Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Nov 18;65(Pt 12):m1595–m1596. doi: 10.1107/S1600536809046637

Poly[[μ2-acetato-aquadi-μ3-isonicotinato-dysprosium(III)silver(I)] perchlorate]

Li-Cai Zhu a,*
PMCID: PMC2972040  PMID: 21578624

Abstract

In the title three-dimensional heterometallic complex, {[AgDy(C6H4NO2)2(C2H3O2)(H2O)]ClO4}n, the Dy(III) ion is eight-coordinated by four O atoms from four different isonicotinate ligands, three O atoms from two different acetate ligands and one O atom of water mol­ecule. The two-coordinate AgI ion is bonded to two N atoms from two different isonicotinate anions. These metal coordination units are connected by bridging isonicotinate and acetate ligands, generating a three-dimensional network. The coordinated water mol­ecules link the carboxyl­ate group and the acetate ligand by O—H⋯O hydrogen bonding. The perchlorate anion is disordered over two sites with site occupancy factors 0.508 (12) and 0.492 (12) and the methyl group of the acetate ligand is disordered over two positions of equal occupancy.

Related literature

For the applications of lanthanide–transition metal heterometallic complexes with bridging multifunctional organic ligands in ion exchange, magnetism, bimetallic catalysis and as luminescent probes, see: Cheng et al. (2006); Kuang et al. (2007); Peng et al. (2008); Zhu et al. (2009).graphic file with name e-65-m1595-scheme1.jpg

Experimental

Crystal data

  • [AgDy(C6H4NO2)2(C2H3O2)(H2O)]ClO4

  • M r = 691.08

  • Monoclinic, Inline graphic

  • a = 16.1682 (15) Å

  • b = 15.1020 (14) Å

  • c = 7.9846 (7) Å

  • β = 92.845 (1)°

  • V = 1947.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.01 mm−1

  • T = 296 K

  • 0.23 × 0.20 × 0.19 mm

Data collection

  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.328, T max = 0.386

  • 9904 measured reflections

  • 3486 independent reflections

  • 3112 reflections with I > 2σ(I)

  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.023

  • wR(F 2) = 0.056

  • S = 1.04

  • 3486 reflections

  • 322 parameters

  • 158 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.76 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809046637/zq2015sup1.cif

e-65-m1595-sup1.cif (21.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809046637/zq2015Isup2.hkl

e-65-m1595-Isup2.hkl (171KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H2W⋯O2i 0.79 (3) 2.21 (4) 2.925 (4) 150 (5)
O1W—H1W⋯O5ii 0.79 (3) 2.05 (4) 2.813 (4) 161 (5)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The author acknowledges South China Normal University for supporting this work.

supplementary crystallographic information

Comment

In the past few years, lanthanide-transition metal heterometallic complexs with bridging multifunctionnal organic ligands are of increasing interest, not only because of their impressive topological structures, but also due to their versatile applications in ion exchange, magnetism, bimetallic catalysis and luminescent probe(Cheng et al., 2006; Kuang et al., 2007; Peng et al., 2008; Zhu et al., 2009). As an extension of this research, the structure of the title compound, a new heterometallic coordination polymer, (I), has been determined which is presented in this article.

In the title compound (Fig. 1), there are one Dy(III) ion, one Ag(I) ion, two halves of acetate ligand, two isonicotinate ligands, one coordinated water molecule, and one perchlorate anion in the asymmetric unit. Each Dy(III) ion is eight-coordinated by four O atoms from four different isonicotinate ligands [Dy—O distances ranging from 2.297 (3) to 2.348 (3) Å], and three O atoms from two different acetate ligands [Dy—O distances ranging from 2.394 (3) to 2.484 (3) Å], and one O atom of water molecule [Dy—O distances 2.414 (3) Å]. The O—Dy—O bond angles are in the range from 52.70 (10) to 155.05 (10) °. The Dy center can be described as having a bicapped trigonal prism coordination geometry. The two-coordinate Ag(I) ion is bonded to two N atoms from two different isonicotinate anions [Ag—N distances 2.163 (4) Å]. Thus the Ag(I) ion is in a somewhat linear configuration with N1—Ag1—N2 angle 165.40 (17) °. These metal coordination units are connected by bridging isonicotinate and acetate ligands, generating a three-dimensional network (Fig. 2).The coordinated water molecules link the carboxylate group and acetate ligand by O—H···O hydrogen bonding (Table 1). The perchlorate anion is disordered over two sites with site occupancy factors 0.508 (12) and 0.492 (12). The methyl group of the acetate ligand is disordered over two positions of equal occupancy (0.5:0.5).

Experimental

A mixture of AgNO3(0.057 g, 0.33 mmol), Dy2O3(0.116 g, 0.33 mmol), isonicotinic acid (0.164 g, 1.33 mmol), CH3COONa(0.057 g, 0.7 mmol), H2O(7 ml), and HClO4(0.257 mmol)(pH 2) was sealed in a 20 ml Teflon-lined reaction vessel at 443 K for 6 days then slowly cooled to room temperature. The product was collected by filtration, washed with water and air-dried. Colorless block crystals suitable for X-ray analysis were obtained.

Refinement

H atoms bonded to C atoms were positioned geometrically and refined as riding, with C—H = 0.93 or 0.96 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). H atoms of water molecules were found from difference Fourier maps and refined isotropically with a restraint of O—H = 0.82 Å. The perchlorate anion is disordered over two sites with site occupancy factors 0.508 (12) and 0.492 (12). The methyl group of the acetate ligand is disordered over two positions of equal occupancy (0.5:0.5).

Figures

Fig. 1.

Fig. 1.

The molecular structure showing the atomic-numbering scheme and displacement ellipsoids drawn at the 30% probability level. Symmetry codes: (A) 1 + x, 1.5 - y, -1/2 + z; (B) 1 - x, 1 - y, 2 - z; (C) x, 1.5 - y, 1/2 + z.

Fig. 2.

Fig. 2.

A view of the three-dimensional structure of the title compound. Hydrogen atoms are omitted for clarity.

Crystal data

[AgDy(C6H4NO2)2(C2H3O2)(H2O)]ClO4 F(000) = 1316
Mr = 691.08 Dx = 2.357 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 5589 reflections
a = 16.1682 (15) Å θ = 2.7–27.8°
b = 15.1020 (14) Å µ = 5.01 mm1
c = 7.9846 (7) Å T = 296 K
β = 92.845 (1)° Block, colorless
V = 1947.2 (3) Å3 0.23 × 0.20 × 0.19 mm
Z = 4

Data collection

Bruker APEXII area-detector diffractometer 3486 independent reflections
Radiation source: fine-focus sealed tube 3112 reflections with I > 2σ(I)
graphite Rint = 0.025
φ and ω scan θmax = 25.2°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −15→19
Tmin = 0.328, Tmax = 0.386 k = −18→17
9904 measured reflections l = −8→9

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.056 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0236P)2 + 3.5237P] where P = (Fo2 + 2Fc2)/3
3486 reflections (Δ/σ)max = 0.002
322 parameters Δρmax = 0.66 e Å3
158 restraints Δρmin = −0.76 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Dy1 0.454540 (11) 0.616178 (12) 1.04948 (2) 0.01852 (7)
Ag1 0.97316 (3) 0.73989 (4) 0.60071 (7) 0.06665 (17)
O1 0.35829 (18) 0.81592 (19) 0.7190 (4) 0.0300 (7)
O2 0.38143 (17) 0.68117 (19) 0.8281 (4) 0.0263 (7)
O3 0.5762 (2) 0.6330 (2) 0.9080 (5) 0.0401 (9)
O4 0.63060 (19) 0.49745 (19) 0.8632 (5) 0.0403 (9)
O5 0.5347 (2) 0.6149 (2) 1.3147 (4) 0.0360 (8)
O6 0.54781 (19) 0.4970 (2) 1.1607 (4) 0.0320 (7)
O1W 0.4979 (2) 0.7687 (2) 1.0758 (4) 0.0358 (8)
H1W 0.518 (3) 0.795 (3) 1.002 (6) 0.054*
H2W 0.475 (3) 0.800 (3) 1.139 (6) 0.054*
N1 0.0943 (2) 0.7527 (3) 0.9981 (6) 0.0404 (10)
N2 0.8576 (3) 0.6967 (3) 0.6991 (6) 0.0500 (12)
C1 0.2516 (3) 0.7494 (3) 0.8695 (5) 0.0231 (9)
C2 0.2116 (3) 0.6710 (3) 0.9112 (6) 0.0312 (11)
H1 0.2372 0.6165 0.8967 0.037*
C3 0.1336 (3) 0.6753 (3) 0.9741 (7) 0.0388 (12)
H2 0.1072 0.6229 1.0008 0.047*
C4 0.1333 (3) 0.8284 (4) 0.9589 (7) 0.0446 (13)
H3 0.1068 0.8821 0.9760 0.054*
C5 0.2109 (3) 0.8294 (3) 0.8945 (6) 0.0335 (11)
H4 0.2358 0.8828 0.8680 0.040*
C6 0.3367 (2) 0.7495 (3) 0.8008 (5) 0.0202 (9)
C7 0.6332 (3) 0.5809 (3) 0.8637 (6) 0.0303 (10)
C8 0.7113 (3) 0.6231 (3) 0.8058 (6) 0.0293 (10)
C9 0.7156 (3) 0.7123 (3) 0.7613 (7) 0.0410 (13)
H7 0.6693 0.7486 0.7668 0.049*
C10 0.7894 (3) 0.7458 (4) 0.7088 (8) 0.0489 (15)
H8 0.7917 0.8053 0.6791 0.059*
C11 0.8533 (3) 0.6108 (4) 0.7457 (9) 0.0568 (17)
H5 0.9009 0.5763 0.7427 0.068*
C12 0.7818 (3) 0.5719 (3) 0.7975 (7) 0.0428 (13)
H6 0.7810 0.5123 0.8264 0.051*
C13 0.5697 (3) 0.5411 (3) 1.2898 (5) 0.0276 (10)
C14 0.6271 (11) 0.5015 (17) 1.421 (3) 0.045 (4) 0.50
H14A 0.6719 0.5418 1.4467 0.068* 0.50
H14B 0.6487 0.4468 1.3804 0.068* 0.50
H14C 0.5976 0.4905 1.5203 0.068* 0.50
C14' 0.6444 (10) 0.5127 (17) 1.393 (3) 0.045 (4) 0.50
H14D 0.6503 0.5488 1.4915 0.068* 0.50
H14E 0.6926 0.5191 1.3282 0.068* 0.50
H14F 0.6385 0.4518 1.4246 0.068* 0.50
Cl1 0.9165 (8) 0.9620 (9) 0.7618 (15) 0.0633 (8) 0.492 (12)
O7 0.9742 (9) 0.8934 (9) 0.785 (2) 0.138 (7) 0.492 (12)
O8 0.8752 (9) 0.9496 (8) 0.6037 (14) 0.105 (5) 0.492 (12)
O9 0.9544 (10) 1.0465 (9) 0.761 (2) 0.074 (5) 0.492 (12)
O10 0.8556 (9) 0.9600 (10) 0.8849 (19) 0.139 (7) 0.492 (12)
Cl1' 0.9216 (7) 0.9553 (8) 0.7502 (15) 0.0633 (8) 0.508 (12)
O7' 0.9307 (9) 0.8895 (9) 0.8748 (17) 0.125 (6) 0.508 (12)
O8' 0.9565 (10) 0.9226 (10) 0.6054 (17) 0.139 (6) 0.508 (12)
O9' 0.9612 (10) 1.0334 (9) 0.809 (2) 0.090 (6) 0.508 (12)
O10' 0.8355 (6) 0.9715 (7) 0.720 (2) 0.101 (5) 0.508 (12)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Dy1 0.01576 (11) 0.01481 (11) 0.02554 (12) 0.00081 (7) 0.00650 (8) 0.00006 (8)
Ag1 0.0261 (2) 0.0917 (4) 0.0846 (4) −0.0148 (2) 0.0267 (2) 0.0028 (3)
O1 0.0256 (16) 0.0230 (16) 0.0424 (19) 0.0016 (13) 0.0128 (14) 0.0096 (14)
O2 0.0190 (15) 0.0247 (15) 0.0357 (18) 0.0039 (12) 0.0055 (13) 0.0049 (13)
O3 0.0302 (19) 0.0227 (17) 0.071 (3) −0.0018 (13) 0.0332 (18) −0.0015 (16)
O4 0.0337 (18) 0.0193 (16) 0.070 (2) −0.0035 (14) 0.0288 (17) −0.0028 (16)
O5 0.044 (2) 0.0315 (18) 0.0319 (18) 0.0101 (15) −0.0040 (15) −0.0092 (14)
O6 0.0376 (18) 0.0270 (16) 0.0304 (17) 0.0082 (14) −0.0078 (14) −0.0062 (14)
O1W 0.049 (2) 0.0228 (17) 0.038 (2) −0.0094 (15) 0.0213 (17) −0.0029 (14)
N1 0.023 (2) 0.049 (3) 0.051 (3) 0.0021 (18) 0.0138 (19) −0.003 (2)
N2 0.028 (2) 0.050 (3) 0.074 (3) −0.009 (2) 0.022 (2) −0.002 (2)
C1 0.017 (2) 0.028 (2) 0.024 (2) 0.0005 (17) 0.0038 (17) 0.0033 (17)
C2 0.020 (2) 0.026 (2) 0.049 (3) −0.0004 (18) 0.011 (2) 0.000 (2)
C3 0.025 (2) 0.037 (3) 0.056 (3) −0.006 (2) 0.017 (2) −0.001 (2)
C4 0.033 (3) 0.040 (3) 0.062 (4) 0.013 (2) 0.014 (3) −0.002 (3)
C5 0.027 (2) 0.025 (2) 0.050 (3) 0.0046 (19) 0.012 (2) 0.004 (2)
C6 0.016 (2) 0.020 (2) 0.024 (2) −0.0002 (16) 0.0040 (17) 0.0002 (17)
C7 0.023 (2) 0.028 (2) 0.041 (3) −0.0069 (19) 0.016 (2) −0.001 (2)
C8 0.023 (2) 0.026 (2) 0.041 (3) −0.0048 (18) 0.014 (2) −0.003 (2)
C9 0.025 (3) 0.029 (3) 0.070 (4) 0.000 (2) 0.017 (2) 0.004 (2)
C10 0.032 (3) 0.036 (3) 0.081 (4) −0.010 (2) 0.021 (3) 0.007 (3)
C11 0.026 (3) 0.047 (3) 0.100 (5) 0.000 (2) 0.019 (3) −0.004 (3)
C12 0.027 (3) 0.031 (3) 0.073 (4) 0.001 (2) 0.017 (3) −0.001 (3)
C13 0.026 (2) 0.032 (2) 0.025 (2) 0.0036 (19) −0.0008 (19) −0.0022 (19)
C14 0.046 (6) 0.045 (5) 0.044 (6) 0.006 (5) −0.012 (5) −0.003 (4)
C14' 0.046 (6) 0.045 (5) 0.044 (6) 0.006 (5) −0.012 (5) −0.003 (4)
Cl1 0.0616 (15) 0.0502 (16) 0.0776 (16) 0.0036 (11) −0.0019 (11) −0.0024 (12)
O7 0.145 (10) 0.105 (8) 0.162 (11) 0.076 (7) −0.030 (8) −0.017 (7)
O8 0.132 (10) 0.108 (8) 0.072 (7) −0.039 (7) −0.042 (7) 0.005 (6)
O9 0.068 (8) 0.060 (7) 0.094 (8) −0.011 (6) 0.012 (6) −0.003 (6)
O10 0.135 (10) 0.151 (10) 0.136 (10) −0.038 (8) 0.054 (8) −0.009 (8)
Cl1' 0.0616 (15) 0.0502 (16) 0.0776 (16) 0.0036 (11) −0.0019 (11) −0.0024 (12)
O7' 0.140 (10) 0.120 (9) 0.112 (8) −0.019 (7) −0.017 (7) 0.066 (7)
O8' 0.163 (10) 0.142 (9) 0.119 (9) 0.012 (8) 0.063 (8) −0.035 (7)
O9' 0.074 (8) 0.082 (9) 0.115 (10) −0.034 (7) 0.006 (7) −0.038 (7)
O10' 0.055 (6) 0.088 (7) 0.160 (10) 0.004 (5) −0.008 (6) 0.008 (7)

Geometric parameters (Å, °)

Dy1—O2 2.297 (3) C2—C3 1.382 (6)
Dy1—O4i 2.328 (3) C2—H1 0.9300
Dy1—O3 2.330 (3) C3—H2 0.9300
Dy1—O1ii 2.348 (3) C4—C5 1.380 (6)
Dy1—O6i 2.394 (3) C4—H3 0.9300
Dy1—O1W 2.414 (3) C5—H4 0.9300
Dy1—O5 2.428 (3) C7—C8 1.509 (6)
Dy1—O6 2.484 (3) C8—C12 1.381 (6)
Dy1—C13 2.842 (4) C8—C9 1.395 (6)
Dy1—Dy1i 3.9005 (5) C9—C10 1.381 (6)
Ag1—N2 2.163 (4) C9—H7 0.9300
Ag1—N1iii 2.163 (4) C10—H8 0.9300
O1—C6 1.256 (5) C11—C12 1.379 (7)
O1—Dy1iv 2.348 (3) C11—H5 0.9300
O2—C6 1.272 (5) C12—H6 0.9300
O3—C7 1.275 (5) C13—C14 1.490 (9)
O4—C7 1.261 (5) C13—C14' 1.490 (9)
O4—Dy1i 2.328 (3) C14—H14A 0.9600
O5—C13 1.269 (5) C14—H14B 0.9600
O6—C13 1.263 (5) C14—H14C 0.9600
O6—Dy1i 2.394 (3) C14'—H14D 0.9600
O1W—H1W 0.79 (3) C14'—H14E 0.9600
O1W—H2W 0.79 (3) C14'—H14F 0.9600
N1—C3 1.348 (6) Cl1—O7 1.399 (12)
N1—C4 1.350 (7) Cl1—O8 1.411 (12)
N1—Ag1v 2.163 (4) Cl1—O9 1.416 (11)
N2—C10 1.335 (7) Cl1—O10 1.426 (12)
N2—C11 1.351 (7) Cl1'—O8' 1.401 (12)
C1—C5 1.394 (6) Cl1'—O7' 1.408 (12)
C1—C2 1.398 (6) Cl1'—O9' 1.411 (11)
C1—C6 1.506 (5) Cl1'—O10' 1.420 (11)
O2—Dy1—O4i 104.83 (12) C2—C1—C6 121.9 (4)
O2—Dy1—O3 89.71 (12) C3—C2—C1 119.1 (4)
O4i—Dy1—O3 138.72 (10) C3—C2—H1 120.4
O2—Dy1—O1ii 85.79 (11) C1—C2—H1 120.4
O4i—Dy1—O1ii 74.38 (10) N1—C3—C2 122.6 (4)
O3—Dy1—O1ii 146.22 (10) N1—C3—H2 118.7
O2—Dy1—O6i 77.05 (10) C2—C3—H2 118.7
O4i—Dy1—O6i 72.23 (11) N1—C4—C5 122.6 (4)
O3—Dy1—O6i 73.89 (11) N1—C4—H3 118.7
O1ii—Dy1—O6i 136.70 (11) C5—C4—H3 118.7
O2—Dy1—O1W 78.20 (12) C4—C5—C1 119.2 (4)
O4i—Dy1—O1W 148.29 (11) C4—C5—H4 120.4
O3—Dy1—O1W 71.91 (11) C1—C5—H4 120.4
O1ii—Dy1—O1W 74.40 (11) O1—C6—O2 124.5 (4)
O6i—Dy1—O1W 137.44 (11) O1—C6—C1 118.2 (3)
O2—Dy1—O5 155.05 (10) O2—C6—C1 117.3 (3)
O4i—Dy1—O5 91.77 (13) O4—C7—O3 126.4 (4)
O3—Dy1—O5 89.81 (13) O4—C7—C8 116.7 (4)
O1ii—Dy1—O5 80.85 (11) O3—C7—C8 116.9 (4)
O6i—Dy1—O5 126.52 (10) C12—C8—C9 118.5 (4)
O1W—Dy1—O5 77.96 (12) C12—C8—C7 119.0 (4)
O2—Dy1—O6 149.85 (10) C9—C8—C7 122.5 (4)
O4i—Dy1—O6 73.52 (11) C10—C9—C8 119.0 (5)
O3—Dy1—O6 74.95 (11) C10—C9—H7 120.5
O1ii—Dy1—O6 121.22 (11) C8—C9—H7 120.5
O6i—Dy1—O6 73.84 (12) N2—C10—C9 122.8 (5)
O1W—Dy1—O6 119.46 (12) N2—C10—H8 118.6
O5—Dy1—O6 52.70 (10) C9—C10—H8 118.6
O2—Dy1—C13 169.94 (11) N2—C11—C12 123.1 (5)
O4i—Dy1—C13 83.17 (13) N2—C11—H5 118.4
O3—Dy1—C13 80.23 (13) C12—C11—H5 118.4
O1ii—Dy1—C13 102.45 (12) C11—C12—C8 118.8 (5)
O6i—Dy1—C13 100.12 (12) C11—C12—H6 120.6
O1W—Dy1—C13 98.28 (13) C8—C12—H6 120.6
O5—Dy1—C13 26.41 (11) O6—C13—O5 118.8 (4)
O6—Dy1—C13 26.36 (11) O6—C13—C14 120.1 (11)
O2—Dy1—Dy1i 114.40 (7) O5—C13—C14 120.6 (11)
O4i—Dy1—Dy1i 68.41 (7) O6—C13—C14' 119.0 (11)
O3—Dy1—Dy1i 70.39 (7) O5—C13—C14' 121.4 (12)
O1ii—Dy1—Dy1i 140.97 (7) C14—C13—C14' 15.6 (17)
O6i—Dy1—Dy1i 37.71 (7) O6—C13—Dy1 60.8 (2)
O1W—Dy1—Dy1i 139.94 (8) O5—C13—Dy1 58.3 (2)
O5—Dy1—Dy1i 88.82 (7) C14—C13—Dy1 177.5 (10)
O6—Dy1—Dy1i 36.13 (7) C14'—C13—Dy1 166.7 (9)
C13—Dy1—Dy1i 62.43 (9) C13—C14—H14A 109.5
N2—Ag1—N1iii 165.40 (17) C13—C14—H14B 109.5
C6—O1—Dy1iv 149.1 (3) C13—C14—H14C 109.5
C6—O2—Dy1 138.1 (3) C13—C14'—H14D 109.5
C7—O3—Dy1 134.9 (3) C13—C14'—H14E 109.5
C7—O4—Dy1i 139.1 (3) H14D—C14'—H14E 109.5
C13—O5—Dy1 95.3 (3) C13—C14'—H14F 109.5
C13—O6—Dy1i 160.5 (3) H14D—C14'—H14F 109.5
C13—O6—Dy1 92.8 (3) H14E—C14'—H14F 109.5
Dy1i—O6—Dy1 106.16 (12) O7—Cl1—O8 107.5 (10)
Dy1—O1W—H1W 123 (4) O7—Cl1—O9 112.5 (10)
Dy1—O1W—H2W 119 (4) O8—Cl1—O9 107.4 (10)
H1W—O1W—H2W 113 (5) O7—Cl1—O10 111.9 (11)
C3—N1—C4 118.2 (4) O8—Cl1—O10 107.5 (10)
C3—N1—Ag1v 122.7 (3) O9—Cl1—O10 109.7 (10)
C4—N1—Ag1v 119.1 (3) O8'—Cl1'—O7' 107.6 (10)
C10—N2—C11 117.6 (4) O8'—Cl1'—O9' 111.8 (10)
C10—N2—Ag1 125.7 (4) O7'—Cl1'—O9' 109.0 (10)
C11—N2—Ag1 116.5 (3) O8'—Cl1'—O10' 110.8 (10)
C5—C1—C2 118.3 (4) O7'—Cl1'—O10' 107.9 (10)
C5—C1—C6 119.8 (4) O9'—Cl1'—O10' 109.6 (10)

Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) x, −y+3/2, z+1/2; (iii) x+1, −y+3/2, z−1/2; (iv) x, −y+3/2, z−1/2; (v) x−1, −y+3/2, z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1W—H2W···O2ii 0.79 (3) 2.21 (4) 2.925 (4) 150 (5)
O1W—H1W···O5iv 0.79 (3) 2.05 (4) 2.813 (4) 161 (5)

Symmetry codes: (ii) x, −y+3/2, z+1/2; (iv) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZQ2015).

References

  1. Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Cheng, J.-W., Zhang, J., Zheng, S.-T., Zhang, M.-B. & Yang, G.-Y. (2006). Angew. Chem. Int. Ed. 45, 73–77. [DOI] [PubMed]
  3. Kuang, D.-Z., Feng, Y.-L., Peng, Y.-L. & Deng, Y.-F. (2007). Acta Cryst. E63, m2526–m2527.
  4. Peng, G., Qiu, Y.-C., Hu, Z.-H., Li, Y.-H., Liu, B. & Deng, H. (2008). Inorg. Chem. Commun. 11, 1409–1411.
  5. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Zhu, L.-C., Zhao, Z.-G. & Yu, S.-J. (2009). Acta Cryst. E65, m1105. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809046637/zq2015sup1.cif

e-65-m1595-sup1.cif (21.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809046637/zq2015Isup2.hkl

e-65-m1595-Isup2.hkl (171KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES