Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Nov 4;65(Pt 12):m1495–m1496. doi: 10.1107/S1600536809045048

Tetra-μ-benzoato-bis­{[trans-1-(2-pyrid­yl)-2-(4-pyrid­yl)ethyl­ene]zinc(II)}

Young Joo Song a, Soo-Won Lee b, Kyung Hwan Jang c, Cheal Kim a,*, Youngmee Kim d,*
PMCID: PMC2972024  PMID: 21578547

Abstract

The paddle-wheel-type centrosymmetric dinuclear title complex, [Zn2(C7H5O2)4(C12H10N2)2], contains four bridging benzoate groups and two terminal trans-1-(2-pyrid­yl)-2-(4-pyrid­yl)ethyl­ene (L) ligands. The inversion center is located between the two ZnII atoms. The octa­hedral coordination around the ZnII atom, with four O atoms in the equatorial plane, is completed by an N atom of the L mol­ecule [Zn—N = 2.0198 (15) Å] and by the second ZnII atom [Zn⋯Zn = 2.971 (8) Å]. The ZnII atom is 0.372 Å out of the plane of the four coordinating O atoms.

Related literature

For structures containing [Zn2(O2CPh)4], see: Necefoglu et al. (2002); Zeleňák et al. (2004); Karmakar et al. (2006); Ohmura et al. (2005). For the structures of copper(II) and zinc(II) benzoates with quinoxaline, 6-methyl­quinoline, 3-methyl­quinoline, and di-2-pyridyl ketone, see: Lee et al. (2008); Yu et al. (2008, 2009); Park et al. (2008); Shin et al. (2009). For transition metal ions as the major cation contributors to the inorganic composition of natural water and biological fluids, see: Daniele et al. (2008); Parkin (2004); Tshuva & Lippard (2004). graphic file with name e-65-m1495-scheme1.jpg

Experimental

Crystal data

  • [Zn2(C7H5O2)4(C12H10N2)2]

  • M r = 979.66

  • Monoclinic, Inline graphic

  • a = 24.919 (6) Å

  • b = 12.186 (3) Å

  • c = 15.742 (4) Å

  • β = 109.857 (4)°

  • V = 4496.0 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.13 mm−1

  • T = 293 K

  • 0.20 × 0.15 × 0.15 mm

Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997) T min = 0.816, T max = 0.884

  • 12326 measured reflections

  • 4416 independent reflections

  • 2947 reflections with I > 2σ(I)

  • R int = 0.039

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.090

  • S = 1.03

  • 4416 reflections

  • 298 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809045048/dn2505sup1.cif

e-65-m1495-sup1.cif (22.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809045048/dn2505Isup2.hkl

e-65-m1495-Isup2.hkl (212.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support from the Korean Ministry of the Environment "ET-Human resource development Project" and the Cooperative Research Program for Agricultural Science & Technology Development (20070301–036-019–02) is gratefully acknowledged.

supplementary crystallographic information

Comment

A great attention has been paid to transition metal ions as the major cation contributors to the inorganic composition of natural water and biological fluids (Daniele, et al., 2008; Parkin, 2004; Tshuva & Lippard, 2004). While the main attention was focused on the interaction of transition metal ions with biologically active molecules such as amino acids, proteins, sugars, nucleotides etc, the study on the interaction of the transition metal ions with fulvic acids and humic acids, mainly found in soil, is about to start. As models to examine the interaction, therefore, we have previously used copper(II) and zinc(II) benzoates as building blocks and reported the structures of copper(II) and zinc(II) benzoates with quinoxaline, 6-methylquinoline, 3-methylquinoline, and di-2-pyridyl ketone (Lee, et al., 2008; Yu, et al., 2008; Park, et al., 2008; Shin, et al., 2009; Yu, et al., 2009). The related paddle-wheel type structures for Zn complexes have been previouly reported (Necefoglu et al., 2002; Zeleňák, et al., 2004; Karmakar, et al., 2006; Ohmura, et al., 2005). In this work, we have employed zinc(II) benzoate as a building block and trans-1-(2-pyridyl)-2-(4-pyridyl)ethylene as a ligand. We report hereon the structure of new zinc(II) benzoate with trans-1-(2-pyridyl)-2-(4-pyridyl)ethylene.

Asymmetric unit contains half of whole molecule, and there is an inversion center in the middle of Zn···Zn bond. Symmetric operation (1-x, 1-y , 1-z) produces a paddle-wheel type dinuclear zinc-benzoate complex (Fig. 1). The paddle-wheel type dinuclear complex is constructed by four bridging benzoate groups and two terminal L ligands (L = trans-1-(2-pyridyl)-2-(4-pyridyl)ethylene). The octahedral coordination around the zinc atom, with four O atoms in the equatorial plane, is completed by nitrogen atom of L molecule (Zn—N 2.0198 (15) Å) and by the second zinc atom (Zn···Zn 2.971 (8) Å). The zinc atom is 0.372 Å out of the plane of the four oxygen atoms.

Experimental

30.4 mg (0.1 mmol) of Zn(NO3)2.6H2O and 28.0 mg (0.2 mmol) of C6H5COONH4 were dissolved in 4 ml H2O and carefully layered by 4 ml me thanol solution of trans-1-(2-pyridyl)-2-(4-pyridyl)ethylene (37.6 mg, 0.2 mmol). Suitable crystals of the title compound for X-ray analysis were obtained in a few weeks.

Refinement

H atoms were placed in calculated positions with C—H distances of 0.93 Å. They were included in the refinement in a riding-motion approximation with Uĩso~(H) = 1.2U~eq~(C).

Figures

Fig. 1.

Fig. 1.

The structure of the title compound showing the atom-labeling scheme. Displacement ellipsoids are shown at the 30% probability level. H atoms have been omitted for clarity. [Symmetry code: (i) -x+1, -y+1, -z+1].

Crystal data

[Zn2(C7H5O2)4(C12H10N2)2] F(000) = 2016
Mr = 979.66 Dx = 1.447 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 1818 reflections
a = 24.919 (6) Å θ = 2.5–19.6°
b = 12.186 (3) Å µ = 1.13 mm1
c = 15.742 (4) Å T = 293 K
β = 109.857 (4)° Block, colorless
V = 4496.0 (19) Å3 0.20 × 0.15 × 0.15 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer 4416 independent reflections
Radiation source: fine-focus sealed tube 2947 reflections with I > 2σ(I)
graphite Rint = 0.039
φ and ω scans θmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 1997) h = −20→30
Tmin = 0.816, Tmax = 0.884 k = −15→15
12326 measured reflections l = −19→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0205P)2 + 1.48P] where P = (Fo2 + 2Fc2)/3
4416 reflections (Δ/σ)max = 0.001
298 parameters Δρmax = 0.26 e Å3
0 restraints Δρmin = −0.26 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Zn1 0.545232 (12) 0.50480 (2) 0.590326 (19) 0.03852 (11)
O11 0.48081 (8) 0.42174 (16) 0.61458 (13) 0.0536 (5)
O12 0.58816 (8) 0.58560 (17) 0.51974 (13) 0.0589 (5)
O21 0.56818 (8) 0.35925 (15) 0.54865 (13) 0.0549 (5)
O22 0.50102 (8) 0.64874 (15) 0.58505 (13) 0.0581 (6)
N31 0.60407 (9) 0.52228 (16) 0.71558 (14) 0.0391 (5)
N32 0.75201 (11) 0.7049 (2) 1.18938 (17) 0.0710 (8)
C11 0.43281 (12) 0.3906 (2) 0.56234 (19) 0.0420 (7)
C12 0.39861 (11) 0.3173 (2) 0.60095 (18) 0.0399 (6)
C13 0.41930 (13) 0.2875 (3) 0.6908 (2) 0.0584 (8)
H13 0.4539 0.3159 0.7282 0.070*
C14 0.38945 (18) 0.2165 (3) 0.7258 (3) 0.0805 (11)
H14 0.4041 0.1973 0.7865 0.097*
C15 0.33831 (18) 0.1736 (3) 0.6724 (3) 0.0803 (11)
H15 0.3184 0.1251 0.6963 0.096*
C16 0.31681 (14) 0.2032 (3) 0.5828 (3) 0.0747 (10)
H16 0.2821 0.1745 0.5459 0.090*
C17 0.34645 (12) 0.2755 (2) 0.5472 (2) 0.0563 (8)
H17 0.3312 0.2962 0.4869 0.068*
C21 0.53915 (12) 0.3100 (2) 0.47807 (19) 0.0423 (6)
C22 0.55306 (11) 0.1917 (2) 0.46933 (19) 0.0450 (7)
C23 0.51906 (15) 0.1303 (3) 0.3980 (3) 0.0773 (11)
H23 0.4894 0.1636 0.3525 0.093*
C24 0.5289 (2) 0.0196 (3) 0.3940 (4) 0.1091 (17)
H24 0.5051 −0.0218 0.3464 0.131*
C25 0.5726 (2) −0.0295 (3) 0.4583 (4) 0.1087 (17)
H25 0.5786 −0.1044 0.4551 0.130*
C26 0.6079 (2) 0.0306 (3) 0.5279 (3) 0.0902 (13)
H26 0.6384 −0.0034 0.5714 0.108*
C27 0.59863 (14) 0.1418 (3) 0.5344 (2) 0.0628 (9)
H27 0.6228 0.1826 0.5820 0.075*
C31 0.65674 (12) 0.4837 (2) 0.73577 (19) 0.0531 (8)
H31 0.6658 0.4437 0.6922 0.064*
C32 0.69861 (12) 0.5004 (2) 0.81848 (19) 0.0568 (8)
H32 0.7351 0.4728 0.8292 0.068*
C33 0.68646 (11) 0.5579 (2) 0.88547 (17) 0.0412 (7)
C34 0.63111 (11) 0.5948 (2) 0.86490 (17) 0.0473 (7)
H34 0.6203 0.6323 0.9080 0.057*
C35 0.59211 (11) 0.5760 (2) 0.78060 (17) 0.0456 (7)
H35 0.5552 0.6024 0.7681 0.055*
C36 0.73130 (12) 0.5774 (2) 0.97322 (18) 0.0505 (7)
H36 0.7680 0.5540 0.9794 0.061*
C37 0.72419 (12) 0.6248 (2) 1.04352 (18) 0.0509 (8)
H37 0.6872 0.6455 1.0378 0.061*
C38 0.76886 (13) 0.6485 (2) 1.13035 (18) 0.0473 (7)
C39 0.82430 (14) 0.6161 (3) 1.1499 (2) 0.0647 (9)
H39 0.8352 0.5770 1.1077 0.078*
C310 0.86366 (15) 0.6418 (3) 1.2323 (2) 0.0819 (12)
H310 0.9014 0.6194 1.2467 0.098*
C311 0.84732 (15) 0.7006 (3) 1.2933 (2) 0.0639 (9)
H311 0.8735 0.7201 1.3491 0.077*
C312 0.79166 (16) 0.7295 (3) 1.2699 (2) 0.0722 (10)
H312 0.7802 0.7684 1.3116 0.087*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.03822 (19) 0.04063 (17) 0.03006 (17) −0.00220 (15) 0.00295 (12) −0.00148 (14)
O11 0.0470 (12) 0.0593 (12) 0.0528 (12) −0.0127 (10) 0.0146 (10) −0.0025 (10)
O12 0.0622 (13) 0.0699 (13) 0.0446 (12) −0.0098 (11) 0.0180 (10) 0.0091 (11)
O21 0.0599 (13) 0.0486 (11) 0.0522 (13) 0.0073 (10) 0.0140 (10) −0.0082 (10)
O22 0.0580 (13) 0.0474 (11) 0.0584 (14) 0.0102 (10) 0.0063 (11) 0.0015 (10)
N31 0.0405 (13) 0.0400 (12) 0.0331 (12) −0.0012 (10) 0.0078 (10) −0.0030 (9)
N32 0.0614 (18) 0.105 (2) 0.0411 (15) −0.0057 (16) 0.0108 (13) −0.0143 (15)
C11 0.0491 (18) 0.0344 (14) 0.0460 (17) 0.0026 (13) 0.0207 (14) −0.0019 (13)
C12 0.0426 (16) 0.0373 (14) 0.0431 (16) 0.0024 (12) 0.0190 (13) −0.0015 (12)
C13 0.062 (2) 0.0643 (19) 0.052 (2) −0.0050 (17) 0.0227 (16) 0.0023 (16)
C14 0.100 (3) 0.086 (3) 0.066 (2) 0.002 (2) 0.042 (2) 0.022 (2)
C15 0.094 (3) 0.057 (2) 0.111 (3) −0.002 (2) 0.062 (3) 0.015 (2)
C16 0.056 (2) 0.069 (2) 0.102 (3) −0.0149 (18) 0.031 (2) −0.007 (2)
C17 0.0473 (19) 0.0579 (18) 0.062 (2) −0.0040 (15) 0.0168 (16) −0.0014 (16)
C21 0.0444 (17) 0.0416 (14) 0.0452 (17) 0.0015 (13) 0.0206 (14) 0.0010 (13)
C22 0.0479 (17) 0.0401 (14) 0.0545 (18) 0.0015 (13) 0.0270 (14) −0.0016 (13)
C23 0.068 (2) 0.059 (2) 0.097 (3) −0.0027 (18) 0.016 (2) −0.0217 (19)
C24 0.103 (4) 0.063 (3) 0.163 (5) −0.014 (2) 0.046 (3) −0.050 (3)
C25 0.123 (4) 0.042 (2) 0.192 (6) 0.007 (2) 0.094 (4) −0.003 (3)
C26 0.103 (3) 0.064 (2) 0.121 (4) 0.035 (2) 0.061 (3) 0.034 (2)
C27 0.071 (2) 0.061 (2) 0.062 (2) 0.0168 (17) 0.0303 (18) 0.0140 (16)
C31 0.0490 (18) 0.0643 (19) 0.0413 (16) 0.0072 (15) 0.0093 (13) −0.0153 (14)
C32 0.0391 (16) 0.074 (2) 0.0488 (18) 0.0100 (16) 0.0043 (13) −0.0124 (17)
C33 0.0440 (17) 0.0416 (15) 0.0331 (15) −0.0033 (13) 0.0067 (12) −0.0023 (12)
C34 0.0447 (17) 0.0595 (17) 0.0356 (15) 0.0031 (14) 0.0110 (13) −0.0087 (13)
C35 0.0360 (16) 0.0582 (17) 0.0374 (16) 0.0044 (14) 0.0056 (12) −0.0004 (14)
C36 0.0397 (17) 0.0608 (18) 0.0410 (17) 0.0010 (14) 0.0009 (13) −0.0077 (14)
C37 0.0445 (18) 0.0638 (19) 0.0371 (16) −0.0022 (14) 0.0045 (13) −0.0036 (14)
C38 0.0547 (19) 0.0500 (16) 0.0324 (16) −0.0109 (14) 0.0083 (14) −0.0012 (13)
C39 0.059 (2) 0.077 (2) 0.0444 (18) 0.0088 (17) 0.0002 (16) −0.0159 (16)
C310 0.062 (2) 0.099 (3) 0.062 (2) 0.005 (2) −0.0074 (19) −0.013 (2)
C311 0.071 (2) 0.069 (2) 0.0367 (18) −0.0147 (19) −0.0020 (16) −0.0016 (16)
C312 0.079 (3) 0.096 (3) 0.0382 (18) −0.009 (2) 0.0162 (17) −0.0134 (18)

Geometric parameters (Å, °)

Zn1—N31 2.029 (2) C23—C24 1.376 (5)
Zn1—O12 2.039 (2) C23—H23 0.9300
Zn1—O21 2.0392 (19) C24—C25 1.349 (6)
Zn1—O11 2.0407 (19) C24—H24 0.9300
Zn1—O22 2.0580 (19) C25—C26 1.362 (6)
Zn1—Zn1i 2.9711 (8) C25—H25 0.9300
O11—C11 1.258 (3) C26—C27 1.385 (4)
O12—C11i 1.252 (3) C26—H26 0.9300
O21—C21 1.254 (3) C27—H27 0.9300
O22—C21i 1.251 (3) C31—C32 1.379 (4)
N31—C31 1.327 (3) C31—H31 0.9300
N31—C35 1.331 (3) C32—C33 1.383 (4)
N32—C38 1.333 (4) C32—H32 0.9300
N32—C312 1.350 (4) C33—C34 1.381 (3)
C11—O12i 1.252 (3) C33—C36 1.471 (3)
C11—C12 1.498 (4) C34—C35 1.372 (3)
C12—C13 1.380 (4) C34—H34 0.9300
C12—C17 1.385 (4) C35—H35 0.9300
C13—C14 1.372 (4) C36—C37 1.313 (4)
C13—H13 0.9300 C36—H36 0.9300
C14—C15 1.370 (5) C37—C38 1.468 (3)
C14—H14 0.9300 C37—H37 0.9300
C15—C16 1.375 (5) C38—C39 1.368 (4)
C15—H15 0.9300 C39—C310 1.371 (4)
C16—C17 1.385 (4) C39—H39 0.9300
C16—H16 0.9300 C310—C311 1.366 (5)
C17—H17 0.9300 C310—H310 0.9300
C21—O22i 1.251 (3) C311—C312 1.355 (4)
C21—C22 1.500 (4) C311—H311 0.9300
C22—C23 1.375 (4) C312—H312 0.9300
C22—C27 1.385 (4)
N31—Zn1—O12 98.00 (8) C24—C23—H23 120.0
N31—Zn1—O21 102.41 (8) C22—C23—H23 120.0
O12—Zn1—O21 89.34 (8) C25—C24—C23 120.7 (4)
N31—Zn1—O11 103.00 (8) C25—C24—H24 119.7
O12—Zn1—O11 158.97 (8) C23—C24—H24 119.7
O21—Zn1—O11 87.31 (8) C24—C25—C26 120.1 (4)
N31—Zn1—O22 98.62 (8) C24—C25—H25 119.9
O12—Zn1—O22 86.52 (9) C26—C25—H25 119.9
O21—Zn1—O22 158.93 (8) C25—C26—C27 120.4 (4)
O11—Zn1—O22 89.19 (8) C25—C26—H26 119.8
N31—Zn1—Zn1i 175.50 (6) C27—C26—H26 119.8
O12—Zn1—Zn1i 82.26 (6) C26—C27—C22 119.4 (3)
O21—Zn1—Zn1i 82.08 (6) C26—C27—H27 120.3
O11—Zn1—Zn1i 76.71 (6) C22—C27—H27 120.3
O22—Zn1—Zn1i 76.89 (5) N31—C31—C32 122.9 (3)
C11—O11—Zn1 131.38 (19) N31—C31—H31 118.5
C11i—O12—Zn1 124.19 (18) C32—C31—H31 118.5
C21—O21—Zn1 124.11 (17) C31—C32—C33 120.2 (3)
C21i—O22—Zn1 130.32 (18) C31—C32—H32 119.9
C31—N31—C35 116.8 (2) C33—C32—H32 119.9
C31—N31—Zn1 121.66 (18) C34—C33—C32 116.5 (2)
C35—N31—Zn1 121.47 (18) C34—C33—C36 123.2 (2)
C38—N32—C312 117.7 (3) C32—C33—C36 120.3 (3)
O12i—C11—O11 125.1 (3) C35—C34—C33 119.7 (3)
O12i—C11—C12 117.5 (2) C35—C34—H34 120.1
O11—C11—C12 117.4 (3) C33—C34—H34 120.1
C13—C12—C17 118.4 (3) N31—C35—C34 123.8 (3)
C13—C12—C11 120.5 (2) N31—C35—H35 118.1
C17—C12—C11 121.1 (3) C34—C35—H35 118.1
C14—C13—C12 120.8 (3) C37—C36—C33 125.9 (3)
C14—C13—H13 119.6 C37—C36—H36 117.1
C12—C13—H13 119.6 C33—C36—H36 117.1
C15—C14—C13 120.8 (3) C36—C37—C38 126.5 (3)
C15—C14—H14 119.6 C36—C37—H37 116.8
C13—C14—H14 119.6 C38—C37—H37 116.8
C14—C15—C16 119.1 (3) N32—C38—C39 121.7 (3)
C14—C15—H15 120.4 N32—C38—C37 115.6 (3)
C16—C15—H15 120.4 C39—C38—C37 122.8 (3)
C15—C16—C17 120.4 (3) C38—C39—C310 119.3 (3)
C15—C16—H16 119.8 C38—C39—H39 120.3
C17—C16—H16 119.8 C310—C39—H39 120.3
C16—C17—C12 120.4 (3) C311—C310—C39 119.8 (3)
C16—C17—H17 119.8 C311—C310—H310 120.1
C12—C17—H17 119.8 C39—C310—H310 120.1
O22i—C21—O21 125.2 (2) C312—C311—C310 117.8 (3)
O22i—C21—C22 117.4 (2) C312—C311—H311 121.1
O21—C21—C22 117.3 (2) C310—C311—H311 121.1
C23—C22—C27 119.2 (3) N32—C312—C311 123.6 (3)
C23—C22—C21 120.0 (3) N32—C312—H312 118.2
C27—C22—C21 120.8 (3) C311—C312—H312 118.2
C24—C23—C22 120.1 (4)
O12i—C11—C12—C13 179.8 (3) C21—C22—C27—C26 175.3 (3)
O11—C11—C12—C13 1.0 (4) C35—N31—C31—C32 −2.1 (4)
O12i—C11—C12—C17 1.5 (4) N31—C31—C32—C33 1.1 (5)
O11—C11—C12—C17 −177.2 (3) C31—C32—C33—C34 0.9 (4)
C17—C12—C13—C14 1.3 (5) C31—C32—C33—C36 −178.9 (3)
C11—C12—C13—C14 −177.0 (3) C32—C33—C34—C35 −1.7 (4)
C12—C13—C14—C15 −0.1 (5) C36—C33—C34—C35 178.1 (3)
C13—C14—C15—C16 −0.5 (6) C31—N31—C35—C34 1.3 (4)
C14—C15—C16—C17 −0.1 (6) C33—C34—C35—N31 0.7 (4)
C15—C16—C17—C12 1.2 (5) C34—C33—C36—C37 4.5 (5)
C13—C12—C17—C16 −1.8 (4) C32—C33—C36—C37 −175.6 (3)
C11—C12—C17—C16 176.5 (3) C33—C36—C37—C38 −177.6 (3)
O22i—C21—C22—C23 −5.7 (4) C312—N32—C38—C39 0.0 (5)
O21—C21—C22—C23 173.3 (3) C312—N32—C38—C37 −179.4 (3)
O22i—C21—C22—C27 176.9 (3) C36—C37—C38—N32 175.1 (3)
O21—C21—C22—C27 −4.1 (4) C36—C37—C38—C39 −4.4 (5)
C27—C22—C23—C24 2.9 (6) N32—C38—C39—C310 0.2 (5)
C21—C22—C23—C24 −174.5 (4) C37—C38—C39—C310 179.6 (3)
C22—C23—C24—C25 −1.6 (7) C38—C39—C310—C311 −0.9 (5)
C23—C24—C25—C26 −0.5 (8) C39—C310—C311—C312 1.3 (5)
C24—C25—C26—C27 1.4 (7) C38—N32—C312—C311 0.4 (5)
C25—C26—C27—C22 0.0 (6) C310—C311—C312—N32 −1.1 (5)
C23—C22—C27—C26 −2.1 (5)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2505).

References

  1. Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Daniele, P. G., Foti, C., Gianguzza, A., Prenesti, E. & Sammartano, S. (2008). Coord. Chem. Rev 252, 1093–1107.
  3. Karmakar, A., Sarma, R. J. & Baruah, J. B. (2006). Inorg. Chem. Commun 9, 1169-1172.
  4. Lee, E. Y., Park, B. K., Kim, C., Kim, S.-J. & Kim, Y. (2008). Acta Cryst. E64, m286. [DOI] [PMC free article] [PubMed]
  5. Necefoglu, H., Clegg, W. & Scott, A. J. (2002). Acta Cryst. E58, m121–m122.
  6. Ohmura, T., Mori, W., Takei, T., Ikeda, T. & Maeda, A. (2005). Mater. Sci. Pol. 23, 729–736.
  7. Park, B. K., Jang, K.-H., Kim, P.-G., Kim, C. & Kim, Y. (2008). Acta Cryst. E64, m1141. [DOI] [PMC free article] [PubMed]
  8. Parkin, G. (2004). Chem. Rev 104, 699–767. [DOI] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Shin, D. H., Han, S.-H., Kim, P.-G., Kim, C. & Kim, Y. (2009). Acta Cryst. E65, m658–m659. [DOI] [PMC free article] [PubMed]
  11. Tshuva, E. Y. & Lippard, S. J. (2004). Chem. Rev 104, 987–1012. [DOI] [PubMed]
  12. Yu, S. M., Park, C.-H., Kim, P.-G., Kim, C. & Kim, Y. (2008). Acta Cryst. E64, m881–m882. [DOI] [PMC free article] [PubMed]
  13. Yu, S. M., Shin, D. H., Kim, P.-G., Kim, C. & Kim, Y. (2009). Acta Cryst. E65, m1045–m1046. [DOI] [PMC free article] [PubMed]
  14. Zeleňák, V., Sabo, M., Massa, W. & Černák, J. (2004). Acta Cryst. C60, m85–m87. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809045048/dn2505sup1.cif

e-65-m1495-sup1.cif (22.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809045048/dn2505Isup2.hkl

e-65-m1495-Isup2.hkl (212.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES