10) H10B—C10—H10C 109.00
S2—C9—N1 126.29 (11) H10D—C10—H10E 109.00
C1—C2—H2 121.00 H10D—C10—H10F 109.00
C3—C2—H2 121.00 H10E—C10—H10F 109.00
C9—S1—C8—C7 −2.42 (12) C7—N1—C9—S2 179.24 (11)
C8—S1—C9—S2 −177.72 (10) N1—C1—C2—C3 179.72 (14)
C8—S1—C9—N1 1.42 (11) C6—C1—C2—C3 1.1 (2)
C7—N1—C1—C2 −85.14 (18) N1—C1—C6—C5 179.89 (14)
C7—N1—C1—C6 93.56 (16) C2—C1—C6—C5 −1.5 (2)
C9—N1—C1—C2 99.88 (17) C1—C2—C3—C4 −0.2 (2)
C9—N1—C1—C6 −81.42 (18) C2—C3—C4—C5 −0.4 (3)
C1—N1—C7—O1 3.2 (2) C3—C4—C5—C6 0.0 (3)
C1—N1—C7—C8 −177.29 (12) C3—C4—C5—C10 179.27 (17)
C9—N1—C7—O1 178.41 (14) C4—C5—C6—C1 0.9 (2)
C9—N1—C7—C8 −2.06 (18) C10—C5—C6—C1 −178.41 (15)
C1—N1—C9—S1 175.30 (10) O1—C7—C8—S1 −177.61 (13)
C1—N1—C9—S2 −5.60 (19) N1—C7—C8—S1 2.88 (16)
C7—N1—C9—S1 0.14 (16)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C8—H8B···Cg2i 0.97 2.59 3.5219 (17) 162
C7—O1···Cg1i 1.199 (2) 2.9413 (14) 4.1070 (16) 163.94 (11)

Symmetry codes: (i) −x+1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5208).

References

  1. Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  5. Shahwar, D., Tahir, M. N., Raza, M. A. & Iqbal, B. (2009a). Acta Cryst. E65, o2903. [DOI] [PMC free article] [PubMed]
  6. Shahwar, D., Tahir, M. N., Raza, M. A., Iqbal, B. & Naz, S. (2009b). Acta Cryst. E65, o2637. [DOI] [PMC free article] [PubMed]
  7. Shahwar, D., Tahir, M. N., Raza, M. A., Saddaf, M. & Majeed, S. (2009c). Acta Cryst. E65, o2638. [DOI] [PMC free article] [PubMed]
  8. Shahwar, D., Tahir, M. N., Yasmeen, A., Ahmad, N. & Khan, M. A. (2009d). Acta Cryst. E65, o3014. [DOI] [PMC free article] [PubMed]
  9. Shahwar, D., Tahir, M. N., Yasmeen, A., Ahmad, N. & Khan, M. A. (2009e). Acta Cryst. E65, o3015. [DOI] [PMC free article] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809045863/hb5208sup1.cif

e-65-o3016-sup1.cif (16.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809045863/hb5208Isup2.hkl

e-65-o3016-Isup2.hkl (128.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES