Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Nov 18;65(Pt 12):o3119. doi: 10.1107/S1600536809048715

N-(2,5-Dichloro­phen­yl)maleamic acid

K Shakuntala a, B Thimme Gowda a,*, Miroslav Tokarčík b, Jozef Kožíšek b
PMCID: PMC2972031  PMID: 21578844

Abstract

The asymmetric unit of the title compound, C10H7Cl2NO3, contains two independent mol­ecules. The mol­ecular conformation of each maleamic unit is stabilized by an intra­molecular O—H⋯Ocarbon­yl hydrogen bond owing to the anti disposition of the participating entities. The mean planes through the benzene ring and the amido group are inclined at angles of 45.7 (1) and 40.8 (1)° in the two mol­ecules. In the crystal, the independent mol­ecules self-associate via N—H⋯O hydrogen bonds into zigzag ribbons propagating along the a axis. The ribbons are weakly coupled by C—H⋯π and C—H⋯O inter­actions.

Related literature

For related structures, see: Gowda, Foro et al. (2009); Gowda, Tokarčík et al. (2009a,b ); Leiserowitz (1976); Lo & Ng (2009); Prasad et al. (2002).graphic file with name e-65-o3119-scheme1.jpg

Experimental

Crystal data

  • C10H7Cl2NO3

  • M r = 260.07

  • Orthorhombic, Inline graphic

  • a = 13.1618 (2) Å

  • b = 14.6993 (2) Å

  • c = 22.8406 (3) Å

  • V = 4418.95 (11) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.58 mm−1

  • T = 295 K

  • 0.40 × 0.33 × 0.24 mm

Data collection

  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: analytical (CrysAlis Pro ; Oxford Diffraction, 2009) T min = 0.836, T max = 0.892

  • 61823 measured reflections

  • 4191 independent reflections

  • 3514 reflections with I > 2σ(I)

  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028

  • wR(F 2) = 0.079

  • S = 1.08

  • 4191 reflections

  • 289 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: CrysAlis Pro (Oxford Diffraction, 2009); cell refinement: CrysAlis Pro ; data reduction: CrysAlis Pro ; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809048715/tk2578sup1.cif

e-65-o3119-sup1.cif (20.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809048715/tk2578Isup2.hkl

e-65-o3119-Isup2.hkl (201.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O3i 0.86 2.07 2.8938 (17) 160
N2—H2N⋯O6ii 0.86 2.09 2.9263 (17) 164
O2—H2A⋯O1 0.82 1.68 2.4979 (15) 175
O5—H5A⋯O4 0.82 1.68 2.4846 (15) 166
C7—H7⋯Cg2 0.93 2.77 3.6745 (15) 163
C18—H18⋯O5iii 0.93 2.58 3.4186 (19) 151

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic. Cg2 is the centroid of the C15–C20 ring.

Acknowledgments

MT and JK thank the Grant Agency of the Slovak Republic (VEGA 1/0817/08) and Structural Funds, Interreg IIIA, for financial support in purchasing the diffractometer.

supplementary crystallographic information

Comment

As a part of studying the effect of ring- and side-chain substitutions on the crystal structures of biologically significant amides (Gowda, Foro et al., 2009; Gowda, Tokarčík et al., 2009a,b; Prasad et al., 2002), the crystal structure of N-(2,5-dichlorophenyl)-maleamic acid (I) has been determined. The asymmetric unit of (I) contains two independent molecules (Fig. 1). The conformations of the N—H and C=O bonds in the amide segment of the structure are anti to each other, and those of the amide-O atom and the carbonyl-O atom of the acid segment are also anti to each other. The anti conformation of the C=O and O—H bonds of the acid group is comparatively rare and has been observed previously in N-phenylmaleamic acid (Lo & Ng, 2009), N-(2,6-dimethylphenyl)maleamic acid (Gowda, Tokarčík et al., 2009a), and N-(3,4-dimethylphenyl)maleamic acid (Gowda, Tokarčík et al., 2009b). The various modes of interlinking carboxylic acids by hydrogen bonds is described elsewhere (Leiserowitz, 1976). Each maleamic moiety includes a short intramolecular hydrogen O–H···O bond (Table 1). The mean planes through the phenyl ring and the amido group –NHCO– form dihedral angles of 45.7 (1) and 40.8 (1) ° in the first and second molecules, respectively. All non-hydrogen atoms of the maleamic moiety in the first molecule fit very well to a plane, having the r.m.s. deviation of fitted atoms 0.013 Å. The mean plane through the maleamic moiety in the second molecule has a r.m.s. deviation of 0.098 Å. In the crystal structure, intermolecular N–H···O hydrogen bonds link self-associated molecules into two distinct zig-zag ribbons propagating in the [1 0 0] direction (Fig. 2). These ribbons are weakly coupled by a C—H···π interaction, with atom C7-H acting as the donor and the aryl ring C15—C20 as the acceptor. The centroid of the C15—C20 ring is denoted Cg2 in the Table 1.

Experimental

A solution of maleic anhydride (0.025 mol) in toluene (25 ml) was treated drop-wise with a solution of 2,5-dichloroaniline (0.025 mol) also in toluene (20 ml) with constant stirring. The resulting mixture was warmed with stirring for 30 min and set aside for an additional 30 min at room temperature for completion of the reaction. The mixture was then treated with dilute hydrochloric acid to remove the unreacted 2,5-dichloroaniline. The resultant solid N-(2,5-dichlorophenyl)maleamic acid was filtered under suction and washed thoroughly with water to remove the unreacted maleic anhydride and maleic acid. It was recrystallized to constant melting point from ethanol. Colourless crystals were grown by slow evaporation (room temperature) of an ethanol solution of (I).

Refinement

H atoms were visible in difference maps and were subsequently treated as riding atoms with distances 0.93Å (CH), 0.86Å (NH) and 0.82Å (OH). The Uiso(H) values were set at 1.2Ueq(C,N,O).

Figures

Fig. 1.

Fig. 1.

Molecular structure of (I) showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

Part of crystal structure of (I) showing 1-D zig-zag supramolecular chains generated by N—H···O hydrogen bonds (dashed lines). Symmetry codes (i) x - 1/2,y,-z + 1/2; (ii) x - 1/2,y,-z + 3/2.

Crystal data

C10H7Cl2NO3 F(000) = 2112
Mr = 260.07 Dx = 1.564 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 31107 reflections
a = 13.1618 (2) Å θ = 1.6–29.5°
b = 14.6993 (2) Å µ = 0.58 mm1
c = 22.8406 (3) Å T = 295 K
V = 4418.95 (11) Å3 Block, colourless
Z = 16 0.40 × 0.33 × 0.24 mm

Data collection

Oxford Diffraction Xcalibur Ruby Gemini diffractometer 4191 independent reflections
graphite 3514 reflections with I > 2σ(I)
Detector resolution: 10.434 pixels mm-1 Rint = 0.029
ω scans θmax = 25.7°, θmin = 2.3°
Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2009) h = −16→16
Tmin = 0.836, Tmax = 0.892 k = −17→17
61823 measured reflections l = −27→27

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079 H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0445P)2 + 0.705P] where P = (Fo2 + 2Fc2)/3
4191 reflections (Δ/σ)max = 0.001
289 parameters Δρmax = 0.22 e Å3
0 restraints Δρmin = −0.25 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.73471 (10) −0.00911 (10) 0.32684 (6) 0.0350 (3)
C2 0.72297 (11) −0.04413 (10) 0.26641 (7) 0.0415 (3)
H2 0.6567 −0.0563 0.2547 0.05*
C3 0.79490 (12) −0.06048 (11) 0.22658 (7) 0.0441 (4)
H3 0.7699 −0.0823 0.1912 0.053*
C4 0.90735 (12) −0.05043 (11) 0.22796 (7) 0.0441 (4)
C5 0.63841 (10) 0.02870 (9) 0.41515 (6) 0.0339 (3)
C6 0.56221 (11) 0.08972 (9) 0.43094 (6) 0.0364 (3)
C7 0.54753 (12) 0.11305 (10) 0.48908 (7) 0.0415 (3)
H7 0.4961 0.1535 0.4992 0.05*
C8 0.60896 (11) 0.07648 (10) 0.53206 (7) 0.0416 (3)
H8 0.5994 0.0918 0.5712 0.05*
C9 0.68479 (11) 0.01675 (10) 0.51585 (6) 0.0374 (3)
C10 0.70068 (11) −0.00722 (10) 0.45830 (6) 0.0363 (3)
H10 0.7527 −0.0472 0.4485 0.044*
N1 0.64725 (9) 0.00060 (8) 0.35603 (5) 0.0376 (3)
H1N 0.592 −0.0112 0.3374 0.045*
O1 0.81770 (8) 0.01020 (8) 0.34893 (4) 0.0466 (3)
O2 0.95290 (9) −0.01830 (9) 0.27441 (5) 0.0616 (3)
H2A 0.9105 −0.0062 0.2995 0.092*
O3 0.95614 (9) −0.07270 (9) 0.18517 (5) 0.0602 (3)
Cl1 0.48365 (3) 0.13629 (3) 0.378143 (19) 0.05137 (12)
Cl2 0.76232 (3) −0.03099 (3) 0.569340 (18) 0.05382 (13)
C11 0.54290 (10) 0.29825 (10) 0.65172 (6) 0.0359 (3)
C12 0.55854 (11) 0.30418 (11) 0.71586 (6) 0.0415 (4)
H12 0.4998 0.3071 0.7384 0.05*
C13 0.64578 (11) 0.30582 (11) 0.74530 (6) 0.0420 (3)
H13 0.6379 0.31 0.7857 0.05*
C14 0.75294 (11) 0.30223 (11) 0.72582 (7) 0.0410 (3)
C15 0.41539 (10) 0.31099 (9) 0.57492 (6) 0.0349 (3)
C16 0.32356 (11) 0.27102 (9) 0.55905 (7) 0.0366 (3)
C17 0.29294 (12) 0.26877 (10) 0.50117 (7) 0.0444 (4)
H17 0.2322 0.2405 0.491 0.053*
C18 0.35224 (13) 0.30829 (11) 0.45862 (7) 0.0471 (4)
H18 0.3326 0.3062 0.4195 0.057*
C19 0.44124 (12) 0.35108 (10) 0.47466 (7) 0.0423 (4)
C20 0.47341 (11) 0.35263 (10) 0.53203 (7) 0.0397 (3)
H20 0.5339 0.3815 0.5419 0.048*
N2 0.44678 (9) 0.31040 (9) 0.63412 (5) 0.0386 (3)
H2N 0.4011 0.3184 0.6606 0.046*
O4 0.61248 (8) 0.28343 (8) 0.61652 (4) 0.0496 (3)
O5 0.77523 (8) 0.28321 (10) 0.67163 (5) 0.0590 (3)
H5A 0.7227 0.2744 0.6532 0.089*
O6 0.81990 (9) 0.31650 (10) 0.76074 (6) 0.0696 (4)
Cl3 0.24556 (3) 0.22391 (3) 0.61215 (2) 0.05196 (12)
Cl4 0.51489 (4) 0.40468 (4) 0.42195 (2) 0.06528 (15)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0294 (8) 0.0400 (8) 0.0355 (8) 0.0015 (6) 0.0014 (6) 0.0035 (6)
C2 0.0301 (8) 0.0553 (9) 0.0390 (8) −0.0023 (6) −0.0013 (6) −0.0030 (7)
C3 0.0413 (8) 0.0563 (9) 0.0347 (8) −0.0033 (7) 0.0042 (7) −0.0038 (7)
C4 0.0385 (8) 0.0509 (9) 0.0431 (9) 0.0007 (7) 0.0099 (7) 0.0071 (7)
C5 0.0272 (7) 0.0384 (7) 0.0362 (7) 0.0001 (6) 0.0043 (6) −0.0015 (6)
C6 0.0296 (7) 0.0363 (7) 0.0434 (8) 0.0015 (6) 0.0032 (6) 0.0027 (6)
C7 0.0366 (8) 0.0384 (8) 0.0494 (9) 0.0028 (6) 0.0099 (7) −0.0059 (7)
C8 0.0443 (8) 0.0428 (8) 0.0376 (8) −0.0030 (7) 0.0086 (7) −0.0067 (6)
C9 0.0365 (8) 0.0389 (8) 0.0369 (8) −0.0043 (6) 0.0000 (6) 0.0017 (6)
C10 0.0303 (7) 0.0398 (8) 0.0390 (8) 0.0046 (6) 0.0033 (6) −0.0005 (6)
N1 0.0269 (6) 0.0513 (7) 0.0346 (6) 0.0040 (5) −0.0002 (5) −0.0021 (5)
O1 0.0311 (6) 0.0708 (7) 0.0381 (6) −0.0067 (5) 0.0014 (5) −0.0048 (5)
O2 0.0323 (6) 0.1000 (10) 0.0524 (7) −0.0044 (6) 0.0077 (5) −0.0069 (7)
O3 0.0476 (7) 0.0808 (9) 0.0523 (7) −0.0011 (6) 0.0219 (6) −0.0027 (6)
Cl1 0.0399 (2) 0.0602 (3) 0.0540 (2) 0.01679 (18) −0.00180 (18) 0.00427 (19)
Cl2 0.0543 (3) 0.0671 (3) 0.0401 (2) 0.0055 (2) −0.00553 (18) 0.00738 (18)
C11 0.0255 (7) 0.0469 (8) 0.0352 (8) −0.0010 (6) −0.0001 (6) −0.0043 (6)
C12 0.0253 (7) 0.0661 (10) 0.0331 (8) 0.0018 (7) 0.0046 (6) −0.0053 (7)
C13 0.0325 (8) 0.0634 (9) 0.0300 (7) 0.0007 (7) 0.0005 (6) −0.0079 (7)
C14 0.0284 (7) 0.0562 (9) 0.0385 (8) −0.0011 (6) −0.0045 (7) 0.0018 (7)
C15 0.0275 (7) 0.0399 (8) 0.0371 (8) 0.0039 (6) −0.0037 (6) −0.0061 (6)
C16 0.0295 (7) 0.0344 (7) 0.0460 (8) 0.0021 (6) −0.0031 (6) −0.0047 (6)
C17 0.0375 (8) 0.0430 (9) 0.0528 (10) 0.0028 (7) −0.0152 (7) −0.0104 (7)
C18 0.0519 (10) 0.0502 (9) 0.0393 (8) 0.0115 (8) −0.0133 (7) −0.0074 (7)
C19 0.0418 (9) 0.0452 (8) 0.0398 (8) 0.0119 (7) 0.0017 (7) 0.0013 (7)
C20 0.0309 (8) 0.0447 (8) 0.0435 (9) 0.0003 (6) −0.0019 (6) −0.0039 (7)
N2 0.0242 (6) 0.0577 (8) 0.0339 (6) 0.0000 (5) 0.0004 (5) −0.0058 (5)
O4 0.0305 (6) 0.0850 (8) 0.0334 (5) 0.0094 (5) 0.0014 (5) −0.0056 (5)
O5 0.0273 (6) 0.1095 (10) 0.0403 (6) 0.0074 (6) 0.0025 (5) −0.0009 (6)
O6 0.0334 (6) 0.1215 (11) 0.0539 (7) −0.0072 (7) −0.0134 (6) −0.0058 (7)
Cl3 0.0386 (2) 0.0552 (3) 0.0621 (3) −0.01198 (17) 0.00285 (18) −0.00156 (19)
Cl4 0.0633 (3) 0.0810 (3) 0.0515 (3) 0.0115 (2) 0.0144 (2) 0.0150 (2)

Geometric parameters (Å, °)

C1—O1 1.2364 (17) C11—O4 1.2380 (17)
C1—N1 1.3378 (18) C11—N2 1.3395 (18)
C1—C2 1.481 (2) C11—C12 1.482 (2)
C2—C3 1.335 (2) C12—C13 1.331 (2)
C2—H2 0.93 C12—H12 0.93
C3—C4 1.488 (2) C13—C14 1.480 (2)
C3—H3 0.93 C13—H13 0.93
C4—O3 1.2143 (19) C14—O6 1.2070 (19)
C4—O2 1.307 (2) C14—O5 1.3024 (19)
C5—C10 1.386 (2) C15—C20 1.385 (2)
C5—C6 1.3931 (19) C15—C16 1.392 (2)
C5—N1 1.4168 (18) C15—N2 1.4141 (18)
C6—C7 1.385 (2) C16—C17 1.382 (2)
C6—Cl1 1.7298 (15) C16—Cl3 1.7334 (15)
C7—C8 1.381 (2) C17—C18 1.375 (2)
C7—H7 0.93 C17—H17 0.93
C8—C9 1.380 (2) C18—C19 1.379 (2)
C8—H8 0.93 C18—H18 0.93
C9—C10 1.377 (2) C19—C20 1.377 (2)
C9—Cl2 1.7397 (15) C19—Cl4 1.7349 (16)
C10—H10 0.93 C20—H20 0.93
N1—H1N 0.86 N2—H2N 0.86
O2—H2A 0.82 O5—H5A 0.82
O1—C1—N1 122.16 (13) O4—C11—N2 121.82 (13)
O1—C1—C2 123.52 (13) O4—C11—C12 123.35 (13)
N1—C1—C2 114.32 (13) N2—C11—C12 114.83 (12)
C3—C2—C1 128.59 (14) C13—C12—C11 128.35 (13)
C3—C2—H2 115.7 C13—C12—H12 115.8
C1—C2—H2 115.7 C11—C12—H12 115.8
C2—C3—C4 132.31 (15) C12—C13—C14 132.04 (14)
C2—C3—H3 113.8 C12—C13—H13 114
C4—C3—H3 113.8 C14—C13—H13 114
O3—C4—O2 120.55 (15) O6—C14—O5 120.06 (14)
O3—C4—C3 118.83 (15) O6—C14—C13 119.40 (14)
O2—C4—C3 120.62 (13) O5—C14—C13 120.54 (13)
C10—C5—C6 119.12 (13) C20—C15—C16 118.76 (13)
C10—C5—N1 121.19 (12) C20—C15—N2 121.22 (13)
C6—C5—N1 119.59 (13) C16—C15—N2 120.01 (13)
C7—C6—C5 120.54 (14) C17—C16—C15 120.82 (14)
C7—C6—Cl1 119.15 (11) C17—C16—Cl3 119.13 (12)
C5—C6—Cl1 120.30 (11) C15—C16—Cl3 120.05 (11)
C8—C7—C6 120.24 (14) C18—C17—C16 120.01 (14)
C8—C7—H7 119.9 C18—C17—H17 120
C6—C7—H7 119.9 C16—C17—H17 120
C9—C8—C7 118.71 (14) C17—C18—C19 119.13 (14)
C9—C8—H8 120.6 C17—C18—H18 120.4
C7—C8—H8 120.6 C19—C18—H18 120.4
C10—C9—C8 121.93 (14) C20—C19—C18 121.43 (15)
C10—C9—Cl2 118.56 (11) C20—C19—Cl4 118.75 (13)
C8—C9—Cl2 119.50 (11) C18—C19—Cl4 119.82 (12)
C9—C10—C5 119.44 (13) C19—C20—C15 119.76 (14)
C9—C10—H10 120.3 C19—C20—H20 120.1
C5—C10—H10 120.3 C15—C20—H20 120.1
C1—N1—C5 125.22 (12) C11—N2—C15 124.31 (12)
C1—N1—H1N 117.4 C11—N2—H2N 117.8
C5—N1—H1N 117.4 C15—N2—H2N 117.8
C4—O2—H2A 109.5 C14—O5—H5A 109.5
O1—C1—C2—C3 −0.1 (3) O4—C11—C12—C13 8.6 (3)
N1—C1—C2—C3 179.57 (16) N2—C11—C12—C13 −171.30 (16)
C1—C2—C3—C4 0.2 (3) C11—C12—C13—C14 −0.2 (3)
C2—C3—C4—O3 178.25 (18) C12—C13—C14—O6 170.54 (18)
C2—C3—C4—O2 −1.7 (3) C12—C13—C14—O5 −10.0 (3)
C10—C5—C6—C7 −1.1 (2) C20—C15—C16—C17 3.2 (2)
N1—C5—C6—C7 175.32 (13) N2—C15—C16—C17 −178.24 (13)
C10—C5—C6—Cl1 179.64 (11) C20—C15—C16—Cl3 −176.38 (11)
N1—C5—C6—Cl1 −3.89 (19) N2—C15—C16—Cl3 2.19 (18)
C5—C6—C7—C8 0.5 (2) C15—C16—C17—C18 −1.6 (2)
Cl1—C6—C7—C8 179.72 (11) Cl3—C16—C17—C18 177.97 (11)
C6—C7—C8—C9 0.1 (2) C16—C17—C18—C19 −1.0 (2)
C7—C8—C9—C10 0.0 (2) C17—C18—C19—C20 2.0 (2)
C7—C8—C9—Cl2 −179.39 (11) C17—C18—C19—Cl4 −177.81 (12)
C8—C9—C10—C5 −0.6 (2) C18—C19—C20—C15 −0.4 (2)
Cl2—C9—C10—C5 178.73 (11) Cl4—C19—C20—C15 179.43 (11)
C6—C5—C10—C9 1.2 (2) C16—C15—C20—C19 −2.2 (2)
N1—C5—C10—C9 −175.21 (13) N2—C15—C20—C19 179.26 (13)
O1—C1—N1—C5 −3.4 (2) O4—C11—N2—C15 −2.4 (2)
C2—C1—N1—C5 176.88 (13) C12—C11—N2—C15 177.50 (13)
C10—C5—N1—C1 −45.1 (2) C20—C15—N2—C11 −39.9 (2)
C6—C5—N1—C1 138.55 (15) C16—C15—N2—C11 141.55 (14)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O3i 0.86 2.07 2.8938 (17) 160
N2—H2N···O6ii 0.86 2.09 2.9263 (17) 164
O2—H2A···O1 0.82 1.68 2.4979 (15) 175
O5—H5A···O4 0.82 1.68 2.4846 (15) 166
C7—H7···Cg2 0.93 2.77 3.6745 (15) 163
C18—H18···O5iii 0.93 2.58 3.4186 (19) 151
C20—H20···O4 0.93 2.46 2.8477 (18) 105

Symmetry codes: (i) x−1/2, y, −z+1/2; (ii) x−1/2, y, −z+3/2; (iii) x−1/2, −y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2578).

References

  1. Brandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  2. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  3. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  4. Gowda, B. T., Foro, S., Saraswathi, B. S., Terao, H. & Fuess, H. (2009). Acta Cryst. E65, o466. [DOI] [PMC free article] [PubMed]
  5. Gowda, B. T., Tokarčík, M., Kožíšek, J., Shakuntala, K. & Fuess, H. (2009a). Acta Cryst. E65, o2807. [DOI] [PMC free article] [PubMed]
  6. Gowda, B. T., Tokarčík, M., Kožíšek, J., Shakuntala, K. & Fuess, H. (2009b). Acta Cryst. E65, o2874. [DOI] [PMC free article] [PubMed]
  7. Leiserowitz, L. (1976). Acta Cryst. B32, 775–802.
  8. Lo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, o1101. [DOI] [PMC free article] [PubMed]
  9. Oxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England.
  10. Prasad, S. M., Sinha, R. B. P., Mandal, D. K. & Rani, A. (2002). Acta Cryst. E58, o891–o892.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809048715/tk2578sup1.cif

e-65-o3119-sup1.cif (20.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809048715/tk2578Isup2.hkl

e-65-o3119-Isup2.hkl (201.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES