Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Nov 28;65(Pt 12):o3272. doi: 10.1107/S160053680905079X

(E)-2-Meth­oxy-N′-(4-nitro­benzyl­idene)benzohydrazide

Hong-Yan Ban a,*, Cong-Ming Li b
PMCID: PMC2972042  PMID: 21578966

Abstract

In the title compound, C15H13N3O4, the mol­ecule exists in a trans configuration with respect to the methyl­idene unit. The dihedral angle between the two benzene rings is 6.8 (2)°. The C—N—NH—C torsion angle is 3.4 (3)°. The mol­ecule possesses an intra­molecular N—H⋯O hydrogen bond. In the crystal structure, adjacent mol­ecules are linked through inter­molecular C—H⋯O hydrogen bonds, forming dimers

Related literature

For the biological activity of hydrazones, see: Zhong et al. (2007); Raj et al. (2007); Jimenez-Pulido et al. (2008). For related structures, see: Ban & Li (2008a ,b ); Li & Ban (2009a ,b ); Yehye et al. (2008); Fun, Patil, Jebas et al. (2008); Fun, Patil, Rao et al. (2008); Yang et al. (2008); Ejsmont et al. (2008).graphic file with name e-65-o3272-scheme1.jpg

Experimental

Crystal data

  • C15H13N3O4

  • M r = 299.28

  • Monoclinic, Inline graphic

  • a = 11.1843 (2) Å

  • b = 11.3718 (3) Å

  • c = 13.0519 (2) Å

  • β = 121.792 (2)°

  • V = 1410.96 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 298 K

  • 0.15 × 0.13 × 0.12 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.985, T max = 0.988

  • 8270 measured reflections

  • 3048 independent reflections

  • 1964 reflections with I > 2σ(I)

  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.138

  • S = 1.02

  • 3048 reflections

  • 203 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680905079X/wn2369sup1.cif

e-65-o3272-sup1.cif (16.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680905079X/wn2369Isup2.hkl

e-65-o3272-Isup2.hkl (149.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1 0.91 (1) 1.94 (2) 2.644 (2) 133 (2)
C3—H3⋯O2i 0.93 2.50 3.260 (2) 140

Symmetry code: (i) Inline graphic.

Acknowledgments

Financial support of this work was provided by the Research Foundation of Liaoning Province (grant No. 2008470).

supplementary crystallographic information

Comment

Hydrazones derived from the condensation of aldehydes with hydrazides have been shown to possess excellent biological activities (Zhong et al., 2007; Raj et al., 2007; Jimenez-Pulido et al., 2008). Due to the easy synthesis of such compounds, a great deal of hydrazones have been synthesized and structurally characterized (Yehye et al., 2008; Fun, Patil, Jebas et al., 2008; Fun, Patil, Rao et al., 2008; Yang et al., 2008; Ejsmont et al., 2008). Recently, we have also reported the crystal structures of a few hydrazones (Ban & Li, 2008a,b; Li & Ban, 2009a,b). In this paper, we report the crystal structure of the title compound.

In the structure of the title compound (Fig. 1) the molecule exists in a trans configuration with respect to the methylidene unit. The dihedral angle between the two benzene rings is 6.8 (2)°. In the 2-methoxyphenyl unit, the methoxy group is nearly coplanar with the mean plane of the C9–C14 ring; the atom C15 deviates from this plane by 0.002 (2) Å. The torsion angle C7—N1—N2—C8 is 3.4 (3)°. The molecule possesses an intramolecular N—H···O hydrogen bond (Table 1, Fig. 1).

In the crystal structure, adjacent molecules are linked through intermolecular C—H···O hydrogen bonds (Table 1), forming dimers (Fig. 2).

Experimental

The compound was prepared by refluxing 4-nitrobenzaldehyde (1.0 mol) with 2-methoxybenzohydrazide (1.0 mol) in methanol (100 ml). Excess methanol was removed from the mixture by distillation. The colorless solid product was filtered, and washed three times with methanol. Colorless block crystals of the title compound were obtained from a methanol solution by slow evaporation in air.

Refinement

H2A, attached to N2, was located in a difference Fourier map and refined isotropically, with the N—H distance restrained to 0.90 (1) Å. Other H atoms were placed in calculated positions (C—H = 0.93 - 0.96 Å) and refined as riding with Uiso(H) = 1.5Ueq(methyl C) and 1.2Ueq(other C). A rotating group model was used for the methyl group.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 30% probability displacement ellipsoids for the non-hydrogen atoms. Hydrogen atoms are shown as spheres of arbitrary radius. The intramolecular N—H···O hydrogen bond is shown as a dashed line.

Fig. 2.

Fig. 2.

The molecular packing of the title compound, viewed along the c axis. Hydrogen bonds are shown as dashed lines. Hydrogen atoms not involved in these hydrogen bonds have been omitted.

Crystal data

C15H13N3O4 F(000) = 624
Mr = 299.28 Dx = 1.409 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2137 reflections
a = 11.1843 (2) Å θ = 2.6–27.7°
b = 11.3718 (3) Å µ = 0.11 mm1
c = 13.0519 (2) Å T = 298 K
β = 121.792 (2)° Block, colorless
V = 1410.96 (6) Å3 0.15 × 0.13 × 0.12 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer 3048 independent reflections
Radiation source: fine-focus sealed tube 1964 reflections with I > 2σ(I)
graphite Rint = 0.026
ω scans θmax = 27.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −14→13
Tmin = 0.985, Tmax = 0.988 k = −14→9
8270 measured reflections l = −16→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138 H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0691P)2 + 0.1341P] where P = (Fo2 + 2Fc2)/3
3048 reflections (Δ/σ)max < 0.001
203 parameters Δρmax = 0.17 e Å3
1 restraint Δρmin = −0.29 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.02468 (14) 0.74628 (13) 0.11097 (11) 0.0533 (4)
N2 0.10276 (15) 0.75892 (13) 0.23349 (11) 0.0542 (4)
N3 −0.37828 (15) 0.80034 (14) −0.46112 (12) 0.0584 (4)
O1 0.18128 (13) 0.87506 (11) 0.43486 (10) 0.0632 (4)
O2 0.16350 (19) 0.56837 (12) 0.25823 (12) 0.0989 (6)
O3 −0.36814 (16) 0.71210 (14) −0.50895 (11) 0.0841 (5)
O4 −0.45977 (16) 0.87945 (13) −0.51687 (11) 0.0874 (5)
C1 −0.12755 (16) 0.82699 (14) −0.08248 (13) 0.0477 (4)
C2 −0.13227 (17) 0.72335 (14) −0.14102 (14) 0.0513 (4)
H2 −0.0804 0.6587 −0.0958 0.062*
C3 −0.21222 (17) 0.71486 (15) −0.26456 (14) 0.0518 (4)
H3 −0.2148 0.6454 −0.3032 0.062*
C4 −0.28832 (16) 0.81139 (14) −0.32966 (13) 0.0477 (4)
C5 −0.28638 (18) 0.91571 (15) −0.27587 (15) 0.0572 (4)
H5 −0.3389 0.9798 −0.3219 0.069*
C6 −0.20458 (18) 0.92326 (15) −0.15175 (15) 0.0559 (4)
H6 −0.2009 0.9936 −0.1139 0.067*
C7 −0.04485 (17) 0.83471 (15) 0.04892 (14) 0.0523 (4)
H7 −0.0432 0.9044 0.0870 0.063*
C8 0.17233 (18) 0.66437 (16) 0.30264 (14) 0.0571 (4)
C9 0.26280 (16) 0.68339 (15) 0.43602 (13) 0.0507 (4)
C10 0.26528 (17) 0.78298 (15) 0.49941 (13) 0.0514 (4)
C11 0.35310 (19) 0.78490 (18) 0.62478 (15) 0.0643 (5)
H11 0.3528 0.8500 0.6678 0.077*
C12 0.4398 (2) 0.6917 (2) 0.68511 (16) 0.0730 (6)
H12 0.4982 0.6944 0.7686 0.088*
C13 0.4412 (2) 0.5949 (2) 0.62399 (16) 0.0720 (6)
H13 0.5015 0.5326 0.6653 0.086*
C14 0.35239 (19) 0.59045 (17) 0.50043 (15) 0.0621 (5)
H14 0.3523 0.5238 0.4591 0.075*
C15 0.1754 (2) 0.97515 (17) 0.49824 (18) 0.0720 (6)
H15A 0.1474 0.9507 0.5530 0.108*
H15B 0.1083 1.0306 0.4417 0.108*
H15C 0.2665 1.0114 0.5426 0.108*
H2A 0.102 (2) 0.8277 (12) 0.2684 (17) 0.080*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0562 (8) 0.0618 (9) 0.0314 (7) 0.0037 (7) 0.0159 (6) −0.0002 (6)
N2 0.0613 (9) 0.0581 (9) 0.0295 (7) 0.0065 (7) 0.0145 (6) −0.0012 (6)
N3 0.0601 (9) 0.0703 (10) 0.0373 (7) 0.0068 (8) 0.0204 (7) 0.0109 (7)
O1 0.0706 (8) 0.0654 (8) 0.0440 (6) 0.0069 (6) 0.0237 (6) −0.0082 (6)
O2 0.1488 (15) 0.0625 (9) 0.0423 (7) 0.0271 (9) 0.0207 (8) −0.0018 (6)
O3 0.1009 (11) 0.0921 (11) 0.0426 (7) 0.0188 (8) 0.0264 (7) −0.0010 (7)
O4 0.0927 (11) 0.0905 (10) 0.0455 (7) 0.0317 (8) 0.0135 (7) 0.0184 (7)
C1 0.0465 (9) 0.0548 (10) 0.0384 (8) 0.0013 (7) 0.0200 (7) 0.0037 (7)
C2 0.0539 (9) 0.0515 (10) 0.0405 (8) 0.0102 (7) 0.0195 (7) 0.0098 (7)
C3 0.0561 (10) 0.0537 (10) 0.0395 (8) 0.0074 (7) 0.0209 (7) 0.0023 (7)
C4 0.0454 (8) 0.0590 (10) 0.0342 (8) 0.0042 (7) 0.0178 (7) 0.0091 (7)
C5 0.0594 (10) 0.0542 (10) 0.0471 (9) 0.0126 (8) 0.0204 (8) 0.0150 (8)
C6 0.0601 (10) 0.0521 (10) 0.0456 (9) 0.0072 (8) 0.0210 (8) 0.0021 (7)
C7 0.0546 (10) 0.0542 (10) 0.0400 (8) 0.0029 (8) 0.0194 (7) −0.0003 (7)
C8 0.0660 (11) 0.0585 (11) 0.0359 (8) 0.0066 (8) 0.0193 (8) 0.0009 (8)
C9 0.0494 (9) 0.0630 (11) 0.0341 (8) −0.0003 (8) 0.0183 (7) 0.0033 (7)
C10 0.0471 (9) 0.0657 (11) 0.0367 (8) −0.0049 (8) 0.0189 (7) −0.0020 (7)
C11 0.0622 (11) 0.0859 (14) 0.0389 (9) −0.0129 (10) 0.0225 (8) −0.0119 (9)
C12 0.0604 (11) 0.1071 (17) 0.0325 (9) −0.0109 (11) 0.0115 (8) 0.0056 (10)
C13 0.0623 (12) 0.0882 (15) 0.0474 (10) 0.0045 (10) 0.0165 (9) 0.0172 (10)
C14 0.0630 (11) 0.0681 (12) 0.0453 (9) 0.0049 (9) 0.0217 (8) 0.0073 (8)
C15 0.0915 (14) 0.0618 (12) 0.0640 (12) −0.0047 (10) 0.0418 (11) −0.0136 (9)

Geometric parameters (Å, °)

N1—C7 1.268 (2) C5—C6 1.381 (2)
N1—N2 1.3672 (17) C5—H5 0.9300
N2—C8 1.355 (2) C6—H6 0.9300
N2—H2A 0.908 (9) C7—H7 0.9300
N3—O4 1.2127 (18) C8—C9 1.498 (2)
N3—O3 1.2183 (18) C9—C14 1.393 (2)
N3—C4 1.467 (2) C9—C10 1.394 (2)
O1—C10 1.3619 (19) C10—C11 1.396 (2)
O1—C15 1.429 (2) C11—C12 1.371 (3)
O2—C8 1.215 (2) C11—H11 0.9300
C1—C2 1.390 (2) C12—C13 1.364 (3)
C1—C6 1.392 (2) C12—H12 0.9300
C1—C7 1.460 (2) C13—C14 1.379 (2)
C2—C3 1.375 (2) C13—H13 0.9300
C2—H2 0.9300 C14—H14 0.9300
C3—C4 1.375 (2) C15—H15A 0.9600
C3—H3 0.9300 C15—H15B 0.9600
C4—C5 1.373 (2) C15—H15C 0.9600
C7—N1—N2 117.55 (14) C1—C7—H7 120.1
C8—N2—N1 118.97 (14) O2—C8—N2 121.41 (15)
C8—N2—H2A 120.2 (13) O2—C8—C9 121.28 (15)
N1—N2—H2A 120.6 (13) N2—C8—C9 117.30 (15)
O4—N3—O3 123.15 (15) C14—C9—C10 118.37 (14)
O4—N3—C4 118.28 (15) C14—C9—C8 114.99 (15)
O3—N3—C4 118.56 (14) C10—C9—C8 126.64 (15)
C10—O1—C15 118.79 (13) O1—C10—C9 117.77 (13)
C2—C1—C6 118.59 (14) O1—C10—C11 122.89 (16)
C2—C1—C7 120.89 (14) C9—C10—C11 119.34 (16)
C6—C1—C7 120.52 (15) C12—C11—C10 120.60 (18)
C3—C2—C1 121.13 (14) C12—C11—H11 119.7
C3—C2—H2 119.4 C10—C11—H11 119.7
C1—C2—H2 119.4 C13—C12—C11 120.70 (16)
C4—C3—C2 118.51 (15) C13—C12—H12 119.7
C4—C3—H3 120.7 C11—C12—H12 119.7
C2—C3—H3 120.7 C12—C13—C14 119.37 (18)
C5—C4—C3 122.42 (14) C12—C13—H13 120.3
C5—C4—N3 119.23 (14) C14—C13—H13 120.3
C3—C4—N3 118.31 (15) C13—C14—C9 121.58 (18)
C4—C5—C6 118.42 (15) C13—C14—H14 119.2
C4—C5—H5 120.8 C9—C14—H14 119.2
C6—C5—H5 120.8 O1—C15—H15A 109.5
C5—C6—C1 120.92 (16) O1—C15—H15B 109.5
C5—C6—H6 119.5 H15A—C15—H15B 109.5
C1—C6—H6 119.5 O1—C15—H15C 109.5
N1—C7—C1 119.88 (16) H15A—C15—H15C 109.5
N1—C7—H7 120.1 H15B—C15—H15C 109.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2A···O1 0.91 (1) 1.94 (2) 2.644 (2) 133 (2)
C3—H3···O2i 0.93 2.50 3.260 (2) 140

Symmetry codes: (i) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2369).

References

  1. Ban, H.-Y. & Li, C.-M. (2008a). Acta Cryst. E64, o2177. [DOI] [PMC free article] [PubMed]
  2. Ban, H.-Y. & Li, C.-M. (2008b). Acta Cryst. E64, o2260. [DOI] [PMC free article] [PubMed]
  3. Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Ejsmont, K., Zareef, M., Arfan, M., Bashir, S. A. & Zaleski, J. (2008). Acta Cryst. E64, o1128. [DOI] [PMC free article] [PubMed]
  5. Fun, H.-K., Patil, P. S., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2008). Acta Cryst. E64, o1594–o1595. [DOI] [PMC free article] [PubMed]
  6. Fun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1707. [DOI] [PMC free article] [PubMed]
  7. Jimenez-Pulido, S. B., Linares-Ordonez, F. M., Martinez-Martos, J. M., Moreno-Carretero, M. N., Quiros-Olozabal, M. & Ramirez-Exposito, M. J. (2008). J. Inorg. Biochem. 102, 1677–1683. [DOI] [PubMed]
  8. Li, C.-M. & Ban, H.-Y. (2009a). Acta Cryst. E65, o876. [DOI] [PMC free article] [PubMed]
  9. Li, C.-M. & Ban, H.-Y. (2009b). Acta Cryst. E65, o883. [DOI] [PMC free article] [PubMed]
  10. Raj, K. K. V., Narayana, B., Ashalatha, B. V., Kumari, N. S. & Sarojini, B. K. (2007). Eur. J. Med. Chem. 42, 425–429. [DOI] [PubMed]
  11. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Yang, T., Cao, G.-B., Xiang, J.-M. & Zhang, L.-H. (2008). Acta Cryst. E64, o1186. [DOI] [PMC free article] [PubMed]
  14. Yehye, W. A., Rahman, N. A., Ariffin, A. & Ng, S. W. (2008). Acta Cryst. E64, o1824. [DOI] [PMC free article] [PubMed]
  15. Zhong, X., Wei, H.-L., Liu, W.-S., Wang, D.-Q. & Wang, X. (2007). Bioorg. Med. Chem. Lett. 17, 3774–3777. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680905079X/wn2369sup1.cif

e-65-o3272-sup1.cif (16.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680905079X/wn2369Isup2.hkl

e-65-o3272-Isup2.hkl (149.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES