Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Nov 7;65(Pt 12):i85. doi: 10.1107/S1600536809045632

Copper(II) hydrogenphosphate, CuHPO4

Christiane Günther a, Helmar Görls b, Dörte Stachel a,*
PMCID: PMC2972008  PMID: 21578540

Abstract

The title compound, CuHPO4, has been synthesized from a mixture of phospho­ric acid and copper oxide. It has the same composition as MHPO4 (M = Ca, Ba, Pb, Sr or Sn), but adopts a rhombohedral structure with all atoms on general positions. The structure features distorted PO4 tetra­hedra linked by copper, forming 12-membered rings. The CuII atom is coordinated by five O atoms in a distorted square-pyramidal manner. O—H⋯O hydrogen bonding leads to an additional stabilization of the structure.

Related literature

For the structure of CaHPO4, see: Smith et al. (1955); MacLennan & Beevers (1955). For a report about BaHPO4 and PbHPO4, see: Bengtsson (1941). For the structure of SnHPO4, see: Berndt & Lamberg (1971). For information about SrHPO4, see: Boudjada et al. (1978). For a report about CuHPO4·H2O, see: Boudjada (1980). For information about CuHPO4·0.5 H2O see: Sierra et al. (2003). For the structure of α-Cu2P2O7, see: Lukaszewicz (1966). For information about β-Cu2P2O7, see: Robertson & Calvo (1968). For a report about Cu2P4O12, see: Laügt et al. (1972).

Experimental

Crystal data

  • CuHPO4

  • M r = 159.52

  • Rhombohedral, Inline graphic

  • a = 9.5145 (4) Å

  • α = 114.678 (2)°

  • V = 495.88 (6) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 6.92 mm−1

  • T = 183 K

  • 0.05 × 0.03 × 0.03 mm

Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 3338 measured reflections

  • 755 independent reflections

  • 654 reflections with I > 2σ(I)

  • R int = 0.045

Refinement

  • R[F 2 > 2σ(F 2)] = 0.026

  • wR(F 2) = 0.066

  • S = 1.02

  • 755 reflections

  • 60 parameters

  • All H-atom parameters refined

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.66 e Å−3

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski & Minor 1997); data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809045632/fi2089sup1.cif

e-65-00i85-sup1.cif (12.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809045632/fi2089Isup2.hkl

e-65-00i85-Isup2.hkl (37.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Cu1—O1 1.925 (2)
Cu1—O4i 1.932 (2)
Cu1—O3ii 1.971 (2)
Cu1—O3iii 1.992 (2)
Cu1—O4iv 2.360 (2)
P1—O4 1.515 (2)
P1—O1 1.530 (2)
P1—O3 1.541 (2)
P1—O2 1.571 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1ii 0.87 (5) 1.93 (5) 2.800 (3) 176 (5)

Symmetry code: (ii) Inline graphic.

supplementary crystallographic information

Comment

The hydrogen phosphate of copper(II) adopts the formula MHPO4 like other divalent cations. However, the monetites CaHPO4 (triclinic, P1; Smith et al., 1955), BaHPO4 (orthorhombic, Pccn; Bengtsson, 1941) and PbHPO4 (monoclinic, P2/c or Pc; Bengtsson, 1941) or SrHPO4 (triclinic, P1; Boudjada et al., 1978) and SnHPO4 (monoclinic, P21/c; Berndt & Lamberg, 1971) have very different structures, which could be due to the much bigger ionic radii of the metals in comparison to copper. CuHPO4 has a rhombohedral (R3) structure. The coordination of Cu can be described as a square pyramid, with the apical C–O bond being significantly longer than the other four bonds. The coordination in the base plane could even be described as a strongly squeezed, almost planar tetrahedron (Fig 1). The Cu ions are linked by distorted PO4 tetrahedra yielding twelve-membered rings (see Fig. 4, and Fig. 5). The distortion of the phosphate tetrahedra is caused by the OH-groups, which point towards the centre of the rings. There is only one hydrogen bond present in the asymmetric unit (see hydrogen bond geometry). But in the whole crystal structure, this leads to two intramolecular and three intermolecular hydrogen bonds (see Fig. 2 and Fig. 3). In other copper phosphates, the copper atoms are coordinated by four, five and/or six oxygen atoms, respectively (Boudjada, 1980; Sierra et al., 2003; Lukaszewicz, 1966; Robertson & Calvo, 1968; Laügt et al., 1972). CuHPO4 formed only trigonal bipyramids of CuO5.

Experimental

Phosphoric acid (65%) and copper oxide were mixed in a mortar for several hours. Afterwards the mixture was tempered at 373 K for a week. CuHPO4 was obtained in the form of emerald-green needles, which decompose by further tempering.

Refinement

The hydrogen atom of the hydroxyd-group was located by difference Fourier synthesis and refined isotropically.

Figures

Fig. 1.

Fig. 1.

The molecular structure of 1, showing 50% probability displacement ellipsoides and the numbering scheme for the complete coordination polyhedron about Cu1 (Symmetry codes: (A) z,x-1,y-1; (B) -z+2,-x+2,-y+1; (C) -x+2,-y+1,-z+1 and (D) y,z,x-1.)

Fig. 2.

Fig. 2.

The intra and inter molecular O2—H2···O1 bonding about Cu1 (Symmetry codes: (A) z,x-1,y; (B) y+1,z,x-1 and (C) -y+1,-z+1,-x+1.)

Fig. 3.

Fig. 3.

The intra and inter molecular O2—H2···O1 bonding about Cu1 (Symmetry codes: (A) z,x-1,y; (B) y+1,z,x-1 and (C) -y+1,-z+1,-x+1.)

Fig. 4.

Fig. 4.

View of the unit cell of CuHPO~4~ along the z axis.

Fig. 5.

Fig. 5.

Projection of the CuHPO4 structure along the z axis, with applied polyhedrale.

Crystal data

CuHPO4 Dx = 3.205 Mg m3
Mr = 159.52 Mo Kα radiation, λ = 0.71073 Å
Rhombohedral, R3 Cell parameters from 3338 reflections
Hall symbol: -P 3* θ = 3.4–27.5°
a = 9.5145 (4) Å µ = 6.92 mm1
α = 114.678 (2)° T = 183 K
V = 495.88 (6) Å3 Needles, green
Z = 6 0.05 × 0.03 × 0.03 mm
F(000) = 462

Data collection

Bruker–Nonius KappaCCD diffractometer 654 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.045
graphite θmax = 27.5°, θmin = 3.4°
φ and ω scans h = −11→12
3338 measured reflections k = −12→12
755 independent reflections l = −12→12

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026 All H-atom parameters refined
wR(F2) = 0.066 w = 1/[σ2(Fo2) + (0.0403P)2 + 0.166P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max < 0.001
755 reflections Δρmax = 0.62 e Å3
60 parameters Δρmin = −0.66 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.014 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.91592 (6) 0.43161 (6) 0.19005 (6) 0.00678 (18)
P1 1.31526 (12) 0.74973 (12) 0.68353 (13) 0.0059 (2)
O1 1.1314 (4) 0.5149 (4) 0.4494 (3) 0.0083 (5)
O2 1.5471 (4) 0.8561 (4) 0.7726 (4) 0.0106 (5)
O3 1.3326 (3) 0.7437 (3) 0.8490 (3) 0.0077 (5)
O4 1.2753 (4) 0.8882 (3) 0.6838 (3) 0.0087 (5)
H2 1.555 (8) 0.866 (8) 0.689 (8) 0.040 (14)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.0063 (2) 0.0080 (3) 0.0069 (2) 0.0048 (2) 0.0048 (2) 0.0059 (2)
P1 0.0063 (4) 0.0066 (4) 0.0068 (4) 0.0049 (3) 0.0050 (3) 0.0054 (3)
O1 0.0084 (11) 0.0069 (11) 0.0079 (11) 0.0053 (10) 0.0055 (10) 0.0050 (10)
O2 0.0096 (11) 0.0151 (12) 0.0120 (11) 0.0095 (10) 0.0086 (10) 0.0106 (10)
O3 0.0079 (10) 0.0090 (11) 0.0074 (10) 0.0056 (9) 0.0060 (9) 0.0063 (9)
O4 0.0109 (11) 0.0085 (10) 0.0070 (10) 0.0076 (9) 0.0059 (9) 0.0058 (9)

Geometric parameters (Å, °)

Cu1—O1 1.925 (2) P1—O3 1.541 (2)
Cu1—O4i 1.932 (2) P1—O2 1.571 (2)
Cu1—O3ii 1.971 (2) O2—H2 0.87 (5)
Cu1—O3iii 1.992 (2) O3—Cu1v 1.971 (2)
Cu1—O4iv 2.360 (2) O3—Cu1iii 1.992 (2)
P1—O4 1.515 (2) O4—Cu1vi 1.932 (2)
P1—O1 1.530 (2) O4—Cu1vii 2.360 (2)
O1—Cu1—O4i 163.91 (9) O1—P1—O3 110.78 (12)
O1—Cu1—O3ii 91.59 (9) O4—P1—O2 111.98 (13)
O4i—Cu1—O3ii 94.28 (9) O1—P1—O2 109.68 (13)
O1—Cu1—O3iii 94.20 (9) O3—P1—O2 102.64 (12)
O4i—Cu1—O3iii 84.72 (9) P1—O1—Cu1 123.24 (13)
O3ii—Cu1—O3iii 162.12 (8) P1—O2—H2 110 (3)
O1—Cu1—O4iv 112.90 (9) P1—O3—Cu1v 128.15 (13)
O4i—Cu1—O4iv 83.13 (4) P1—O3—Cu1iii 126.96 (13)
O3ii—Cu1—O4iv 74.64 (8) Cu1v—O3—Cu1iii 101.63 (10)
O3iii—Cu1—O4iv 87.53 (8) P1—O4—Cu1vi 132.92 (13)
O4—P1—O1 110.21 (12) P1—O4—Cu1vii 125.51 (12)
O4—P1—O3 111.35 (12) Cu1vi—O4—Cu1vii 90.84 (8)

Symmetry codes: (i) z, x−1, y−1; (ii) −z+2, −x+2, −y+1; (iii) −x+2, −y+1, −z+1; (iv) y, z, x−1; (v) −y+2, −z+1, −x+2; (vi) y+1, z+1, x; (vii) z+1, x, y.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H2···O1ii 0.87 (5) 1.93 (5) 2.800 (3) 176 (5)

Symmetry codes: (ii) −z+2, −x+2, −y+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FI2089).

References

  1. Bengtsson, E. (1941). Struct. Rep. 8, 189–199.
  2. Berndt, A. F. & Lamberg, R. (1971). Acta Cryst. B27, 1092–1094.
  3. Boudjada, A. (1980). Mater. Res. Bull. 15, 1083–1090.
  4. Boudjada, A., Masse, R. & Guitel, J. C. (1978). Acta Cryst. B34, 2692–2695.
  5. Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  6. Laügt, M., Guitel, J. C., Tordjman, I. & Bassi, G. (1972). Acta Cryst. B28, 201–208.
  7. Lukaszewicz, K. (1966). Bull. Acad. Polon. Sci. Ser. Sci. Chim. 14, 725–729.
  8. MacLennan, G. & Beevers, C. A. (1955). Acta Cryst. 8, 579–583.
  9. Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
  10. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  11. Robertson, B. E. & Calvo, C. (1968). Canad. J. Chem., 46, 605–612.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Sierra, G. A., Isaza, A. E., Palacio, L. A. & Saldarriaga, C. (2003). Powder Diffr. 18, 36–37.
  14. Smith, J. P., Lehr, J. R. & Brown, W. E. (1955). Am. Mineral. 40, 893–899.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809045632/fi2089sup1.cif

e-65-00i85-sup1.cif (12.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809045632/fi2089Isup2.hkl

e-65-00i85-Isup2.hkl (37.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES