Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Nov 21;65(Pt 12):o3152–o3153. doi: 10.1107/S1600536809048739

N′-[(E)-Benzyl­idene]-1-ethyl-7-methyl-4-oxo-1,4-dihydro-1,8-naphthyridine-3-carbohydrazide

Farah Deeba a, Misbahul Ain Khan b, Muhammad Zia-ur-Rehman a,*, Ertan Şahin c, Nagihan Çaylak d
PMCID: PMC2972033  PMID: 21578871

Abstract

In the title compound, C19H18N4O2, the 1,8-naphthyridine ring system is essentially planar [r.m.s. deviation = 0.011 (3) Å]. The dihedral angle between the naphthyridine ring system and the phenyl ring is 28.95 (7)°. The carbohydrazide H atom is involved in an intra­molecular N—H⋯O hydrogen bond, forming a six-membered hydrogen-bonded ring. In the crystal, the mol­ecules arrange themselves into centrosymmetric dimers by means of inter­molecular C—H⋯O hydrogen bonds.

Related literature

For the synthesis of heterocyclic compounds, see: Chen et al. (2001); Zia-ur-Rehman et al. (2006, 2009). For their biological activity, see: Ferrarini et al. (2000); Hoock et al. (1999); Nakatani et al. (2001); Roma et al. (2000). For related structures, see: Catalano et al. (2000); Deeba et al. (2009).graphic file with name e-65-o3152-scheme1.jpg

Experimental

Crystal data

  • C19H18N4O2

  • M r = 334.37

  • Triclinic, Inline graphic

  • a = 7.1642 (1) Å

  • b = 8.8383 (1) Å

  • c = 14.4560 (2) Å

  • α = 82.624 (6)°

  • β = 85.454 (7)°

  • γ = 68.594 (5)°

  • V = 844.63 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.20 × 0.10 × 0.10 mm

Data collection

  • Rigaku R-AXIS RAPID-S diffractometer

  • Absorption correction: multi-scan (Blessing, 1995) T min = 0.983, T max = 0.991

  • 18153 measured reflections

  • 3446 independent reflections

  • 2105 reflections with I > 2σ(I)

  • R int = 0.066

Refinement

  • R[F 2 > 2σ(F 2)] = 0.060

  • wR(F 2) = 0.175

  • S = 1.03

  • 3446 reflections

  • 236 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809048739/is2485sup1.cif

e-65-o3152-sup1.cif (20.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809048739/is2485Isup2.hkl

e-65-o3152-Isup2.hkl (165.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1 0.89 (3) 1.93 (2) 2.674 (3) 140 (2)
C7—H7B⋯O2i 0.97 2.45 3.204 (3) 134
C9—H9⋯O2i 0.93 2.51 3.340 (3) 149

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors are indebted to the Department of Chemistry and Atatürk University, Turkey, for the use of the X-ray diffractometer purchased under grant No. 2003/219 from the University Research Fund.

supplementary crystallographic information

Comment

1,8-Naphthyridines have been cited in the literature for their medical uses such as antibacterial (Chen et al., 2001), anti-inflammatory (Roma et al., 2000), anti-hypertensive and anti-platelet activities (Ferrarini et al., 2000) agents. Besides few among these have been reported to be excellent fluorescent markers of nucleic acids (Hoock et al., 1999) and probe molecules (Nakatani et al., 2001). In continuation of our work on the synthesis, biological activity and crystal structures of various heterocyclic compounds (Zia-ur-Rehman et al., 2006, 2009), we herein report the synthesis and crystal structure of the title compound (I) (Fig. 1).

The structure of the adjoined pyridine rings comprising of the naphthyridine ring is planar while carbonyl oxygen O1 on C11 is involved in intramolecular hydrogen bonding with N1H, giving rise to a six-membered hydrogen bond ring (Table 1). All bond distances are essentially identical to those found in the literature (Catalano et al., 2000; Deeba et al., 2009). Each molecule forms centrosymmetric dimer through intermolecular C—H···O hydrogen bonds, giving rise the formation of two six-membered hydrogen bond rings per dimer (Fig. 2).

Experimental

A mixture of 1-ethyl-7-methyl-4-oxo-1,4-dihydro-1,8-naphthyridine-3-carbohydrazide (10.0 mmol, 2.46 g), benzaldehyde (11.0 mmol, 1.17 g), ortho phosphoric acid (2 drops) and ethyl alcohol (20.0 ml) was refluxed for a period of two hours. After completion of the reaction as indicated by TLC, three fourth of the solvent was evaporated and the contents were cooled to room temperature. Crystals obtained were washed with cold ethanol and dried; Yield: 89%.

Refinement

H atoms were placed in geometrically idealized positions (C—H = 0.93–0.97 Å) and treated as riding, with Uiso(H) = 1.2Ueq(methine and methylene C) or 1.5Ueq(methyl C). The H atoms attached to atoms N1 and C13 were located in a difference Fourier map and refined freely.

Figures

Fig. 1.

Fig. 1.

An ORTEP-3 (Farrugia, 1997) drawing of the title molecule with the atom-numbering scheme. The displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Perspective view of the three-dimensional crystal packing showing hydrogen-bonded interactions (dashed lines). [Symmetry code: (i) -x + 1, -y - 1, -z.] H atoms not involved in the hydrogen bonds have been omitted for clarity.

Crystal data

C19H18N4O2 Z = 2
Mr = 334.37 F(000) = 352
Triclinic, P1 Dx = 1.315 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.1642 (1) Å Cell parameters from 18153 reflections
b = 8.8383 (1) Å θ = 2.5–26.4°
c = 14.4560 (2) Å µ = 0.09 mm1
α = 82.624 (6)° T = 293 K
β = 85.454 (7)° Needles, yellow
γ = 68.594 (5)° 0.20 × 0.10 × 0.10 mm
V = 844.63 (4) Å3

Data collection

Rigaku R-AXIS RAPID-S diffractometer 3446 independent reflections
Radiation source: fine-focus sealed tube 2105 reflections with I > 2σ(I)
graphite Rint = 0.066
ω scans θmax = 26.4°, θmin = 2.5°
Absorption correction: multi-scan (Blessing, 1995) h = −8→8
Tmin = 0.983, Tmax = 0.991 k = −11→11
18153 measured reflections l = −18→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.175 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0691P)2 + 0.1621P] where P = (Fo2 + 2Fc2)/3
3446 reflections (Δ/σ)max < 0.001
236 parameters Δρmax = 0.19 e Å3
0 restraints Δρmin = −0.17 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 −0.1188 (4) 0.2780 (3) 0.28444 (16) 0.0632 (7)
H1C −0.1027 0.1871 0.3312 0.095*
H1A −0.2588 0.3349 0.2734 0.095*
H1B −0.0637 0.3511 0.3056 0.095*
C8 0.3626 (5) −0.3046 (4) 0.26006 (19) 0.0813 (9)
H8A 0.4932 −0.3472 0.2304 0.122*
H8C 0.3494 −0.3818 0.3109 0.122*
H8B 0.3459 −0.2034 0.2834 0.122*
H13 0.603 (4) −0.009 (3) −0.3488 (17) 0.072 (8)*
H1N 0.454 (4) −0.035 (3) −0.2036 (17) 0.065 (8)*
C5 0.1821 (3) 0.1032 (3) 0.03208 (15) 0.0469 (5)
O1 0.3049 (3) 0.1303 (2) −0.12329 (11) 0.0627 (5)
N4 0.0597 (3) 0.0569 (2) 0.19056 (12) 0.0476 (5)
N3 0.2269 (3) −0.1657 (2) 0.10789 (12) 0.0466 (5)
N1 0.4915 (3) −0.1421 (3) −0.20600 (13) 0.0546 (5)
C10 0.3530 (3) −0.1374 (3) −0.04983 (14) 0.0468 (5)
C9 0.3224 (3) −0.2282 (3) 0.03032 (15) 0.0477 (5)
H9 0.3716 −0.3413 0.0308 0.057*
N2 0.5729 (3) −0.2165 (3) −0.28556 (13) 0.0574 (5)
C11 0.2838 (3) 0.0374 (3) −0.05407 (15) 0.0480 (5)
C6 0.1544 (3) 0.0025 (3) 0.11057 (14) 0.0444 (5)
O2 0.5063 (3) −0.3819 (2) −0.12262 (11) 0.0682 (5)
C2 −0.0111 (3) 0.2171 (3) 0.19557 (16) 0.0510 (6)
C3 0.0108 (4) 0.3277 (3) 0.12111 (17) 0.0631 (7)
H3 −0.0395 0.4393 0.1266 0.076*
C13 0.6167 (4) −0.1254 (4) −0.35312 (17) 0.0580 (6)
C7 0.2050 (4) −0.2758 (3) 0.19052 (15) 0.0564 (7)
H7B 0.2152 −0.3795 0.1709 0.068*
H7A 0.0733 −0.2281 0.2199 0.068*
C14 0.6940 (4) −0.1896 (3) −0.44275 (15) 0.0549 (6)
C4 0.1069 (4) 0.2702 (3) 0.04011 (17) 0.0594 (7)
H4 0.1221 0.3431 −0.0097 0.071*
C12 0.4574 (4) −0.2336 (3) −0.12865 (15) 0.0522 (6)
C15 0.7825 (4) −0.1063 (3) −0.50867 (17) 0.0681 (7)
H15 0.7952 −0.0104 −0.4953 0.082*
C19 0.6743 (5) −0.3296 (4) −0.46494 (18) 0.0778 (9)
H19 0.6135 −0.3863 −0.4219 0.093*
C17 0.8318 (5) −0.3036 (4) −0.6144 (2) 0.0901 (10)
H17 0.8780 −0.3421 −0.6720 0.108*
C16 0.8518 (5) −0.1637 (4) −0.59383 (19) 0.0807 (9)
H16 0.9123 −0.1073 −0.6373 0.097*
C18 0.7436 (6) −0.3872 (4) −0.5502 (2) 0.0992 (12)
H18 0.7305 −0.4826 −0.5640 0.119*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0648 (16) 0.0627 (16) 0.0549 (15) −0.0110 (13) 0.0065 (12) −0.0216 (12)
C8 0.108 (2) 0.0676 (18) 0.0590 (16) −0.0244 (17) −0.0082 (16) 0.0081 (14)
C5 0.0490 (13) 0.0456 (12) 0.0439 (12) −0.0144 (10) 0.0011 (10) −0.0061 (10)
O1 0.0816 (13) 0.0578 (10) 0.0443 (9) −0.0239 (9) 0.0122 (8) −0.0018 (8)
N4 0.0495 (11) 0.0484 (11) 0.0412 (10) −0.0126 (9) 0.0058 (8) −0.0109 (8)
N3 0.0524 (11) 0.0450 (10) 0.0398 (10) −0.0149 (9) 0.0093 (8) −0.0096 (8)
N1 0.0641 (13) 0.0592 (13) 0.0389 (11) −0.0206 (11) 0.0121 (9) −0.0124 (9)
C10 0.0482 (13) 0.0518 (13) 0.0381 (11) −0.0155 (10) 0.0046 (10) −0.0082 (10)
C9 0.0492 (13) 0.0460 (12) 0.0448 (12) −0.0133 (10) 0.0070 (10) −0.0111 (10)
N2 0.0586 (13) 0.0661 (13) 0.0432 (11) −0.0171 (10) 0.0096 (9) −0.0136 (9)
C11 0.0504 (13) 0.0540 (13) 0.0392 (11) −0.0192 (11) 0.0038 (10) −0.0063 (10)
C6 0.0421 (12) 0.0461 (12) 0.0408 (11) −0.0112 (10) 0.0033 (9) −0.0070 (9)
O2 0.0869 (13) 0.0542 (11) 0.0533 (10) −0.0148 (9) 0.0182 (9) −0.0144 (8)
C2 0.0487 (13) 0.0503 (13) 0.0493 (13) −0.0099 (11) 0.0003 (10) −0.0133 (11)
C3 0.0777 (18) 0.0438 (13) 0.0589 (15) −0.0108 (13) 0.0029 (13) −0.0105 (11)
C13 0.0620 (16) 0.0665 (17) 0.0463 (14) −0.0239 (13) 0.0064 (11) −0.0119 (12)
C7 0.0746 (17) 0.0453 (13) 0.0436 (12) −0.0187 (12) 0.0179 (12) −0.0054 (10)
C14 0.0554 (15) 0.0638 (15) 0.0403 (12) −0.0161 (12) 0.0055 (10) −0.0076 (11)
C4 0.0732 (17) 0.0480 (14) 0.0499 (14) −0.0157 (12) 0.0022 (12) −0.0011 (11)
C12 0.0525 (14) 0.0578 (15) 0.0435 (13) −0.0162 (12) 0.0070 (10) −0.0111 (11)
C15 0.0797 (19) 0.0685 (17) 0.0563 (15) −0.0290 (15) 0.0143 (13) −0.0099 (13)
C19 0.110 (2) 0.0807 (19) 0.0517 (15) −0.0485 (18) 0.0251 (15) −0.0146 (14)
C17 0.125 (3) 0.095 (2) 0.0570 (17) −0.048 (2) 0.0380 (17) −0.0298 (16)
C16 0.095 (2) 0.089 (2) 0.0568 (16) −0.0363 (18) 0.0282 (15) −0.0125 (15)
C18 0.154 (3) 0.095 (2) 0.0663 (19) −0.066 (2) 0.038 (2) −0.0343 (17)

Geometric parameters (Å, °)

C1—C2 1.501 (3) C9—H9 0.9300
C1—H1C 0.9600 N2—C13 1.279 (3)
C1—H1A 0.9600 O2—C12 1.220 (3)
C1—H1B 0.9600 C2—C3 1.397 (3)
C8—C7 1.501 (4) C3—C4 1.369 (3)
C8—H8A 0.9600 C3—H3 0.9300
C8—H8C 0.9600 C13—C14 1.467 (3)
C8—H8B 0.9600 C13—H13 1.01 (3)
C5—C4 1.391 (3) C7—H7B 0.9700
C5—C6 1.398 (3) C7—H7A 0.9700
C5—C11 1.467 (3) C14—C19 1.375 (4)
O1—C11 1.246 (3) C14—C15 1.384 (3)
N4—C2 1.328 (3) C4—H4 0.9300
N4—C6 1.345 (3) C15—C16 1.378 (3)
N3—C9 1.339 (3) C15—H15 0.9300
N3—C6 1.388 (3) C19—C18 1.379 (4)
N3—C7 1.477 (3) C19—H19 0.9300
N1—C12 1.354 (3) C17—C16 1.367 (4)
N1—N2 1.379 (3) C17—C18 1.370 (4)
N1—H1N 0.89 (3) C17—H17 0.9300
C10—C9 1.373 (3) C16—H16 0.9300
C10—C11 1.435 (3) C18—H18 0.9300
C10—C12 1.494 (3)
C2—C1—H1C 109.5 C3—C2—C1 120.2 (2)
C2—C1—H1A 109.5 C4—C3—C2 119.4 (2)
H1C—C1—H1A 109.5 C4—C3—H3 120.3
C2—C1—H1B 109.5 C2—C3—H3 120.3
H1C—C1—H1B 109.5 N2—C13—C14 120.2 (2)
H1A—C1—H1B 109.5 N2—C13—H13 123.6 (14)
C7—C8—H8A 109.5 C14—C13—H13 116.3 (14)
C7—C8—H8C 109.5 N3—C7—C8 111.6 (2)
H8A—C8—H8C 109.5 N3—C7—H7B 109.3
C7—C8—H8B 109.5 C8—C7—H7B 109.3
H8A—C8—H8B 109.5 N3—C7—H7A 109.3
H8C—C8—H8B 109.5 C8—C7—H7A 109.3
C4—C5—C6 116.1 (2) H7B—C7—H7A 108.0
C4—C5—C11 121.7 (2) C19—C14—C15 118.3 (2)
C6—C5—C11 122.2 (2) C19—C14—C13 121.3 (2)
C2—N4—C6 117.81 (19) C15—C14—C13 120.3 (2)
C9—N3—C6 119.42 (18) C3—C4—C5 120.2 (2)
C9—N3—C7 119.91 (18) C3—C4—H4 119.9
C6—N3—C7 120.65 (17) C5—C4—H4 119.9
C12—N1—N2 119.2 (2) O2—C12—N1 123.7 (2)
C12—N1—H1N 117.7 (16) O2—C12—C10 122.0 (2)
N2—N1—H1N 123.0 (16) N1—C12—C10 114.2 (2)
C9—C10—C11 120.18 (19) C16—C15—C14 120.8 (3)
C9—C10—C12 115.2 (2) C16—C15—H15 119.6
C11—C10—C12 124.6 (2) C14—C15—H15 119.6
N3—C9—C10 124.7 (2) C14—C19—C18 120.9 (3)
N3—C9—H9 117.7 C14—C19—H19 119.5
C10—C9—H9 117.7 C18—C19—H19 119.5
C13—N2—N1 115.6 (2) C16—C17—C18 120.0 (3)
O1—C11—C10 125.0 (2) C16—C17—H17 120.0
O1—C11—C5 120.8 (2) C18—C17—H17 120.0
C10—C11—C5 114.23 (19) C17—C16—C15 120.0 (3)
N4—C6—N3 116.26 (19) C17—C16—H16 120.0
N4—C6—C5 124.4 (2) C15—C16—H16 120.0
N3—C6—C5 119.32 (18) C17—C18—C19 120.0 (3)
N4—C2—C3 122.0 (2) C17—C18—H18 120.0
N4—C2—C1 117.8 (2) C19—C18—H18 120.0
C6—N3—C9—C10 −1.1 (3) N4—C2—C3—C4 0.3 (4)
C7—N3—C9—C10 −179.3 (2) C1—C2—C3—C4 −179.1 (2)
C11—C10—C9—N3 1.2 (4) N1—N2—C13—C14 −176.7 (2)
C12—C10—C9—N3 −178.0 (2) C9—N3—C7—C8 97.7 (3)
C12—N1—N2—C13 −174.3 (2) C6—N3—C7—C8 −80.4 (3)
C9—C10—C11—O1 179.8 (2) N2—C13—C14—C19 16.6 (4)
C12—C10—C11—O1 −1.2 (4) N2—C13—C14—C15 −165.8 (2)
C9—C10—C11—C5 −0.3 (3) C2—C3—C4—C5 0.0 (4)
C12—C10—C11—C5 178.8 (2) C6—C5—C4—C3 −0.5 (4)
C4—C5—C11—O1 −0.4 (4) C11—C5—C4—C3 179.3 (2)
C6—C5—C11—O1 179.4 (2) N2—N1—C12—O2 4.9 (4)
C4—C5—C11—C10 179.6 (2) N2—N1—C12—C10 −174.99 (19)
C6—C5—C11—C10 −0.6 (3) C9—C10—C12—O2 2.0 (4)
C2—N4—C6—N3 179.8 (2) C11—C10—C12—O2 −177.1 (2)
C2—N4—C6—C5 −0.5 (3) C9—C10—C12—N1 −178.1 (2)
C9—N3—C6—N4 179.85 (19) C11—C10—C12—N1 2.8 (3)
C7—N3—C6—N4 −2.0 (3) C19—C14—C15—C16 −1.0 (4)
C9—N3—C6—C5 0.1 (3) C13—C14—C15—C16 −178.7 (3)
C7—N3—C6—C5 178.3 (2) C15—C14—C19—C18 0.9 (5)
C4—C5—C6—N4 0.8 (3) C13—C14—C19—C18 178.6 (3)
C11—C5—C6—N4 −179.0 (2) C18—C17—C16—C15 −0.3 (5)
C4—C5—C6—N3 −179.5 (2) C14—C15—C16—C17 0.7 (5)
C11—C5—C6—N3 0.7 (3) C16—C17—C18—C19 0.3 (6)
C6—N4—C2—C3 −0.1 (3) C14—C19—C18—C17 −0.6 (6)
C6—N4—C2—C1 179.3 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O1 0.89 (3) 1.93 (2) 2.674 (3) 140 (2)
C7—H7B···O2i 0.97 2.45 3.204 (3) 134
C9—H9···O2i 0.93 2.51 3.340 (3) 149

Symmetry codes: (i) −x+1, −y−1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2485).

References

  1. Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [DOI] [PubMed]
  2. Catalano, V. J., Kar, H. M. & Bennett, B. L. (2000). Inorg. Chem 39, 121–127. [DOI] [PubMed]
  3. Chen, Y.-L., Fang, K.-C., Sheu, J.-Y., Hsu, S.-L. & Tzeng, C.-C. (2001). J. Med. Chem 44, 2374–2378. [DOI] [PubMed]
  4. Deeba, F., Khan, M. A., Zia-ur-Rehman, M., Çaylak, N. & Şahin, E. (2009). Acta Cryst. E65, o860–o861. [DOI] [PMC free article] [PubMed]
  5. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  6. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  7. Ferrarini, P. L., Mori, C., Badawneh, M., Calderone, V., Greco, R., Manera, C., Martinelli, A., Nieri, P. & Saccomanni, G. (2000). Eur. J. Chem 35, 815–819. [DOI] [PubMed]
  8. Hoock, C., Reichert, J. & Schmidtke, M. (1999). Molecules, 4, 264–271.
  9. Nakatani, K., Sando, S., Kumasawa, H., Kikuchi, J. & Saito, I. (2001). J. Am. Chem. Soc 123, 12650–12657. [DOI] [PubMed]
  10. Rigaku/ MSC (2005). CrystalClear. Rigaku/ MSC, The Woodlands, Texas, USA.
  11. Roma, G., Braccio, M. D., Grossi, G., Mattioli, F. & Ghia, M. (2000). Eur. J. Med. Chem 35, 1021–1026. [DOI] [PubMed]
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  14. Zia-ur-Rehman, M., Anwar, J., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull 54, 1175–1178. [DOI] [PubMed]
  15. Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem 44, 1311–1316. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809048739/is2485sup1.cif

e-65-o3152-sup1.cif (20.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809048739/is2485Isup2.hkl

e-65-o3152-Isup2.hkl (165.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES