Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Nov 11;65(Pt 12):o3054. doi: 10.1107/S1600536809046522

1-(3-Pyrid­yl)pyrrolidine-2,5-dione

Hong-Bo Hou a,*, Yi-Ming Liu a, Luan-Fang Yang a
PMCID: PMC2972032  PMID: 21578786

Abstract

In the title mol­ecule, C9H8N2O2, the dihedral angle between the pyridine and the pyrrolidine rings is 64.58 (12)°. In the crystal structure, weak C—H⋯π-electron ring inter­actions stabilize the packing.

Related literature

For general background to the pharmaceutical properties of pyrrolidine-2,5-dione derivatives, see: Procopiou et al. (1993); Obniska et al. (2009). graphic file with name e-65-o3054-scheme1.jpg

Experimental

Crystal data

  • C9H8N2O2

  • M r = 176.17

  • Orthorhombic, Inline graphic

  • a = 12.137 (8) Å

  • b = 10.838 (6) Å

  • c = 6.831 (4) Å

  • V = 898.6 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.25 × 0.21 × 0.17 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.977, T max = 0.984

  • 3927 measured reflections

  • 852 independent reflections

  • 672 reflections with I > 2σ(I)

  • R int = 0.073

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033

  • wR(F 2) = 0.069

  • S = 1.00

  • 852 reflections

  • 119 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.11 e Å−3

  • Δρmin = −0.10 e Å−3

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809046522/fb2172sup1.cif

e-65-o3054-sup1.cif (14KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809046522/fb2172Isup2.hkl

e-65-o3054-Isup2.hkl (41.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å).

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8BCg i 0.97 2.78 3.742 (6) 172

Symmetry code: (i) Inline graphic. Cg is the centroid of the N1,C1–C5 ring.

Acknowledgments

The authors gratefully acknowledge the Natural Science Foundation of Bao Shan College (No. 09B004K) for financial support.

supplementary crystallographic information

Comment

The derivatives of pyrrolidine-2,5-dione possess valuable pharmaceutical properties (Obniska et al., 2009), among others are inhibitors of the cholesterol biosynthesis (Procopiou et al., 1993). These interesting properties lead us to develop pyrrolidine derivatives containing the pyrrolidine-2,5-dione and the pyridine groups. In this paper, the synthesis of one of these compounds and its crystal structure are reported.

In the title molecule (Fig. 1), the dihedral angle between the pyridine and the pyrrolidine rings equals to 64.58 (12)°, There are C—H···π-electron ring interactions between the hydrogen atom H8B stemming from the pyrrolidine ring and the pyridine ring that serves as an acceptor (Tab. 1).

Experimental

Solution of pyrrolidine-2,5-dione (0.04 mol) in ethanol (96%, 15 ml) was added to a stirred ethanol solution (96%, 25 ml) of 3-chloropyridine (0.04 mol) at room temperature, then KOH (0.01 mol) and tetrabutylammonium bromide (0.005 mol) was added to the resulting solution. This mixture was heated at 323 K for 4 h and then cooled to room temperature. After 30 ml of water had been added to this mixture, a white precipitate appeared. The mixture was filtered, the residue was dried under a reduced pressure in a vacuum drying box for 3 hours, then the residue was dissolved in 100 ml of ethanol (96%), and set aside for five days to obtain colourless block crystals suitable for X-ray analysis. Yield: 43%.

Refinement

All the H atoms were discernible in the difference electron density maps. However, the hydrogens were constrained by the riding model approximation. C—Hmethyl=0.96 Å; C—Haryl=0.93 Å; UisoHmethyl=1.5Ueq(Cmethyl); UisoHaryl=1.2Ueq(Caryl). In the absence of significant anomalous scattering effects 626 Friedel pairs have been merged.

Figures

Fig. 1.

Fig. 1.

The title molecule with the atom-labelling scheme. The displacement ellipsoids are drawn at the 50% probability level.

Crystal data

C9H8N2O2 F(000) = 368
Mr = 176.17 Dx = 1.302 Mg m3
Orthorhombic, Pna21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2n Cell parameters from 852 reflections
a = 12.137 (8) Å θ = 2.5–25.0°
b = 10.838 (6) Å µ = 0.10 mm1
c = 6.831 (4) Å T = 293 K
V = 898.6 (9) Å3 Block, colourless
Z = 4 0.25 × 0.21 × 0.17 mm

Data collection

Bruker SMART CCD area-detector diffractometer 852 independent reflections
Radiation source: fine-focus sealed tube 672 reflections with I > 2σ(I)
graphite Rint = 0.073
φ and ω scans θmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −13→14
Tmin = 0.977, Tmax = 0.984 k = −12→12
3927 measured reflections l = −8→7

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033 H-atom parameters constrained
wR(F2) = 0.069 w = 1/[σ2(Fo2) + (0.0287P)2] where P = (Fo2 + 2Fc2)/3
S = 1.00 (Δ/σ)max < 0.001
852 reflections Δρmax = 0.11 e Å3
119 parameters Δρmin = −0.10 e Å3
1 restraint Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
32 constraints Extinction coefficient: 0.128 (8)
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.46710 (19) 0.76727 (18) 0.7705 (4) 0.0421 (6)
C2 0.5641 (2) 0.7232 (2) 0.8551 (4) 0.0576 (8)
H2 0.5847 0.7545 0.9764 0.069*
C3 0.5975 (2) 0.5948 (2) 0.5932 (5) 0.0653 (9)
H3 0.6408 0.5352 0.5327 0.078*
C4 0.5034 (2) 0.6353 (2) 0.4968 (4) 0.0661 (8)
H4 0.4853 0.6040 0.3742 0.079*
C5 0.4364 (2) 0.7235 (2) 0.5857 (5) 0.0563 (8)
H5 0.3731 0.7523 0.5240 0.068*
C6 0.34810 (18) 0.8409 (2) 1.0491 (4) 0.0508 (7)
C7 0.29704 (19) 0.9616 (2) 1.1138 (4) 0.0578 (8)
H7A 0.3299 0.9897 1.2353 0.069*
H7B 0.2183 0.9524 1.1328 0.069*
C8 0.3213 (2) 1.0532 (2) 0.9462 (5) 0.0565 (8)
H8A 0.2534 1.0823 0.8874 0.068*
H8B 0.3625 1.1237 0.9943 0.068*
C9 0.38857 (18) 0.9809 (2) 0.8001 (5) 0.0505 (7)
N1 0.62967 (18) 0.63755 (19) 0.7709 (4) 0.0668 (7)
N2 0.40243 (14) 0.86060 (15) 0.8703 (3) 0.0417 (5)
O1 0.34353 (16) 0.74092 (18) 1.1328 (4) 0.0784 (7)
O2 0.42619 (16) 1.01652 (17) 0.6419 (4) 0.0797 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0410 (13) 0.0403 (13) 0.0449 (17) −0.0047 (10) −0.0005 (13) 0.0029 (13)
C2 0.0566 (15) 0.0605 (16) 0.056 (2) 0.0107 (12) −0.0101 (15) −0.0018 (14)
C3 0.0721 (19) 0.0532 (16) 0.071 (2) 0.0082 (12) 0.0108 (19) −0.0073 (16)
C4 0.0749 (18) 0.0639 (17) 0.060 (2) −0.0014 (15) −0.0085 (17) −0.0176 (14)
C5 0.0496 (15) 0.0607 (17) 0.059 (2) −0.0035 (12) −0.0103 (14) −0.0036 (15)
C6 0.0493 (14) 0.0581 (16) 0.0450 (19) −0.0032 (13) −0.0024 (13) 0.0052 (15)
C7 0.0484 (13) 0.0743 (17) 0.051 (2) −0.0007 (13) 0.0042 (16) −0.0066 (15)
C8 0.0445 (14) 0.0513 (15) 0.074 (2) 0.0018 (12) 0.0013 (14) −0.0083 (16)
C9 0.0395 (12) 0.0501 (15) 0.062 (2) −0.0033 (10) 0.0001 (14) 0.0065 (15)
N1 0.0668 (15) 0.0652 (15) 0.0684 (19) 0.0207 (11) −0.0052 (15) −0.0076 (15)
N2 0.0380 (10) 0.0427 (12) 0.0445 (14) −0.0003 (8) −0.0008 (10) 0.0044 (10)
O1 0.0992 (15) 0.0735 (13) 0.0624 (15) 0.0008 (11) 0.0115 (14) 0.0195 (11)
O2 0.0846 (13) 0.0681 (13) 0.0864 (17) 0.0147 (10) 0.0343 (13) 0.0302 (13)

Geometric parameters (Å, °)

C1—C2 1.396 (4) C6—O1 1.226 (3)
C1—C5 1.399 (4) C6—N2 1.404 (3)
C1—N2 1.450 (3) C6—C7 1.514 (4)
C2—N1 1.351 (3) C7—C8 1.544 (4)
C2—H2 0.9300 C7—H7A 0.9700
C3—N1 1.356 (4) C7—H7B 0.9700
C3—C4 1.390 (4) C8—C9 1.509 (4)
C3—H3 0.9300 C8—H8A 0.9700
C4—C5 1.393 (4) C8—H8B 0.9700
C4—H4 0.9300 C9—O2 1.235 (4)
C5—H5 0.9300 C9—N2 1.400 (3)
C2—C1—C5 118.8 (2) C6—C7—H7A 110.7
C2—C1—N2 120.0 (3) C8—C7—H7A 110.7
C5—C1—N2 121.1 (2) C6—C7—H7B 110.7
N1—C2—C1 123.8 (3) C8—C7—H7B 110.7
N1—C2—H2 118.1 H7A—C7—H7B 108.8
C1—C2—H2 118.1 C9—C8—C7 105.1 (2)
N1—C3—C4 123.6 (3) C9—C8—H8A 110.7
N1—C3—H3 118.2 C7—C8—H8A 110.7
C4—C3—H3 118.2 C9—C8—H8B 110.7
C3—C4—C5 119.3 (3) C7—C8—H8B 110.7
C3—C4—H4 120.4 H8A—C8—H8B 108.8
C5—C4—H4 120.4 O2—C9—N2 123.1 (2)
C4—C5—C1 118.1 (3) O2—C9—C8 128.1 (2)
C4—C5—H5 121.0 N2—C9—C8 108.8 (3)
C1—C5—H5 121.0 C2—N1—C3 116.5 (2)
O1—C6—N2 124.2 (2) C9—N2—C6 112.6 (2)
O1—C6—C7 127.5 (3) C9—N2—C1 123.6 (2)
N2—C6—C7 108.3 (2) C6—N2—C1 123.8 (2)
C6—C7—C8 105.1 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C8—H8B···Cgi 0.97 2.78 3.742 (6) 172

Symmetry codes: (i) −x+1, −y+2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FB2172).

References

  1. Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  5. Obniska, J., Kaminski, K., Skrzynska, D. & Pichor, J. (2009). Eur. J. Med. Chem. 44, 2224–2233. [DOI] [PubMed]
  6. Procopiou, P. A., Draper, C. D., Hutson, J. L., Inglis, G. A., Ross, B. C. & Watson, N. S. (1993). J. Med. Chem. 36, 3658–3662. [DOI] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809046522/fb2172sup1.cif

e-65-o3054-sup1.cif (14KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809046522/fb2172Isup2.hkl

e-65-o3054-Isup2.hkl (41.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES