Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Nov 28;65(Pt 12):o3275. doi: 10.1107/S1600536809050740

N-(3,5-Dimethyl­phen­yl)-2,4-dimethyl­benzene­sulfonamide

B Thimme Gowda a,*, Sabine Foro b, P G Nirmala a, Hartmut Fuess b
PMCID: PMC2972036  PMID: 21578969

Abstract

In the title compound, C16H19NO2S, the mol­ecule is twisted about the S—N bond, the C—S(O2)—N(H)—C torsion angle being 53.9 (2)°. The dihedral angle between the two benzene rings is 82.1 (1)°. The crystal structure features inversion-related dimers linked by N—H⋯O hydrogen bonds.

Related literature

For the preparation of the title compound, see: Savitha & Gowda (2006). For our work on the effect of substituents on the structures of N-(ar­yl)aryl­sulfonamides, see: Gowda et al. (2009a ,b ); Nirmala et al. (2009). For related structures, see: Gelbrich et al. (2007); Perlovich et al. (2006).graphic file with name e-65-o3275-scheme1.jpg

Experimental

Crystal data

  • C16H19NO2S

  • M r = 289.38

  • Monoclinic, Inline graphic

  • a = 23.490 (2) Å

  • b = 8.1528 (6) Å

  • c = 16.544 (1) Å

  • β = 102.690 (8)°

  • V = 3090.9 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 299 K

  • 0.40 × 0.20 × 0.12 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) T min = 0.921, T max = 0.975

  • 6232 measured reflections

  • 2751 independent reflections

  • 2009 reflections with I > 2σ(I)

  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.118

  • S = 1.01

  • 2751 reflections

  • 188 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809050740/tk2587sup1.cif

e-65-o3275-sup1.cif (18.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809050740/tk2587Isup2.hkl

e-65-o3275-Isup2.hkl (135.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.84 (2) 2.10 (2) 2.945 (3) 176 (3)

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

As part of a study of substituent effects on the structures of N-(aryl)arylsulfonamides (Gowda et al., 2009a,b; Nirmala et al., 2009), in the present work, the structure of 2,4-dimethyl-N-(3,5-dimethylphenyl)benzenesulfonamide (I) has been determined (Fig. 1). The molecule is bent at the S–O bond atom with the C1—SO2—NH—C7 torsion angle being 53.9 (2)°, compared to the values of 46.1 (3)° and 47.7 (3)° in the two independent molecules of 2,4-dimethyl-N-(3,5-dimethylphenyl)benzenesulfonamide (II) (Gowda et al., 2009a), 67.9 (2)° in N-(3,5-dimethylphenyl)benzenesulfonamide (III) (Nirmala et al., 2009) and -69.7 (2)° in 2,4-dimethyl-N-(3,4-dichlorophenyl)benzenesulfonamide (IV) (Gowda et al., 2009b).

The two benzene rings in (I) are tilted relative to each other by 82.1 (1)°, compared to the values of 67.5 (1)° (molecule 1) and 72.9 (1)° (molecule 2) in the two independent molecules of (II), 54.6 (1)° in (III) and 82.4 (1)° in (IV). The other bond parameters in (I) are similar to those observed in (II), (III), (IV) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007). The crystal packing of molecules in (I) is through pairs of N—H···O(S) hydrogen bonds (Table 1).

Experimental

The solution of m-xylene (10 cc) in chloroform (40 cc) was treated drop-wise with chlorosulfonic acid (25 ml) at 273 K. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual 2,4-dimethylbenzenesulfonylchloride was treated with a stoichiometric ratio of 3,4-dimethylaniline and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice-cold water (100 ml). The resultant solid, 2,4-dimethyl-N- (3,5-dimethylphenyl)benzenesulfonamide, was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by recording its infrared and NMR spectra (Savitha & Gowda, 2006). The single crystals used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation at room temperature.

Refinement

The H atom of the NH group was located in a difference map and refined with the distance restraint N—H = 0.86 (2) Å, and with Uiso(H) = 1.2Ueq(C). The C atoms were included in the riding model approximation with C—H = 0.93–0.96 Å, and with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

Molecular structure of (I), showing the atom labelling scheme. The displacement ellipsoids are drawn at the 50% probability level. The H atoms are represented as small spheres of arbitrary radii.

Crystal data

C16H19NO2S F(000) = 1232
Mr = 289.38 Dx = 1.244 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 2194 reflections
a = 23.490 (2) Å θ = 2.5–27.9°
b = 8.1528 (6) Å µ = 0.21 mm1
c = 16.544 (1) Å T = 299 K
β = 102.690 (8)° Prism, colourless
V = 3090.9 (4) Å3 0.40 × 0.20 × 0.12 mm
Z = 8

Data collection

Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector 2751 independent reflections
Radiation source: fine-focus sealed tube 2009 reflections with I > 2σ(I)
graphite Rint = 0.018
Rotation method data acquisition using ω and φ scans. θmax = 25.3°, θmin = 2.7°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) h = −28→17
Tmin = 0.921, Tmax = 0.975 k = −9→9
6232 measured reflections l = −19→19

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118 H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0512P)2 + 3.0162P] where P = (Fo2 + 2Fc2)/3
2751 reflections (Δ/σ)max = 0.004
188 parameters Δρmax = 0.19 e Å3
1 restraint Δρmin = −0.28 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.05610 (3) 0.54362 (8) 0.39886 (4) 0.0472 (2)
O1 −0.00491 (7) 0.5510 (2) 0.40012 (10) 0.0581 (5)
O2 0.08128 (8) 0.6784 (2) 0.36408 (12) 0.0655 (5)
N1 0.08841 (9) 0.5250 (3) 0.49593 (13) 0.0519 (5)
H1N 0.0648 (10) 0.498 (3) 0.5253 (15) 0.062*
C1 0.07002 (9) 0.3654 (3) 0.34572 (13) 0.0382 (5)
C2 0.05851 (9) 0.2067 (3) 0.37077 (14) 0.0421 (5)
C3 0.06794 (10) 0.0785 (3) 0.32105 (16) 0.0492 (6)
H3 0.0611 −0.0277 0.3372 0.059*
C4 0.08716 (10) 0.0999 (3) 0.24799 (16) 0.0498 (6)
C5 0.09849 (10) 0.2566 (3) 0.22560 (15) 0.0525 (6)
H5 0.1119 0.2739 0.1774 0.063*
C6 0.09019 (10) 0.3886 (3) 0.27382 (15) 0.0480 (6)
H6 0.0982 0.4940 0.2580 0.058*
C7 0.14835 (10) 0.4895 (3) 0.52826 (15) 0.0458 (6)
C8 0.16296 (10) 0.4248 (3) 0.60749 (15) 0.0508 (6)
H8 0.1337 0.4019 0.6357 0.061*
C9 0.22056 (11) 0.3939 (3) 0.64514 (17) 0.0606 (7)
C10 0.26309 (12) 0.4250 (4) 0.60070 (19) 0.0675 (8)
H10 0.3019 0.4029 0.6252 0.081*
C11 0.24971 (11) 0.4873 (4) 0.52134 (18) 0.0612 (8)
C12 0.19150 (11) 0.5218 (3) 0.48498 (17) 0.0564 (7)
H12 0.1817 0.5663 0.4320 0.068*
C13 0.03632 (13) 0.1703 (4) 0.44804 (16) 0.0636 (7)
H13A 0.0022 0.2352 0.4479 0.076*
H13B 0.0660 0.1966 0.4961 0.076*
H13C 0.0266 0.0561 0.4491 0.076*
C14 0.09508 (14) −0.0463 (4) 0.1958 (2) 0.0796 (9)
H14A 0.0580 −0.0979 0.1752 0.096*
H14B 0.1212 −0.1231 0.2289 0.096*
H14C 0.1111 −0.0109 0.1501 0.096*
C15 0.23625 (14) 0.3267 (5) 0.7320 (2) 0.0931 (11)
H15A 0.2522 0.2184 0.7310 0.112*
H15B 0.2019 0.3220 0.7544 0.112*
H15C 0.2647 0.3968 0.7659 0.112*
C16 0.29662 (13) 0.5197 (5) 0.4739 (2) 0.0881 (11)
H16A 0.3020 0.4238 0.4428 0.106*
H16B 0.3325 0.5457 0.5121 0.106*
H16C 0.2852 0.6102 0.4368 0.106*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0477 (4) 0.0440 (4) 0.0490 (4) 0.0102 (3) 0.0089 (3) 0.0005 (3)
O1 0.0450 (9) 0.0733 (12) 0.0548 (10) 0.0213 (9) 0.0082 (8) −0.0019 (10)
O2 0.0843 (13) 0.0390 (10) 0.0738 (13) 0.0028 (9) 0.0189 (10) 0.0074 (10)
N1 0.0434 (12) 0.0667 (14) 0.0455 (12) 0.0089 (10) 0.0098 (9) −0.0063 (11)
C1 0.0364 (11) 0.0397 (13) 0.0386 (12) 0.0039 (9) 0.0083 (9) 0.0025 (10)
C2 0.0403 (13) 0.0429 (13) 0.0435 (12) 0.0022 (10) 0.0103 (10) 0.0042 (11)
C3 0.0502 (14) 0.0397 (13) 0.0576 (15) 0.0004 (11) 0.0114 (12) 0.0040 (12)
C4 0.0441 (13) 0.0535 (16) 0.0507 (14) 0.0080 (11) 0.0078 (11) −0.0066 (13)
C5 0.0549 (15) 0.0656 (18) 0.0405 (13) 0.0069 (13) 0.0177 (11) 0.0018 (13)
C6 0.0504 (14) 0.0478 (14) 0.0471 (14) 0.0012 (11) 0.0134 (11) 0.0089 (12)
C7 0.0405 (13) 0.0456 (14) 0.0498 (14) 0.0034 (10) 0.0065 (10) −0.0145 (12)
C8 0.0473 (14) 0.0528 (15) 0.0512 (15) 0.0002 (11) 0.0086 (11) −0.0078 (13)
C9 0.0523 (16) 0.0623 (17) 0.0615 (17) −0.0007 (13) 0.0002 (13) −0.0054 (15)
C10 0.0425 (15) 0.080 (2) 0.074 (2) 0.0033 (14) −0.0010 (13) −0.0087 (17)
C11 0.0429 (14) 0.0707 (19) 0.0708 (19) −0.0047 (13) 0.0140 (13) −0.0191 (16)
C12 0.0518 (15) 0.0667 (18) 0.0498 (14) −0.0008 (13) 0.0095 (12) −0.0092 (14)
C13 0.0804 (19) 0.0584 (17) 0.0598 (17) −0.0053 (14) 0.0324 (14) 0.0097 (15)
C14 0.089 (2) 0.075 (2) 0.076 (2) 0.0131 (18) 0.0195 (17) −0.0212 (18)
C15 0.069 (2) 0.116 (3) 0.083 (2) −0.0011 (19) −0.0087 (16) 0.024 (2)
C16 0.0550 (18) 0.120 (3) 0.094 (2) −0.0072 (18) 0.0268 (16) −0.016 (2)

Geometric parameters (Å, °)

S1—O2 1.4276 (18) C8—H8 0.9300
S1—O1 1.4392 (17) C9—C10 1.388 (4)
S1—N1 1.626 (2) C9—C15 1.506 (4)
S1—C1 1.766 (2) C10—C11 1.378 (4)
N1—C7 1.422 (3) C10—H10 0.9300
N1—H1N 0.844 (16) C11—C12 1.396 (3)
C1—C6 1.386 (3) C11—C16 1.510 (4)
C1—C2 1.403 (3) C12—H12 0.9300
C2—C3 1.378 (3) C13—H13A 0.9600
C2—C13 1.512 (3) C13—H13B 0.9600
C3—C4 1.391 (3) C13—H13C 0.9600
C3—H3 0.9300 C14—H14A 0.9600
C4—C5 1.373 (4) C14—H14B 0.9600
C4—C14 1.507 (4) C14—H14C 0.9600
C5—C6 1.379 (3) C15—H15A 0.9600
C5—H5 0.9300 C15—H15B 0.9600
C6—H6 0.9300 C15—H15C 0.9600
C7—C8 1.384 (3) C16—H16A 0.9600
C7—C12 1.389 (3) C16—H16B 0.9600
C8—C9 1.383 (3) C16—H16C 0.9600
O2—S1—O1 118.40 (11) C10—C9—C15 121.2 (3)
O2—S1—N1 108.98 (12) C11—C10—C9 122.1 (2)
O1—S1—N1 103.88 (11) C11—C10—H10 118.9
O2—S1—C1 107.12 (11) C9—C10—H10 118.9
O1—S1—C1 109.61 (10) C10—C11—C12 118.8 (2)
N1—S1—C1 108.52 (11) C10—C11—C16 121.3 (3)
C7—N1—S1 126.83 (17) C12—C11—C16 119.9 (3)
C7—N1—H1N 117.0 (19) C7—C12—C11 119.8 (3)
S1—N1—H1N 111.7 (19) C7—C12—H12 120.1
C6—C1—C2 120.2 (2) C11—C12—H12 120.1
C6—C1—S1 116.78 (18) C2—C13—H13A 109.5
C2—C1—S1 122.89 (17) C2—C13—H13B 109.5
C3—C2—C1 117.2 (2) H13A—C13—H13B 109.5
C3—C2—C13 119.1 (2) C2—C13—H13C 109.5
C1—C2—C13 123.7 (2) H13A—C13—H13C 109.5
C2—C3—C4 123.3 (2) H13B—C13—H13C 109.5
C2—C3—H3 118.3 C4—C14—H14A 109.5
C4—C3—H3 118.3 C4—C14—H14B 109.5
C5—C4—C3 118.1 (2) H14A—C14—H14B 109.5
C5—C4—C14 121.7 (2) C4—C14—H14C 109.5
C3—C4—C14 120.2 (3) H14A—C14—H14C 109.5
C4—C5—C6 120.7 (2) H14B—C14—H14C 109.5
C4—C5—H5 119.7 C9—C15—H15A 109.5
C6—C5—H5 119.7 C9—C15—H15B 109.5
C5—C6—C1 120.6 (2) H15A—C15—H15B 109.5
C5—C6—H6 119.7 C9—C15—H15C 109.5
C1—C6—H6 119.7 H15A—C15—H15C 109.5
C8—C7—C12 120.2 (2) H15B—C15—H15C 109.5
C8—C7—N1 116.9 (2) C11—C16—H16A 109.5
C12—C7—N1 122.8 (2) C11—C16—H16B 109.5
C9—C8—C7 120.7 (2) H16A—C16—H16B 109.5
C9—C8—H8 119.7 C11—C16—H16C 109.5
C7—C8—H8 119.7 H16A—C16—H16C 109.5
C8—C9—C10 118.4 (3) H16B—C16—H16C 109.5
C8—C9—C15 120.4 (3)
O2—S1—N1—C7 −62.4 (2) C14—C4—C5—C6 179.1 (2)
O1—S1—N1—C7 170.5 (2) C4—C5—C6—C1 −0.2 (4)
C1—S1—N1—C7 53.9 (2) C2—C1—C6—C5 0.8 (3)
O2—S1—C1—C6 −12.4 (2) S1—C1—C6—C5 −175.71 (18)
O1—S1—C1—C6 117.20 (18) S1—N1—C7—C8 −158.6 (2)
N1—S1—C1—C6 −129.97 (18) S1—N1—C7—C12 23.5 (4)
O2—S1—C1—C2 171.16 (18) C12—C7—C8—C9 1.0 (4)
O1—S1—C1—C2 −59.2 (2) N1—C7—C8—C9 −177.0 (2)
N1—S1—C1—C2 53.6 (2) C7—C8—C9—C10 −1.8 (4)
C6—C1—C2—C3 −0.2 (3) C7—C8—C9—C15 178.8 (3)
S1—C1—C2—C3 176.07 (17) C8—C9—C10—C11 1.0 (4)
C6—C1—C2—C13 −179.8 (2) C15—C9—C10—C11 −179.6 (3)
S1—C1—C2—C13 −3.6 (3) C9—C10—C11—C12 0.6 (4)
C1—C2—C3—C4 −1.0 (3) C9—C10—C11—C16 −179.8 (3)
C13—C2—C3—C4 178.7 (2) C8—C7—C12—C11 0.7 (4)
C2—C3—C4—C5 1.5 (4) N1—C7—C12—C11 178.5 (2)
C2—C3—C4—C14 −178.5 (2) C10—C11—C12—C7 −1.5 (4)
C3—C4—C5—C6 −0.9 (4) C16—C11—C12—C7 179.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O1i 0.84 (2) 2.10 (2) 2.945 (3) 176 (3)

Symmetry codes: (i) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2587).

References

  1. Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632. [DOI] [PubMed]
  2. Gowda, B. T., Foro, S., Nirmala, P. G., Babitha, K. S. & Fuess, H. (2009a). Acta Cryst. E65, o576. [DOI] [PMC free article] [PubMed]
  3. Gowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2009b). Acta Cryst. E65, o1976. [DOI] [PMC free article] [PubMed]
  4. Nirmala, P. G., Gowda, B. T., Foro, S. & Fuess, H. (2009). Acta Cryst. E65, o3225. [DOI] [PMC free article] [PubMed]
  5. Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.
  6. Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782.
  7. Savitha, M. B. & Gowda, B. T. (2006). Z. Naturforsch. Teil A, 60, 600–606.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809050740/tk2587sup1.cif

e-65-o3275-sup1.cif (18.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809050740/tk2587Isup2.hkl

e-65-o3275-Isup2.hkl (135.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES