Abstract
In the title compound, C10H9NOS2, the dihedral angle between the rhodanine (2-thioxo-1,3-thiazolidin-4-one) and 3-methylphenyl rings is 83.30 (3)°. The H atoms of the methyl group are disordered over two set of sites with an occupancy ratio of 0.58 (3):0.42 (3). In the crystal, the molecules interact by way of C—H⋯π and C=O⋯π interactions.
Related literature
For related structures, see: Shahwar et al. (2009a
▶,b
▶,c
▶,d
▶,e
▶).
Experimental
Crystal data
C10H9NOS2
M r = 223.3
Monoclinic,
a = 8.0775 (3) Å
b = 6.4058 (2) Å
c = 21.4715 (7) Å
β = 106.068 (2)°
V = 1067.59 (6) Å3
Z = 4
Mo Kα radiation
μ = 0.46 mm−1
T = 296 K
0.32 × 0.24 × 0.22 mm
Data collection
Bruker Kappa APEXII CCD diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2005 ▶) T min = 0.849, T max = 0.897
11841 measured reflections
2666 independent reflections
2116 reflections with I > 2σ(I)
R int = 0.026
Refinement
R[F 2 > 2σ(F 2)] = 0.032
wR(F 2) = 0.087
S = 1.03
2666 reflections
129 parameters
H-atom parameters constrained
Δρmax = 0.27 e Å−3
Δρmin = −0.22 e Å−3
Data collection: APEX2 (Bruker, 2007 ▶); cell refinement: SAINT (Bruker, 2007 ▶); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 ▶) and PLATON (Spek, 2009 ▶); software used to prepare material for publication: WinGX (Farrugia, 1999 ▶) and PLATON.
Supplementary Material
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809045863/hb5208sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536809045863/hb5208Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
---|---|---|---|---|
C8—H8B⋯Cg2i | 0.97 | 2.59 | 3.5219 (17) | 162 |
C7—O1⋯Cg1i | 1.20 (1) | 2.94 (1) | 4.1070 (16) | 164 (1) |
Symmetry code: (i) . Cg1 and Cg2 are the centroids of the S1/C8/C7/N1/C9 and C1—C6 rings, respectively.
Acknowledgments
DS is grateful to Government College University, Lahore, for providing funds under the GCU funded Research Projects Programme.
supplementary crystallographic information
Comment
We have reported the synthesis and crystal structures of various rhodanine derivatives such as (II) (5Z)-5-(2-Hydroxybenzylidene)-3-phenyl-2-thioxo-1,3-thiazolidin-4-one (Shahwar et al., 2009a), (III) (5E)-5-(4-Hydroxy-3-methoxybenzylidene)-2-thioxo-1, 3-thiazolidin-4-one methanol monosolvate (Shahwar et al., 2009b), (IV) (5Z)-5-(2-Hydroxybenzylidene)-2-thioxo-1,3-thiazolidin-4-one methanol hemisolvate (Shahwar et al., 2009c), (V) 3-(2-Methylphenyl)-2-thioxo-1,3-thiazolidin-4-one (Shahwar et al., 2009d) and (VI) 3-Cyclohexyl-2-thioxo-1,3-thiazolidin-4-one (Shahwar et al., 2009e). The purpose of synthesis of differet rhodanine derivatives is to study the biological activities. The title compound (I, Fig. 1) is being reported in this context.
In (I), the 3-methylphenyl A (C1–C6/C10) and the rhodanine group B (N1/C7/C8/S1/C9/O1/S2) are planar with maximum r. m. s. deviations of 0.0068 and 0.0171 Å respectively, from their mean square planes. The dihedral angle between A/B is 83.30 (3)°. The H-atoms of the methyl moiety are disordered over two set of sites with occupancy ratio of 0.58 (3):0.42 (3) in the monomers. There exist C–H···π and C==O···π interactions (Table 1) which stabilize the molecules.
Experimental
The title compound was prepared by a three step reaction procedure. In the first step meta toluidine aniline (10.7 g, 0.1 mol) and triethylamine (50.5 g, 0.5 mol) were stirred in ethanol (20 ml) followed by dropwise addition of CS2 (15.2 g, 0.2 mol) while keeping the flask in an ice bath. The precipitate obtained were filtered off and washed with diethyl ether.
In second step, a solution of sodium chloroacetate (11.6 g, 0.1 mol) and chloroacetic acid (18.9 g, 0.2 mol) was prepared in 50 ml distilled water. To this solution the precipitates obtained in first step were added gradually and stirred at 273 K. This mixture was stirred untill it turned light yellow.
In third step the yellow mixture was mixed in 140 ml hot (363–368 K) hydrochloric acid (6 N) and stirred for five minutes to obtain colorless crystalline precipitates. These precipitates were recrystalized in chloroform to get light yellow prisms of (I).
Refinement
The H-atoms were positioned geometrically (C–H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).
Figures
Fig. 1.
View of (I) with displacement ellipsoids drawn at the 50% probability level.
Crystal data
C10H9NOS2 | F(000) = 464 |
Mr = 223.3 | Dx = 1.389 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2666 reflections |
a = 8.0775 (3) Å | θ = 2.6–28.3° |
b = 6.4058 (2) Å | µ = 0.46 mm−1 |
c = 21.4715 (7) Å | T = 296 K |
β = 106.068 (2)° | Prism, light yellow |
V = 1067.59 (6) Å3 | 0.32 × 0.24 × 0.22 mm |
Z = 4 |
Data collection
Bruker Kappa APEXII CCD diffractometer | 2666 independent reflections |
Radiation source: fine-focus sealed tube | 2116 reflections with I > 2σ(I) |
graphite | Rint = 0.026 |
Detector resolution: 7.40 pixels mm-1 | θmax = 28.3°, θmin = 2.6° |
ω scans | h = −10→10 |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | k = −8→8 |
Tmin = 0.849, Tmax = 0.897 | l = −28→28 |
11841 measured reflections |
Refinement
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.087 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0399P)2 + 0.2635P] where P = (Fo2 + 2Fc2)/3 |
2666 reflections | (Δ/σ)max < 0.001 |
129 parameters | Δρmax = 0.27 e Å−3 |
0 restraints | Δρmin = −0.22 e Å−3 |
Special details
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
x | y | z | Uiso*/Ueq | Occ. (<1) | |
S1 | 0.90452 (5) | 0.42703 (7) | 0.26996 (2) | 0.0484 (1) | |
S2 | 0.85641 (6) | 0.38555 (7) | 0.12935 (2) | 0.0511 (2) | |
O1 | 0.54228 (16) | 0.04248 (19) | 0.26950 (6) | 0.0537 (4) | |
N1 | 0.67528 (14) | 0.18699 (18) | 0.19889 (5) | 0.0324 (3) | |
C1 | 0.56186 (18) | 0.0913 (2) | 0.14230 (7) | 0.0337 (4) | |
C2 | 0.5937 (2) | −0.1103 (2) | 0.12588 (8) | 0.0419 (5) | |
C3 | 0.4818 (2) | −0.1972 (3) | 0.07148 (8) | 0.0501 (6) | |
C4 | 0.3436 (2) | −0.0858 (3) | 0.03533 (8) | 0.0518 (6) | |
C5 | 0.3103 (2) | 0.1156 (3) | 0.05186 (7) | 0.0461 (5) | |
C6 | 0.42217 (18) | 0.2036 (3) | 0.10687 (7) | 0.0391 (5) | |
C7 | 0.65129 (19) | 0.1553 (2) | 0.26005 (7) | 0.0363 (4) | |
C8 | 0.77847 (19) | 0.2774 (3) | 0.31088 (7) | 0.0410 (5) | |
C9 | 0.80207 (17) | 0.3243 (2) | 0.19488 (7) | 0.0342 (4) | |
C10 | 0.1604 (2) | 0.2403 (4) | 0.01220 (10) | 0.0730 (8) | |
H2 | 0.68758 | −0.18517 | 0.15069 | 0.0502* | |
H3 | 0.50036 | −0.33254 | 0.05925 | 0.0602* | |
H4 | 0.27025 | −0.14709 | −0.00126 | 0.0621* | |
H6 | 0.40257 | 0.33792 | 0.11964 | 0.0469* | |
H8A | 0.85188 | 0.18403 | 0.34219 | 0.0492* | |
H8B | 0.71912 | 0.36922 | 0.33352 | 0.0492* | |
H10A | 0.06610 | 0.23026 | 0.03116 | 0.1095* | 0.58 (3) |
H10B | 0.12550 | 0.18649 | −0.03121 | 0.1095* | 0.58 (3) |
H10C | 0.19388 | 0.38382 | 0.01132 | 0.1095* | 0.58 (3) |
H10D | 0.19424 | 0.31376 | −0.02127 | 0.1095* | 0.42 (3) |
H10E | 0.12470 | 0.33875 | 0.03963 | 0.1095* | 0.42 (3) |
H10F | 0.06653 | 0.14807 | −0.00708 | 0.1095* | 0.42 (3) |
Atomic displacement parameters (Å2)
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0426 (2) | 0.0565 (3) | 0.0445 (2) | −0.0166 (2) | 0.0092 (2) | −0.0128 (2) |
S2 | 0.0545 (3) | 0.0578 (3) | 0.0449 (2) | −0.0180 (2) | 0.0202 (2) | −0.0016 (2) |
O1 | 0.0636 (8) | 0.0544 (7) | 0.0476 (7) | −0.0196 (6) | 0.0227 (6) | 0.0006 (5) |
N1 | 0.0328 (6) | 0.0310 (5) | 0.0331 (6) | −0.0024 (5) | 0.0088 (5) | −0.0023 (5) |
C1 | 0.0341 (7) | 0.0342 (7) | 0.0343 (7) | −0.0077 (6) | 0.0120 (6) | −0.0027 (6) |
C2 | 0.0433 (8) | 0.0364 (8) | 0.0482 (9) | −0.0029 (6) | 0.0166 (7) | −0.0041 (7) |
C3 | 0.0592 (10) | 0.0442 (9) | 0.0529 (10) | −0.0167 (8) | 0.0253 (8) | −0.0169 (8) |
C4 | 0.0521 (10) | 0.0673 (11) | 0.0375 (8) | −0.0261 (9) | 0.0150 (7) | −0.0131 (8) |
C5 | 0.0379 (8) | 0.0627 (10) | 0.0371 (8) | −0.0096 (7) | 0.0094 (6) | 0.0066 (7) |
C6 | 0.0385 (8) | 0.0399 (8) | 0.0395 (8) | −0.0039 (6) | 0.0119 (6) | 0.0011 (6) |
C7 | 0.0395 (8) | 0.0343 (7) | 0.0359 (7) | 0.0028 (6) | 0.0118 (6) | 0.0018 (6) |
C8 | 0.0388 (8) | 0.0481 (9) | 0.0351 (7) | 0.0015 (7) | 0.0087 (6) | −0.0026 (7) |
C9 | 0.0314 (7) | 0.0319 (7) | 0.0389 (7) | −0.0006 (5) | 0.0091 (6) | −0.0025 (6) |
C10 | 0.0505 (11) | 0.0965 (17) | 0.0611 (12) | −0.0013 (11) | −0.0027 (9) | 0.0161 (11) |
Geometric parameters (Å, °)
S1—C8 | 1.7952 (17) | C7—C8 | 1.496 (2) |
S1—C9 | 1.7258 (15) | C2—H2 | 0.9300 |
S2—C9 | 1.6335 (15) | C3—H3 | 0.9300 |
O1—C7 | 1.199 (2) | C4—H4 | 0.9300 |
N1—C1 | 1.4406 (18) | C6—H6 | 0.9300 |
N1—C7 | 1.3943 (18) | C8—H8A | 0.9700 |
N1—C9 | 1.3707 (18) | C8—H8B | 0.9700 |
C1—C2 | 1.3814 (19) | C10—H10A | 0.9600 |
C1—C6 | 1.376 (2) | C10—H10B | 0.9600 |
C2—C3 | 1.381 (2) | C10—H10C | 0.9600 |
C3—C4 | 1.371 (2) | C10—H10D | 0.9600 |
C4—C5 | 1.384 (3) | C10—H10E | 0.9600 |
C5—C6 | 1.392 (2) | C10—H10F | 0.9600 |
C5—C10 | 1.503 (3) | ||
C8—S1—C9 | 93.63 (7) | C2—C3—H3 | 120.00 |
C1—N1—C7 | 120.71 (12) | C4—C3—H3 | 120.00 |
C1—N1—C9 | 122.13 (11) | C3—C4—H4 | 119.00 |
C7—N1—C9 | 116.98 (11) | C5—C4—H4 | 119.00 |
N1—C1—C2 | 119.55 (13) | C1—C6—H6 | 120.00 |
N1—C1—C6 | 118.46 (13) | C5—C6—H6 | 120.00 |
C2—C1—C6 | 121.98 (14) | S1—C8—H8A | 110.00 |
C1—C2—C3 | 117.92 (15) | S1—C8—H8B | 110.00 |
C2—C3—C4 | 120.60 (17) | C7—C8—H8A | 110.00 |
C3—C4—C5 | 121.72 (16) | C7—C8—H8B | 110.00 |
C4—C5—C6 | 117.93 (16) | H8A—C8—H8B | 109.00 |
C4—C5—C10 | 122.24 (16) | C5—C10—H10A | 109.00 |
C6—C5—C10 | 119.83 (17) | C5—C10—H10B | 109.00 |
C1—C6—C5 | 119.84 (16) | C5—C10—H10C | 109.00 |
O1—C7—N1 | 123.17 (14) | C5—C10—H10D | 109.00 |
O1—C7—C8 | 125.44 (14) | C5—C10—H10E | 109.00 |
N1—C7—C8 | 111.39 (12) | C5—C10—H10F | 109.00 |
S1—C8—C7 | 106.86 (10) | H10A—C10—H10B | 109.00 |
S1—C9—S2 | 122.64 (8) | H10A—C10—H10C | 109.00 |
S1—C9—N1 | 111.07 (10) | H10B—C10—H10C | 109.00 |
S2—C9—N1 | 126.29 (11) | H10D—C10—H10E | 109.00 |
C1—C2—H2 | 121.00 | H10D—C10—H10F | 109.00 |
C3—C2—H2 | 121.00 | H10E—C10—H10F | 109.00 |
C9—S1—C8—C7 | −2.42 (12) | C7—N1—C9—S2 | 179.24 (11) |
C8—S1—C9—S2 | −177.72 (10) | N1—C1—C2—C3 | 179.72 (14) |
C8—S1—C9—N1 | 1.42 (11) | C6—C1—C2—C3 | 1.1 (2) |
C7—N1—C1—C2 | −85.14 (18) | N1—C1—C6—C5 | 179.89 (14) |
C7—N1—C1—C6 | 93.56 (16) | C2—C1—C6—C5 | −1.5 (2) |
C9—N1—C1—C2 | 99.88 (17) | C1—C2—C3—C4 | −0.2 (2) |
C9—N1—C1—C6 | −81.42 (18) | C2—C3—C4—C5 | −0.4 (3) |
C1—N1—C7—O1 | 3.2 (2) | C3—C4—C5—C6 | 0.0 (3) |
C1—N1—C7—C8 | −177.29 (12) | C3—C4—C5—C10 | 179.27 (17) |
C9—N1—C7—O1 | 178.41 (14) | C4—C5—C6—C1 | 0.9 (2) |
C9—N1—C7—C8 | −2.06 (18) | C10—C5—C6—C1 | −178.41 (15) |
C1—N1—C9—S1 | 175.30 (10) | O1—C7—C8—S1 | −177.61 (13) |
C1—N1—C9—S2 | −5.60 (19) | N1—C7—C8—S1 | 2.88 (16) |
C7—N1—C9—S1 | 0.14 (16) |
Hydrogen-bond geometry (Å, °)
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8B···Cg2i | 0.97 | 2.59 | 3.5219 (17) | 162 |
C7—O1···Cg1i | 1.199 (2) | 2.9413 (14) | 4.1070 (16) | 163.94 (11) |
Symmetry codes: (i) −x+1, y+1/2, −z+1/2.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5208).
References
- Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
- Shahwar, D., Tahir, M. N., Raza, M. A. & Iqbal, B. (2009a). Acta Cryst. E65, o2903. [DOI] [PMC free article] [PubMed]
- Shahwar, D., Tahir, M. N., Raza, M. A., Iqbal, B. & Naz, S. (2009b). Acta Cryst. E65, o2637. [DOI] [PMC free article] [PubMed]
- Shahwar, D., Tahir, M. N., Raza, M. A., Saddaf, M. & Majeed, S. (2009c). Acta Cryst. E65, o2638. [DOI] [PMC free article] [PubMed]
- Shahwar, D., Tahir, M. N., Yasmeen, A., Ahmad, N. & Khan, M. A. (2009d). Acta Cryst. E65, o3014. [DOI] [PMC free article] [PubMed]
- Shahwar, D., Tahir, M. N., Yasmeen, A., Ahmad, N. & Khan, M. A. (2009e). Acta Cryst. E65, o3015. [DOI] [PMC free article] [PubMed]
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809045863/hb5208sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536809045863/hb5208Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report