Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Nov 28;65(Pt 12):m1706. doi: 10.1107/S1600536809051022

[N,N-Bis(2-pyridylmeth­yl)glycinato-κ4 N,N′,N′′,O]dichloridoiron(III)–[N,N-bis­(2-pyridylmeth­yl)glycine-κ4 N,N′,N′′,O]dichloridozinc(II) (1/1)

Anne Nielsen a, Christine J McKenzie a, Andrew D Bond a,*
PMCID: PMC2972039  PMID: 21578707

Abstract

The title compound, [Fe(C14H14N3O2)Cl2]·[ZnCl2(C14H15N3O2)], is formulated as [FeIII(bpg)Cl2][ZnIICl2(bpgH)], where bpg is the tetra­dentate ligand N,N-bis­(2-pyridylmeth­yl)glycine. The structure contains one crystallographically distinct complex with FeIII and ZnII atoms present in a 50:50 ratio in a single-atom site. The non-coordinated O atoms of the carboxyl groups of bpg meet across crystallographic inversion centres, forming O—H⋯O hydrogen bonds that include only one H atom per two complexes, consistent with the 1:1 disorder of FeIII and ZnII.

Related literature

For related FeIII structures of bpg, see: Mortensen et al. (2004). For details of the synthesis, see: Suzuki et al. (1988).graphic file with name e-65-m1706-scheme1.jpg

Experimental

Crystal data

  • [Fe(C14H14N3O2)Cl2]·[ZnCl2(C14H15N3O2)]

  • M r = 776.59

  • Monoclinic, Inline graphic

  • a = 8.8710 (3) Å

  • b = 13.1898 (5) Å

  • c = 13.3983 (4) Å

  • β = 91.737 (2)°

  • V = 1566.97 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.62 mm−1

  • T = 180 K

  • 0.20 × 0.20 × 0.15 mm

Data collection

  • Bruker–Nonius X8APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003) T min = 0.701, T max = 0.794

  • 32580 measured reflections

  • 4775 independent reflections

  • 4248 reflections with I > 2σ(I)

  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053

  • wR(F 2) = 0.132

  • S = 1.36

  • 4775 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.71 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809051022/jh2118sup1.cif

e-65-m1706-sup1.cif (21.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809051022/jh2118Isup2.hkl

e-65-m1706-Isup2.hkl (233.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O2i 0.93 1.64 2.559 (6) 169

Symmetry code: (i) Inline graphic.

Acknowledgments

We are grateful to the Danish Natural Sciences Research Council and the Carlsberg Foundation for provision of the X-ray equipment.

supplementary crystallographic information

Comment

Crystallization of the title compound, [FeCl2(bpg)][ZnCl2(bpgH)] (where bpg denotes the tetradentate ligand N,N-bis(2-pyridylmethyl)glycine), was surprising given the presence of water in its preparation. In our hands, simple binary mixtures of bpgH and FeCl3 in water-containing solutions do not yield the complex [FeCl2(bpg)]. If only chloride ions but not ZnII are present in equivalent reaction mixtures (i.e. aerobic conditions and containing water), oligomeric (hydr)oxo-bridged FeIII complexes are formed, such as [Fe2(O)(bpg)2(H2O)2](ClO4)2 and [Fe3(O)2(OH)(bpg)3](ClO4) (Mortensen et al., 2004). Addition of ZnII has in this case enabled isolation of [FeCl2(bpg)] from water as one component of the co-crystal.

Experimental

N,N-Bis(2-pyridylmethyl)glycine (bpgH) was prepared according to a literature method (Suzuki et al., 1988). BpgH (125 mg, 49 mmol) was then dissolved in hot acetonitrile (5 ml) and water (0.5 ml), before Fe(NO3)3.9H2O (99 mg, 24 mmol), ZnCl2 (67 mg, 49 mmol) and NH4Cl (78 mg, 15 mmol) were added. A few yellow crystals of the title compound were deposited overnight.

Refinement

H atoms bound to C atoms were placed in idealized positions with C—H = 0.95 or 0.99 Å and refined as riding with Uiso(H) = 1.2Ueq(C). The H atom of the OH group was included in a position identified from a difference Fourier map, then allowed to ride on atom O2 with Uiso(H) = 1.5Ueq(O). The 50:50 disorder of atoms Fe1 and Zn1 is required for charge balance in the structure, but it is also supported by the diffraction data: refinement of the atom solely as Fe gives a comparatively small displacement ellipsoid while refinement solely as Zn gives a comparatively large ellipsoid. In both cases, the R-factors increase compared to the disordered refinement.

Figures

Fig. 1.

Fig. 1.

Molecular structure with displacement ellipsoids shown at 50% probability for non-H atoms.

Fig. 2.

Fig. 2.

Projection along the a axis showing hydrogen bonds (dashed lines) formed between bpg(H) ligands across crystallographic inversion centres.

Crystal data

[Fe(C14H14N3O2)Cl2]·[ZnCl2(C14H15N3O2)] F(000) = 790
Mr = 776.59 Dx = 1.646 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 5945 reflections
a = 8.8710 (3) Å θ = 2.3–29.9°
b = 13.1898 (5) Å µ = 1.62 mm1
c = 13.3983 (4) Å T = 180 K
β = 91.737 (2)° Block, yellow
V = 1566.97 (9) Å3 0.20 × 0.20 × 0.15 mm
Z = 2

Data collection

Bruker–Nonius X8APEXII CCD diffractometer 4775 independent reflections
Radiation source: fine-focus sealed tube 4248 reflections with I > 2σ(I)
graphite Rint = 0.031
Thin–slice ω and φ scans θmax = 30.5°, θmin = 3.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) h = −12→12
Tmin = 0.701, Tmax = 0.794 k = −18→18
32580 measured reflections l = −19→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132 H-atom parameters constrained
S = 1.36 w = 1/[σ2(Fo2) + 7.0062P] where P = (Fo2 + 2Fc2)/3
4775 reflections (Δ/σ)max < 0.001
199 parameters Δρmax = 0.55 e Å3
0 restraints Δρmin = −0.71 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Fe1 0.30263 (5) 0.42993 (3) 0.31348 (3) 0.01709 (11) 0.50
Zn1 0.30263 (5) 0.42993 (3) 0.31348 (3) 0.01709 (11) 0.50
Cl1 0.19027 (10) 0.35846 (7) 0.45311 (7) 0.02319 (19)
Cl2 0.30370 (13) 0.59544 (7) 0.35454 (8) 0.0290 (2)
O1 0.3982 (4) 0.4689 (2) 0.1686 (2) 0.0295 (6)
O2 0.4679 (4) 0.4082 (2) 0.0219 (2) 0.0326 (7)
H2 0.4790 0.4759 0.0050 0.049* 0.50
N1 0.5237 (4) 0.3803 (2) 0.3539 (2) 0.0204 (6)
N2 0.3235 (3) 0.2778 (2) 0.2375 (2) 0.0171 (6)
N3 0.0989 (4) 0.4170 (3) 0.2225 (2) 0.0215 (6)
C1 0.6376 (4) 0.4414 (3) 0.3838 (3) 0.0245 (8)
H1A 0.6184 0.5117 0.3927 0.029*
C2 0.7825 (5) 0.4048 (4) 0.4022 (3) 0.0291 (9)
H2A 0.8617 0.4493 0.4228 0.035*
C3 0.8095 (5) 0.3026 (4) 0.3899 (3) 0.0320 (10)
H3A 0.9081 0.2759 0.4010 0.038*
C4 0.6917 (5) 0.2392 (3) 0.3615 (3) 0.0280 (8)
H4A 0.7076 0.1684 0.3548 0.034*
C5 0.5506 (4) 0.2805 (3) 0.3429 (3) 0.0208 (7)
C6 0.4167 (4) 0.2175 (3) 0.3096 (3) 0.0202 (7)
H6A 0.4512 0.1543 0.2775 0.024*
H6B 0.3564 0.1989 0.3678 0.024*
C7 0.1677 (4) 0.2401 (3) 0.2253 (3) 0.0215 (7)
H7A 0.1323 0.2150 0.2901 0.026*
H7B 0.1647 0.1829 0.1774 0.026*
C8 0.0656 (4) 0.3237 (3) 0.1875 (3) 0.0230 (7)
C9 −0.0583 (5) 0.3063 (4) 0.1241 (3) 0.0340 (10)
H9A −0.0797 0.2399 0.1001 0.041*
C10 −0.1499 (6) 0.3865 (5) 0.0964 (4) 0.0445 (13)
H10A −0.2355 0.3759 0.0534 0.053*
C11 −0.1162 (6) 0.4821 (4) 0.1318 (4) 0.0465 (14)
H11A −0.1784 0.5382 0.1137 0.056*
C12 0.0097 (5) 0.4952 (4) 0.1942 (4) 0.0336 (10)
H12A 0.0338 0.5613 0.2178 0.040*
C13 0.3965 (4) 0.2893 (3) 0.1407 (3) 0.0198 (7)
H13A 0.3337 0.2553 0.0883 0.024*
H13B 0.4956 0.2548 0.1442 0.024*
C14 0.4195 (4) 0.3982 (3) 0.1113 (3) 0.0190 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Fe1 0.0191 (2) 0.0150 (2) 0.0172 (2) −0.00111 (17) 0.00049 (15) 0.00011 (17)
Zn1 0.0191 (2) 0.0150 (2) 0.0172 (2) −0.00111 (17) 0.00049 (15) 0.00011 (17)
Cl1 0.0217 (4) 0.0273 (5) 0.0207 (4) −0.0020 (3) 0.0013 (3) 0.0032 (3)
Cl2 0.0400 (6) 0.0201 (4) 0.0272 (5) 0.0007 (4) 0.0063 (4) −0.0067 (4)
O1 0.0351 (16) 0.0169 (13) 0.0363 (17) 0.0000 (12) 0.0006 (13) −0.0069 (12)
O2 0.0476 (19) 0.0233 (15) 0.0271 (15) −0.0051 (13) 0.0057 (13) 0.0043 (12)
N1 0.0204 (15) 0.0210 (15) 0.0196 (14) −0.0020 (12) −0.0012 (11) −0.0008 (12)
N2 0.0173 (14) 0.0162 (14) 0.0178 (13) −0.0016 (11) −0.0002 (11) 0.0006 (11)
N3 0.0205 (15) 0.0223 (16) 0.0216 (15) 0.0013 (12) −0.0015 (12) −0.0004 (12)
C1 0.0231 (18) 0.0261 (19) 0.0243 (18) −0.0055 (15) 0.0003 (14) −0.0037 (15)
C2 0.0209 (18) 0.041 (2) 0.0253 (19) −0.0060 (17) −0.0018 (15) −0.0064 (17)
C3 0.0211 (19) 0.047 (3) 0.028 (2) 0.0080 (18) −0.0049 (15) −0.0064 (19)
C4 0.026 (2) 0.031 (2) 0.0268 (19) 0.0081 (16) −0.0041 (15) −0.0039 (16)
C5 0.0213 (17) 0.0243 (18) 0.0166 (15) 0.0013 (14) −0.0013 (13) −0.0016 (13)
C6 0.0226 (17) 0.0161 (16) 0.0218 (17) 0.0015 (13) −0.0010 (13) 0.0005 (13)
C7 0.0208 (17) 0.0186 (17) 0.0249 (17) −0.0041 (14) −0.0034 (13) −0.0010 (14)
C8 0.0193 (17) 0.0273 (19) 0.0223 (17) −0.0033 (15) −0.0014 (13) −0.0025 (15)
C9 0.027 (2) 0.040 (3) 0.034 (2) −0.0024 (18) −0.0101 (17) −0.0074 (19)
C10 0.030 (2) 0.057 (3) 0.045 (3) 0.010 (2) −0.018 (2) −0.011 (2)
C11 0.036 (3) 0.051 (3) 0.052 (3) 0.022 (2) −0.020 (2) −0.011 (2)
C12 0.031 (2) 0.029 (2) 0.041 (3) 0.0087 (18) −0.0066 (18) −0.0021 (19)
C13 0.0267 (18) 0.0161 (16) 0.0168 (15) 0.0002 (13) 0.0028 (13) 0.0007 (12)
C14 0.0204 (16) 0.0185 (16) 0.0179 (16) 0.0000 (13) −0.0005 (13) −0.0019 (13)

Geometric parameters (Å, °)

Fe1—N1 2.122 (3) C3—H3A 0.950
Fe1—N3 2.156 (3) C4—C5 1.381 (5)
Fe1—O1 2.202 (3) C4—H4A 0.950
Fe1—Cl2 2.2512 (11) C5—C6 1.506 (5)
Fe1—N2 2.260 (3) C6—H6A 0.990
Fe1—Cl1 2.3441 (10) C6—H6B 0.990
O1—C14 1.226 (5) C7—C8 1.505 (5)
O2—C14 1.291 (5) C7—H7A 0.990
O2—H2 0.927 C7—H7B 0.990
N1—C1 1.345 (5) C8—C9 1.387 (5)
N1—C5 1.346 (5) C9—C10 1.378 (7)
N2—C7 1.473 (5) C9—H9A 0.950
N2—C13 1.475 (5) C10—C11 1.377 (8)
N2—C6 1.483 (5) C10—H10A 0.950
N3—C8 1.347 (5) C11—C12 1.386 (6)
N3—C12 1.348 (5) C11—H11A 0.950
C1—C2 1.388 (6) C12—H12A 0.950
C1—H1A 0.950 C13—C14 1.504 (5)
C2—C3 1.381 (7) C13—H13A 0.990
C2—H2A 0.950 C13—H13B 0.990
C3—C4 1.382 (6)
N1—Fe1—N3 150.70 (12) C3—C4—H4A 120.5
N1—Fe1—O1 85.37 (12) N1—C5—C4 121.9 (4)
N3—Fe1—O1 81.87 (12) N1—C5—C6 115.5 (3)
N1—Fe1—Cl2 103.88 (9) C4—C5—C6 122.6 (4)
N3—Fe1—Cl2 102.26 (9) N2—C6—C5 108.4 (3)
O1—Fe1—Cl2 89.45 (8) N2—C6—H6A 110.0
N1—Fe1—N2 75.71 (11) C5—C6—H6A 110.0
N3—Fe1—N2 75.74 (12) N2—C6—H6B 110.0
O1—Fe1—N2 76.77 (11) C5—C6—H6B 110.0
Cl2—Fe1—N2 166.22 (8) H6A—C6—H6B 108.4
N1—Fe1—Cl1 94.84 (9) N2—C7—C8 110.1 (3)
N3—Fe1—Cl1 92.86 (9) N2—C7—H7A 109.6
O1—Fe1—Cl1 168.98 (8) C8—C7—H7A 109.6
Cl2—Fe1—Cl1 101.17 (4) N2—C7—H7B 109.6
N2—Fe1—Cl1 92.57 (8) C8—C7—H7B 109.6
C14—O1—Fe1 116.5 (3) H7A—C7—H7B 108.2
C14—O2—H2 111.5 N3—C8—C9 121.7 (4)
C1—N1—C5 119.0 (3) N3—C8—C7 115.4 (3)
C1—N1—Fe1 124.9 (3) C9—C8—C7 122.8 (4)
C5—N1—Fe1 116.1 (2) C10—C9—C8 119.2 (4)
C7—N2—C13 111.8 (3) C10—C9—H9A 120.4
C7—N2—C6 113.2 (3) C8—C9—H9A 120.4
C13—N2—C6 112.1 (3) C11—C10—C9 119.4 (4)
C7—N2—Fe1 105.1 (2) C11—C10—H10A 120.3
C13—N2—Fe1 110.4 (2) C9—C10—H10A 120.3
C6—N2—Fe1 103.6 (2) C10—C11—C12 119.0 (5)
C8—N3—C12 118.7 (4) C10—C11—H11A 120.5
C8—N3—Fe1 116.2 (3) C12—C11—H11A 120.5
C12—N3—Fe1 125.0 (3) N3—C12—C11 122.0 (5)
N1—C1—C2 121.9 (4) N3—C12—H12A 119.0
N1—C1—H1A 119.1 C11—C12—H12A 119.0
C2—C1—H1A 119.1 N2—C13—C14 113.3 (3)
C3—C2—C1 118.8 (4) N2—C13—H13A 108.9
C3—C2—H2A 120.6 C14—C13—H13A 108.9
C1—C2—H2A 120.6 N2—C13—H13B 108.9
C2—C3—C4 119.4 (4) C14—C13—H13B 108.9
C2—C3—H3A 120.3 H13A—C13—H13B 107.7
C4—C3—H3A 120.3 O1—C14—O2 124.4 (4)
C5—C4—C3 119.0 (4) O1—C14—C13 122.5 (3)
C5—C4—H4A 120.5 O2—C14—C13 113.1 (3)
N1—Fe1—O1—C14 77.2 (3) C5—N1—C1—C2 1.1 (6)
N3—Fe1—O1—C14 −76.3 (3) Fe1—N1—C1—C2 −175.2 (3)
Cl2—Fe1—O1—C14 −178.8 (3) N1—C1—C2—C3 −0.5 (6)
N2—Fe1—O1—C14 0.8 (3) C1—C2—C3—C4 −1.0 (7)
Cl1—Fe1—O1—C14 −14.3 (7) C2—C3—C4—C5 2.0 (6)
N3—Fe1—N1—C1 144.7 (3) C1—N1—C5—C4 −0.1 (6)
O1—Fe1—N1—C1 80.4 (3) Fe1—N1—C5—C4 176.5 (3)
Cl2—Fe1—N1—C1 −7.9 (3) C1—N1—C5—C6 179.8 (3)
N2—Fe1—N1—C1 157.9 (3) Fe1—N1—C5—C6 −3.7 (4)
Cl1—Fe1—N1—C1 −110.7 (3) C3—C4—C5—N1 −1.5 (6)
N3—Fe1—N1—C5 −31.7 (4) C3—C4—C5—C6 178.7 (4)
O1—Fe1—N1—C5 −96.0 (3) C7—N2—C6—C5 −160.8 (3)
Cl2—Fe1—N1—C5 175.7 (3) C13—N2—C6—C5 71.5 (4)
N2—Fe1—N1—C5 −18.5 (3) Fe1—N2—C6—C5 −47.5 (3)
Cl1—Fe1—N1—C5 73.0 (3) N1—C5—C6—N2 36.7 (4)
N1—Fe1—N2—C7 154.6 (2) C4—C5—C6—N2 −143.5 (4)
N3—Fe1—N2—C7 −32.0 (2) C13—N2—C7—C8 −75.2 (4)
O1—Fe1—N2—C7 −116.9 (2) C6—N2—C7—C8 157.0 (3)
Cl2—Fe1—N2—C7 −115.3 (4) Fe1—N2—C7—C8 44.6 (3)
Cl1—Fe1—N2—C7 60.3 (2) C12—N3—C8—C9 −0.5 (6)
N1—Fe1—N2—C13 −84.6 (2) Fe1—N3—C8—C9 −176.8 (3)
N3—Fe1—N2—C13 88.7 (2) C12—N3—C8—C7 −178.1 (4)
O1—Fe1—N2—C13 3.9 (2) Fe1—N3—C8—C7 5.6 (4)
Cl2—Fe1—N2—C13 5.4 (5) N2—C7—C8—N3 −35.6 (5)
Cl1—Fe1—N2—C13 −179.0 (2) N2—C7—C8—C9 146.9 (4)
N1—Fe1—N2—C6 35.6 (2) N3—C8—C9—C10 −0.2 (7)
N3—Fe1—N2—C6 −151.1 (2) C7—C8—C9—C10 177.2 (4)
O1—Fe1—N2—C6 124.1 (2) C8—C9—C10—C11 0.3 (8)
Cl2—Fe1—N2—C6 125.6 (3) C9—C10—C11—C12 0.2 (9)
Cl1—Fe1—N2—C6 −58.8 (2) C8—N3—C12—C11 1.1 (7)
N1—Fe1—N3—C8 28.4 (4) Fe1—N3—C12—C11 177.0 (4)
O1—Fe1—N3—C8 93.5 (3) C10—C11—C12—N3 −1.0 (9)
Cl2—Fe1—N3—C8 −178.8 (3) C7—N2—C13—C14 109.1 (3)
N2—Fe1—N3—C8 15.2 (3) C6—N2—C13—C14 −122.4 (3)
Cl1—Fe1—N3—C8 −76.7 (3) Fe1—N2—C13—C14 −7.5 (4)
N1—Fe1—N3—C12 −147.6 (3) Fe1—O1—C14—O2 176.6 (3)
O1—Fe1—N3—C12 −82.5 (4) Fe1—O1—C14—C13 −5.8 (5)
Cl2—Fe1—N3—C12 5.2 (4) N2—C13—C14—O1 9.3 (5)
N2—Fe1—N3—C12 −160.8 (4) N2—C13—C14—O2 −172.8 (3)
Cl1—Fe1—N3—C12 107.3 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H2···O2i 0.93 1.64 2.559 (6) 169

Symmetry codes: (i) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2118).

References

  1. Bruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Mortensen, M. N., Jensen, B., Hazell, A., Bond, A. D. & McKenzie, C. J. (2004). Dalton Trans. pp. 3396–3402. [DOI] [PubMed]
  4. Sheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Suzuki, M., Senda, H., Kobayashi, Y., Oshio, H. & Uehara, A. (1988). Chem. Lett. pp. 1763–1766.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809051022/jh2118sup1.cif

e-65-m1706-sup1.cif (21.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809051022/jh2118Isup2.hkl

e-65-m1706-Isup2.hkl (233.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES