Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Nov 4;65(Pt 12):o2971. doi: 10.1107/S1600536809044900

1-(3-p-Tolyl­isoxazol-5-yl)cyclo­hexa­nol

Ouafaa Khalil a, Khalid Bougrin a, Rachid Benhida b, Mohamed Soufiaoui a, Lahcen El Ammari c,*
PMCID: PMC2972041  PMID: 21578712

Abstract

The title compound, C16H19NO2, contains two mol­ecules in the asymmetric unit. Each mol­ecule is composed of three inter­connected rings, two essentially planar rings, viz. the isoxazole and the methyl­benzyl aromatic ring [maximum deviations of 0.0027 (13) and 0.0031 (19) Å from the isoxazole and methylbenzyl ring planes, respectively, in the first molecule, 0.0018 (12) and 0.019 (2) Å in the second molecule], and one cyclo­hexa­nol ring having a chair conformation. Although the two mol­ecules have similar bond distances and angles, they differ in the orientation of the cyclo­hexa­nol ring with respect to the tolyl­isoxazole unit. In the first mol­ecule, the dihedral angle between the isoxazole and methyl­benzyl rings is 22.03 (8)° and between the isoxazole and cyclo­hexa­nol rings is 30.15 (8)°. The corresponding values in the second mol­ecule are 6.13 (10) and 88.44 (8)°, respectively. In the crystal, the molecules are linked by O—H⋯O and O—H⋯N hydrogen bonds, building up a zigzag chain parallel to the a axis.

Related literature

For isoxazole derivatives as building blocks in organic synthesis and combinatorial chemistry, see: Tu et al. (2009); Tang et al. (2009). For their biological activity, see: Deng et al. (2009); Kozikowski et al. (2008); Lee et al. (2009).graphic file with name e-65-o2971-scheme1.jpg

Experimental

Crystal data

  • C16H19NO2

  • M r = 257.32

  • Orthorhombic, Inline graphic

  • a = 10.9404 (3) Å

  • b = 9.7136 (3) Å

  • c = 26.9207 (7) Å

  • V = 2860.88 (14) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.18 × 0.17 × 0.10 mm

Data collection

  • Bruker X8 APEXII diffractometer

  • Absorption correction: none

  • 87116 measured reflections

  • 4377 independent reflections

  • 3820 reflections with I > 2σ(I)

  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.105

  • S = 1.04

  • 4377 reflections

  • 347 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809044900/dn2504sup1.cif

e-65-o2971-sup1.cif (23.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809044900/dn2504Isup2.hkl

e-65-o2971-Isup2.hkl (411.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2 0.82 1.98 2.7892 (12) 168
O2—H2⋯N2i 0.82 2.05 2.8629 (16) 173

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for making this work possible. They also thank H. Zouihri for his helpful technical assistance during the X-ray measurements.

supplementary crystallographic information

Comment

Isoxazole derivatives are important class of heterocyclic compounds and their chemical and biochemical properties have been extensively studied. They have served as a versatile building blocks in organic synthesis and combinatorial chemistry (Tu et al. 2009, Tang et al. 2009). Isoxazole systems have also been targeted in synthetic investigations for their known biological and pharmacological properties such as hypoglycemic, anti-inflammatory and anti-bacterial activities. Recently, the growing interest in such analogues also rises from their high potential value as antiviral (Deng et al. 2009, Lee et al. 2009) and anti-tumor agents (Kozikowski et al. 2008).

We have undertaken the X-ray diffraction study of the title compound, in order to understand the molecular features which stabilize its observed conformation. The asymmetric unit contains two molecules crystallographically independent. Each molecule is formed by three interconnected cycles, two essentially planar rings: isoxazole and methylbenzyl rings while the 3rd ring (cyclohexanol) has a chair conformation (Fig. 1). The difference between the molecules lies in the orientation of the rings in each molecule as shown in the fitting drawing (Fig. 2) obtained with PLATON (Spek, 2003). Thus in the first molecule (C1 to C15) the dihedral angles between the isoxazole ring and methylbenzyl ring planes is 22.03 (8)° and between the isoxazole and cyclohexanol ring planes is 30.15 (8)°. Whereas in the second molecule (C16 to C30), equivalent angles have as values 6.13 (10) and 88.44 (8)°, respectively.

The two molecules within the asymmetric unit are linked through O-H···O hydrogen bond building a pseudo dimer. These pseudo dimers are further linked to each other by O-H···N hydrogen bonds forming a zig-zag like chain parallel to the a axis (Table 1, Fig. 3).

Experimental

A mixture of 1-ethynylcyclohexanol (1 mmol) and p-methylbenzylaldoxime (1.2 mmol) was dissolved in CH2Cl2 (20 ml), the solution was then cooled thoroughly with ice at 0–5°C. 15 ml of sodium hydroxide solution (12 g. of sodium hydroxide per 100 g. of water) were gradually added under vigorously stirring for 5 h. The organic phase was separated and dried over anhydrous sodium sulfate, filtered and the solvent evaporated under reduced pressure. The residue was purified by recrystallization from ethanol. The structure of adduct was confirmed by spectroscopic methods.

Refinement

All H atoms attached to C atoms and O atom were fixed geometrically and treated as riding with C—H = 0.93Å (aromatic), 0.96 Å (methyl) or 0.97 Å (methylene) and O—H = 0.82 Å with Uiso(H) = 1.2Ueq(aromatic, methylene) or Uiso(H) = 1.5Ueq(methyl,O).

In the absence of significant anomalous scattering, the absolute structure could not be reliably determined and then the Friedel pairs were merged and any references to the Flack parameter were removed.

Figures

Fig. 1.

Fig. 1.

: Molecular view of the asymmetric unit with the atom labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bond is shown as dashed line.

Fig. 2.

Fig. 2.

: View showing the fitting of the two molecules building the asymmetric unit.

Fig. 3.

Fig. 3.

: Partial packing view showing the formation of a chain through O—H···N hydrogen bonds shown as dashed lines. H atoms not involved in hydrogen bondings have been omitted for clarity. [Symmetry code: (i) -x-1/2, y+1, z+1/2]

Crystal data

C16H19NO2 F(000) = 1104
Mr = 257.32 Dx = 1.195 Mg m3
Orthorhombic, Pca21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2ac Cell parameters from 4377 reflections
a = 10.9404 (3) Å θ = 2.6–30.3°
b = 9.7136 (3) Å µ = 0.08 mm1
c = 26.9207 (7) Å T = 298 K
V = 2860.88 (14) Å3 Bloc, colourless
Z = 8 0.18 × 0.17 × 0.10 mm

Data collection

Bruker X8 APEXII diffractometer 3820 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.032
graphite θmax = 30.3°, θmin = 0.8°
φ and ω scans h = −15→15
87116 measured reflections k = −13→13
4377 independent reflections l = −38→38

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0535P)2 + 0.2498P] where P = (Fo2 + 2Fc2)/3
8578 reflections (Δ/σ)max = 0.008
347 parameters Δρmax = 0.20 e Å3
1 restraint Δρmin = −0.15 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.06445 (8) 0.00823 (10) 0.57893 (4) 0.0480 (2)
H1 0.0930 0.0832 0.5867 0.072*
O3 0.11978 (9) −0.17692 (11) 0.65818 (4) 0.0483 (2)
N1 0.17299 (11) −0.19192 (14) 0.70537 (4) 0.0503 (3)
C1 0.26673 (12) −0.03462 (16) 0.54425 (5) 0.0477 (3)
H1A 0.3325 −0.1015 0.5438 0.057*
H1B 0.2974 0.0489 0.5595 0.057*
C2 0.22715 (16) −0.0037 (2) 0.49105 (6) 0.0619 (4)
H2A 0.1661 0.0688 0.4913 0.074*
H2B 0.2970 0.0287 0.4722 0.074*
C3 0.17463 (17) −0.1307 (2) 0.46633 (6) 0.0656 (4)
H3A 0.2377 −0.2004 0.4634 0.079*
H3B 0.1468 −0.1075 0.4332 0.079*
C4 0.06776 (16) −0.18753 (18) 0.49661 (6) 0.0584 (4)
H4A 0.0014 −0.1214 0.4964 0.070*
H4B 0.0384 −0.2717 0.4813 0.070*
C5 0.10482 (13) −0.21730 (13) 0.55016 (6) 0.0475 (3)
H5A 0.1636 −0.2921 0.5507 0.057*
H5B 0.0335 −0.2463 0.5688 0.057*
C6 0.16095 (10) −0.09053 (12) 0.57496 (5) 0.0365 (2)
C7 0.20414 (11) −0.12361 (12) 0.62677 (5) 0.0384 (2)
C8 0.31007 (12) −0.10441 (14) 0.65116 (5) 0.0420 (3)
H8 0.3830 −0.0699 0.6385 0.050*
C9 0.28579 (12) −0.14860 (13) 0.70052 (5) 0.0406 (3)
C10 0.36790 (13) −0.14279 (14) 0.74392 (5) 0.0440 (3)
C11 0.46620 (14) −0.05373 (16) 0.74405 (5) 0.0512 (3)
H11 0.4817 0.0003 0.7162 0.061*
C12 0.54184 (16) −0.04399 (19) 0.78505 (6) 0.0587 (4)
H12 0.6074 0.0169 0.7844 0.070*
C13 0.52180 (16) −0.12314 (19) 0.82699 (6) 0.0603 (4)
C14 0.42354 (18) −0.2130 (2) 0.82669 (6) 0.0653 (4)
H14 0.4087 −0.2677 0.8544 0.078*
C15 0.34695 (16) −0.22311 (18) 0.78595 (6) 0.0577 (4)
H15 0.2812 −0.2838 0.7866 0.069*
C31 0.6071 (2) −0.1127 (3) 0.87111 (8) 0.0909 (7)
H31A 0.6901 −0.1222 0.8601 0.136*
H31B 0.5885 −0.1845 0.8944 0.136*
H31C 0.5968 −0.0247 0.8868 0.136*
O2 0.13845 (8) 0.27957 (9) 0.59456 (4) 0.0446 (2)
H2 0.0833 0.3217 0.5806 0.067*
O4 0.37614 (10) 0.53575 (12) 0.59082 (4) 0.0551 (3)
N2 0.43241 (12) 0.59158 (15) 0.54833 (5) 0.0567 (3)
C16 0.30531 (13) 0.29329 (15) 0.65160 (6) 0.0474 (3)
H16A 0.3400 0.2165 0.6334 0.057*
H16B 0.3721 0.3518 0.6624 0.057*
C17 0.23731 (17) 0.23905 (17) 0.69701 (6) 0.0587 (4)
H17A 0.1780 0.1707 0.6865 0.070*
H17B 0.2949 0.1944 0.7192 0.070*
C18 0.1719 (2) 0.35391 (19) 0.72487 (6) 0.0650 (4)
H18A 0.1269 0.3153 0.7526 0.078*
H18B 0.2316 0.4182 0.7380 0.078*
C19 0.08429 (16) 0.42955 (17) 0.69051 (6) 0.0570 (4)
H19A 0.0211 0.3668 0.6793 0.068*
H19B 0.0453 0.5041 0.7085 0.068*
C20 0.15192 (13) 0.48696 (13) 0.64607 (5) 0.0439 (3)
H20A 0.2097 0.5561 0.6573 0.053*
H20B 0.0939 0.5316 0.6241 0.053*
C21 0.22078 (11) 0.37544 (12) 0.61712 (5) 0.0383 (2)
C22 0.29290 (11) 0.44198 (13) 0.57612 (5) 0.0398 (2)
C23 0.29195 (13) 0.43498 (14) 0.52616 (5) 0.0459 (3)
H23 0.2431 0.3792 0.5063 0.055*
C24 0.38164 (12) 0.53111 (14) 0.51042 (5) 0.0437 (3)
C25 0.41837 (14) 0.56858 (16) 0.45954 (6) 0.0507 (3)
C26 0.49890 (17) 0.6774 (2) 0.45147 (7) 0.0678 (4)
H26 0.5283 0.7284 0.4781 0.081*
C27 0.53507 (19) 0.7092 (3) 0.40341 (8) 0.0829 (6)
H27 0.5887 0.7822 0.3984 0.099*
C28 0.4935 (2) 0.6354 (2) 0.36267 (7) 0.0763 (5)
C29 0.4112 (3) 0.5332 (3) 0.37146 (8) 0.0963 (8)
H29 0.3792 0.4847 0.3446 0.116*
C30 0.3732 (3) 0.4987 (2) 0.41912 (7) 0.0801 (6)
H34 0.3170 0.4280 0.4237 0.096*
C32 0.5363 (3) 0.6679 (4) 0.31036 (9) 0.1103 (9)
H32A 0.5810 0.7529 0.3105 0.165*
H32B 0.4668 0.6761 0.2888 0.165*
H32C 0.5883 0.5951 0.2987 0.165*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0360 (4) 0.0406 (4) 0.0675 (6) 0.0067 (3) −0.0034 (4) −0.0048 (4)
O3 0.0416 (5) 0.0563 (5) 0.0471 (5) −0.0072 (4) 0.0036 (4) −0.0019 (4)
N1 0.0518 (7) 0.0578 (7) 0.0413 (6) −0.0064 (5) 0.0042 (5) 0.0006 (5)
C1 0.0346 (6) 0.0643 (8) 0.0443 (7) −0.0050 (5) −0.0031 (5) 0.0053 (6)
C2 0.0513 (8) 0.0882 (11) 0.0463 (7) −0.0129 (8) −0.0041 (6) 0.0164 (8)
C3 0.0653 (10) 0.0874 (12) 0.0440 (7) 0.0045 (9) −0.0063 (7) −0.0033 (8)
C4 0.0627 (9) 0.0580 (8) 0.0546 (8) −0.0075 (7) −0.0155 (7) −0.0070 (7)
C5 0.0533 (7) 0.0382 (6) 0.0510 (7) −0.0019 (5) −0.0065 (6) −0.0037 (6)
C6 0.0306 (5) 0.0353 (5) 0.0436 (6) 0.0027 (4) −0.0025 (4) −0.0008 (4)
C7 0.0355 (6) 0.0366 (5) 0.0432 (6) 0.0025 (4) 0.0045 (4) −0.0038 (5)
C8 0.0369 (6) 0.0478 (6) 0.0413 (6) 0.0019 (5) 0.0017 (5) 0.0031 (5)
C9 0.0441 (6) 0.0372 (6) 0.0404 (6) 0.0040 (5) 0.0039 (5) −0.0018 (5)
C10 0.0487 (7) 0.0457 (6) 0.0376 (6) 0.0065 (5) 0.0020 (5) −0.0009 (5)
C11 0.0560 (8) 0.0534 (7) 0.0442 (7) −0.0014 (6) −0.0032 (6) 0.0061 (6)
C12 0.0553 (9) 0.0671 (9) 0.0538 (8) −0.0039 (7) −0.0081 (6) 0.0015 (7)
C13 0.0632 (9) 0.0777 (11) 0.0400 (7) 0.0091 (8) −0.0050 (6) −0.0035 (7)
C14 0.0756 (11) 0.0816 (12) 0.0387 (7) −0.0003 (9) 0.0005 (7) 0.0116 (7)
C15 0.0626 (9) 0.0641 (9) 0.0465 (7) −0.0053 (7) 0.0029 (6) 0.0076 (7)
C31 0.0888 (15) 0.132 (2) 0.0516 (10) −0.0045 (14) −0.0215 (10) 0.0034 (12)
O2 0.0412 (5) 0.0333 (4) 0.0595 (6) −0.0003 (3) −0.0095 (4) −0.0018 (4)
O4 0.0527 (6) 0.0675 (7) 0.0449 (5) −0.0229 (5) −0.0046 (4) 0.0012 (5)
N2 0.0524 (7) 0.0693 (8) 0.0483 (6) −0.0200 (6) −0.0015 (5) 0.0057 (6)
C16 0.0452 (7) 0.0445 (6) 0.0523 (7) 0.0060 (5) −0.0096 (5) 0.0034 (6)
C17 0.0703 (10) 0.0523 (8) 0.0535 (8) 0.0080 (7) −0.0056 (7) 0.0127 (6)
C18 0.0870 (12) 0.0643 (10) 0.0439 (7) 0.0032 (9) 0.0041 (7) 0.0064 (7)
C19 0.0615 (9) 0.0545 (8) 0.0550 (8) 0.0079 (7) 0.0128 (7) 0.0000 (6)
C20 0.0471 (7) 0.0360 (6) 0.0486 (7) 0.0035 (5) 0.0000 (5) −0.0009 (5)
C21 0.0363 (6) 0.0338 (5) 0.0446 (6) 0.0007 (4) −0.0034 (5) 0.0002 (5)
C22 0.0361 (6) 0.0371 (5) 0.0461 (6) 0.0018 (4) −0.0040 (5) −0.0010 (5)
C23 0.0481 (7) 0.0426 (6) 0.0470 (7) −0.0042 (5) −0.0044 (5) −0.0050 (5)
C24 0.0403 (6) 0.0431 (6) 0.0476 (7) 0.0030 (5) 0.0005 (5) −0.0008 (5)
C25 0.0502 (7) 0.0519 (7) 0.0501 (7) 0.0068 (6) 0.0036 (6) 0.0036 (6)
C26 0.0579 (9) 0.0868 (12) 0.0586 (9) −0.0137 (8) 0.0026 (7) 0.0075 (8)
C27 0.0667 (11) 0.1048 (16) 0.0772 (14) −0.0099 (10) 0.0099 (10) 0.0285 (12)
C28 0.0845 (13) 0.0901 (14) 0.0544 (9) 0.0206 (11) 0.0148 (9) 0.0135 (10)
C29 0.149 (2) 0.0882 (16) 0.0514 (10) −0.0098 (16) 0.0070 (13) −0.0056 (10)
C30 0.1169 (17) 0.0688 (11) 0.0545 (9) −0.0194 (11) 0.0065 (10) −0.0061 (9)
C32 0.126 (2) 0.141 (2) 0.0640 (13) 0.0189 (19) 0.0251 (13) 0.0296 (14)

Geometric parameters (Å, °)

O1—C6 1.4305 (14) O2—C21 1.4308 (15)
O1—H1 0.8200 O2—H2 0.8200
O3—C7 1.3546 (15) O4—C22 1.3473 (16)
O3—N1 1.4051 (16) O4—N2 1.4076 (17)
N1—C9 1.3103 (18) N2—C24 1.3021 (19)
C1—C6 1.5223 (18) C16—C17 1.525 (2)
C1—C2 1.526 (2) C16—C21 1.5342 (17)
C1—H1A 0.9700 C16—H16A 0.9700
C1—H1B 0.9700 C16—H16B 0.9700
C2—C3 1.515 (3) C17—C18 1.523 (2)
C2—H2A 0.9700 C17—H17A 0.9700
C2—H2B 0.9700 C17—H17B 0.9700
C3—C4 1.528 (3) C18—C19 1.521 (3)
C3—H3A 0.9700 C18—H18A 0.9700
C3—H3B 0.9700 C18—H18B 0.9700
C4—C5 1.525 (2) C19—C20 1.513 (2)
C4—H4A 0.9700 C19—H19A 0.9700
C4—H4B 0.9700 C19—H19B 0.9700
C5—C6 1.5294 (17) C20—C21 1.5325 (18)
C5—H5A 0.9700 C20—H20A 0.9700
C5—H5B 0.9700 C20—H20B 0.9700
C6—C7 1.5072 (17) C21—C22 1.5027 (18)
C7—C8 1.3450 (18) C22—C23 1.3469 (19)
C8—C9 1.4215 (17) C23—C24 1.419 (2)
C8—H8 0.9300 C23—H23 0.9300
C9—C10 1.4747 (19) C24—C25 1.473 (2)
C10—C11 1.380 (2) C25—C30 1.375 (3)
C10—C15 1.393 (2) C25—C26 1.393 (2)
C11—C12 1.383 (2) C26—C27 1.388 (3)
C11—H11 0.9300 C26—H26 0.9300
C12—C13 1.384 (2) C27—C28 1.387 (3)
C12—H12 0.9300 C27—H27 0.9300
C13—C14 1.385 (3) C28—C29 1.362 (4)
C13—C31 1.514 (2) C28—C32 1.517 (3)
C14—C15 1.384 (2) C29—C30 1.390 (3)
C14—H14 0.9300 C29—H29 0.9300
C15—H15 0.9300 C30—H34 0.9300
C31—H31A 0.9600 C32—H32A 0.9600
C31—H31B 0.9600 C32—H32B 0.9600
C31—H31C 0.9600 C32—H32C 0.9600
C6—O1—H1 109.5 C21—O2—H2 109.5
C7—O3—N1 108.77 (10) C22—O4—N2 108.51 (11)
C9—N1—O3 105.48 (10) C24—N2—O4 106.05 (11)
C6—C1—C2 111.35 (11) C17—C16—C21 111.76 (12)
C6—C1—H1A 109.4 C17—C16—H16A 109.3
C2—C1—H1A 109.4 C21—C16—H16A 109.3
C6—C1—H1B 109.4 C17—C16—H16B 109.3
C2—C1—H1B 109.4 C21—C16—H16B 109.3
H1A—C1—H1B 108.0 H16A—C16—H16B 107.9
C3—C2—C1 111.08 (14) C18—C17—C16 111.78 (13)
C3—C2—H2A 109.4 C18—C17—H17A 109.3
C1—C2—H2A 109.4 C16—C17—H17A 109.3
C3—C2—H2B 109.4 C18—C17—H17B 109.3
C1—C2—H2B 109.4 C16—C17—H17B 109.3
H2A—C2—H2B 108.0 H17A—C17—H17B 107.9
C2—C3—C4 110.49 (14) C19—C18—C17 110.50 (14)
C2—C3—H3A 109.6 C19—C18—H18A 109.5
C4—C3—H3A 109.6 C17—C18—H18A 109.5
C2—C3—H3B 109.6 C19—C18—H18B 109.5
C4—C3—H3B 109.6 C17—C18—H18B 109.5
H3A—C3—H3B 108.1 H18A—C18—H18B 108.1
C5—C4—C3 111.66 (13) C20—C19—C18 110.53 (14)
C5—C4—H4A 109.3 C20—C19—H19A 109.5
C3—C4—H4A 109.3 C18—C19—H19A 109.5
C5—C4—H4B 109.3 C20—C19—H19B 109.5
C3—C4—H4B 109.3 C18—C19—H19B 109.5
H4A—C4—H4B 107.9 H19A—C19—H19B 108.1
C4—C5—C6 111.51 (12) C19—C20—C21 112.46 (11)
C4—C5—H5A 109.3 C19—C20—H20A 109.1
C6—C5—H5A 109.3 C21—C20—H20A 109.1
C4—C5—H5B 109.3 C19—C20—H20B 109.1
C6—C5—H5B 109.3 C21—C20—H20B 109.1
H5A—C5—H5B 108.0 H20A—C20—H20B 107.8
O1—C6—C7 107.77 (10) O2—C21—C22 107.39 (10)
O1—C6—C1 111.25 (10) O2—C21—C20 111.49 (10)
C7—C6—C1 109.89 (10) C22—C21—C20 109.12 (10)
O1—C6—C5 106.03 (10) O2—C21—C16 107.32 (10)
C7—C6—C5 110.98 (10) C22—C21—C16 110.59 (10)
C1—C6—C5 110.82 (11) C20—C21—C16 110.87 (11)
C8—C7—O3 109.59 (11) C23—C22—O4 109.43 (12)
C8—C7—C6 133.82 (11) C23—C22—C21 135.04 (12)
O3—C7—C6 116.46 (10) O4—C22—C21 115.47 (11)
C7—C8—C9 104.69 (11) C22—C23—C24 105.05 (12)
C7—C8—H8 127.7 C22—C23—H23 127.5
C9—C8—H8 127.7 C24—C23—H23 127.5
N1—C9—C8 111.47 (12) N2—C24—C23 110.96 (13)
N1—C9—C10 120.48 (12) N2—C24—C25 120.07 (13)
C8—C9—C10 127.96 (12) C23—C24—C25 128.96 (13)
C11—C10—C15 118.49 (13) C30—C25—C26 118.61 (16)
C11—C10—C9 120.05 (12) C30—C25—C24 121.05 (15)
C15—C10—C9 121.44 (13) C26—C25—C24 120.34 (15)
C10—C11—C12 120.75 (14) C27—C26—C25 119.66 (19)
C10—C11—H11 119.6 C27—C26—H26 120.2
C12—C11—H11 119.6 C25—C26—H26 120.2
C11—C12—C13 121.24 (16) C28—C27—C26 121.9 (2)
C11—C12—H12 119.4 C28—C27—H27 119.0
C13—C12—H12 119.4 C26—C27—H27 119.0
C12—C13—C14 117.94 (14) C29—C28—C27 117.17 (18)
C12—C13—C31 120.35 (18) C29—C28—C32 121.1 (2)
C14—C13—C31 121.69 (17) C27—C28—C32 121.7 (2)
C15—C14—C13 121.28 (15) C28—C29—C30 122.3 (2)
C15—C14—H14 119.4 C28—C29—H29 118.9
C13—C14—H14 119.4 C30—C29—H29 118.9
C14—C15—C10 120.30 (16) C25—C30—C29 120.3 (2)
C14—C15—H15 119.9 C25—C30—H34 119.9
C10—C15—H15 119.9 C29—C30—H34 119.9
C13—C31—H31A 109.5 C28—C32—H32A 109.5
C13—C31—H31B 109.5 C28—C32—H32B 109.5
H31A—C31—H31B 109.5 H32A—C32—H32B 109.5
C13—C31—H31C 109.5 C28—C32—H32C 109.5
H31A—C31—H31C 109.5 H32A—C32—H32C 109.5
H31B—C31—H31C 109.5 H32B—C32—H32C 109.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···O2 0.82 1.98 2.7892 (12) 168
O2—H2···N2i 0.82 2.05 2.8629 (16) 173

Symmetry codes: (i) x−1/2, −y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2504).

References

  1. Bruker (2005). APEX2 andSAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Deng, B. L., Zhao, Y., Hartman, T. L., Watson, K., Buckheit, R. W. Jr, Pannecouque, C., De Clercq, E. & Cushman, M. (2009). Eur. J. Med. Chem. 44, 1210–1214. [DOI] [PMC free article] [PubMed]
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  5. Kozikowski, A. P., Tapadar, S., Luchini, D. N., Kim, K. H. & Billadeau, D. D. (2008). J. Med. Chem. 51, 4370–4373. [DOI] [PMC free article] [PubMed]
  6. Lee, Y. S., Park, S. M. & Kim, B. H. (2009). Bioorg. Med. Chem. Lett. 19, 1126–1128. [DOI] [PMC free article] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  9. Tang, S., He, J., Sun, Y., Liuer He, L. & She, X. (2009). Org. Lett. 11, 3982–3983. [DOI] [PubMed]
  10. Tu, S. J., Zhang, X. H., Han, Z. G., Cao, X. D., Wu, S. S., Yan, S., Hao, W. J., Zhang, G. & Ma, N. (2009). J. Comb. Chem. 11, 428–32. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809044900/dn2504sup1.cif

e-65-o2971-sup1.cif (23.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809044900/dn2504Isup2.hkl

e-65-o2971-Isup2.hkl (411.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES