Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Nov 28;65(Pt 12):o3261–o3262. doi: 10.1107/S1600536809050430

5-(4-Cyano-5-dicyano­methyl­ene-2,2-dimethyl-2,5-dihydro-3-fur­yl)-3-(1-methyl-1,4-dihydro­pyridin-4-yl­idene)pent-4-enyl 3,5-bis­(benz­yloxy)benzoate acetonitrile 0.25-solvate: a synchrotron radiation study

Graeme J Gainsford a,*, M Delower H Bhuiyan a, Andrew J Kay a
PMCID: PMC2972047  PMID: 21578957

Abstract

The title compound, C42H36N4O5·0.25CH3CN, crystallizes with a partial twofold disordered (1/4) acetonitrile solvent of crystallization. The linking atoms to the 3,5-bis­(benz­yloxy)benzoic acid are disordered between two conformations in the ratio 0.780 (6):0.220 (6). In the crystal, the mol­ecules pack using mainly C—H⋯N(cyano) inter­actions coupled with weak C—H⋯O(ether) inter­actions and C—H⋯π inter­actions. A brief comparison is made between a conventional and this synchrotron data collection.

Related literature

For general background, see Kay et al. (2004); Marder et al. (1993). For related structures, see: Kay et al. (2008), Gainsford et al. (2007, 2008); Kim et al. (2007) For synthetic data, see: Clarke et al. (2009). For details of the PX1 beamline, see: McPhillips et al. (2002).graphic file with name e-65-o3261-scheme1.jpg

Experimental

Crystal data

  • C42H36N4O5·0.25C2H3N

  • M r = 687.01

  • Monoclinic, Inline graphic

  • a = 29.374 (6) Å

  • b = 15.825 (3) Å

  • c = 16.317 (3) Å

  • β = 108.61 (3)°

  • V = 7188 (3) Å3

  • Z = 8

  • Synchrotron radiation

  • λ = 0.77300 Å

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.26 × 0.08 × 0.04 mm

Data collection

  • ADSC Quantum 210r CCD diffractometer

  • 38733 measured reflections

  • 5381 independent reflections

  • 4076 reflections with I > 2σ(I)

  • R int = 0.098

  • θmax = 26.0°

Refinement

  • R[F 2 > 2σ(F 2)] = 0.060

  • wR(F 2) = 0.167

  • S = 1.04

  • 5381 reflections

  • 482 parameters

  • H-atom parameters constrained

  • Δρmax = 0.91 e Å−3

  • Δρmin = −0.50 e Å−3

Data collection: ADSC Quantum 210r software (ADSC, 2009); cell refinement: XDS (Kabsch, 1993); data reduction: XDS, locally modified software and XPREP (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809050430/sj2693sup1.cif

e-65-o3261-sup1.cif (32.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809050430/sj2693Isup2.hkl

e-65-o3261-Isup2.hkl (258.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9A⋯N1i 0.98 2.59 3.529 (4) 161
C9—H9B⋯N3ii 0.98 2.59 3.497 (5) 153
C16—H16⋯N1iii 0.95 2.51 3.406 (4) 156
C17—H17⋯N2iv 0.95 2.51 3.380 (4) 152
C19—H19C⋯N2iv 0.98 2.50 3.340 (4) 143
C26—H26⋯O5v 0.95 2.51 3.398 (4) 155
C8—H8BCg1vi 0.98 2.54 3.515 (3) 171

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic. Cg1 is the centroid of the C30–C35 ring.

Table 2. Inter­planar angles and SIGP values for the planar entities (Å, °).

Plane P1 P2 P3 P4 P5 SIGPa
P1   14.59 (10) 18.77 (7) 31.92 (12) 64.58 (13) 0.025 (3)
P2 14.59 (10)   4.90 (9) 18.33 (13) 75.25 (15) 0.033 (3)
P3 18.77 (7) 4.90 (9)   13.48 (11) 80.11 (12) 0.026 (3)
P4b 31.92 (12) 18.33 (13) 13.48 (11)   86.94 (16) 0.004 (3)

Notes: P1 = C1–C12,N1–N3,O1; P2 = C12–C19,N4; P3 = C22–C30,O3–O4; P4 = C29–C35; P5 = C37–C42. (a) Inline graphic (Spek, 2009); (b) SIGP for plane C37–C42 is 0.014 (3) Å.

Acknowledgments

The structural study was supported by the New Zealand Synchrotron Group and the Australian Synchrotron, Victoria, Australia. We thank Drs Adams, Huyton and Williamson of the Australian Synchrotron for their assistance and the New Zealand Foundation for Research, Science and Technology and New Zealand Pharmaceuticals Ltd for financial support. The diffraction data was collected on the PX1 beamline (McPhillips et al., 2002) at the Australian Synchrotron, Victoria, Australia. The views expressed herein are those of the authors and are not necessarily those of the owner or operator of the Australian Synchrotron. We thank Professor Ward T. Robinson and Dr J. Wikaira of the University of Canterbury for their assistance with the conventional data collection.

supplementary crystallographic information

Comment

The title compound (I) was synthesized as part of a continuing research programme involving the development of organic nonlinear optical (NLO) chromophores. Due to the highly polar nature of these compounds they have a strong tendency to aggregate, a phenomenon that often leads to a reduction in the macroscopic nonlinearity. We have previously reported the crystallographic parameters for two chromophores containing a quinolinylidene donor coupled to a cyanodicyanomethylidenedihydrofuran (CDFP) electron acceptor group (Gainsford et al., 2008). In both instances an examination of the unit cell packing showed plane to plane stacking of the chromophores via the interaction of the donor end of one molecule with the acceptor end of another. This is clear evidence for potentially deleterious H-aggregation occurring between the compounds. However, it has been reported that the introduction of bulky substituents near the centre of NLO chromophores leads to a significant reduction in the observed aggregation (Kim et al., 2007). Consequently we were interested to make modifications to the core structure of our compounds to see whether the introduction of a bulky 3,5-bis(benzyloxy) benzoate group would lead to any change in the unit cell packing. We report here on the structural properties of a chromophore containing a pyridinylidene donor, CDFP acceptor and bulky side group. While a direct comparison between the compounds studied earlier (Gainsford et al., 2008) and one also containing a quinolinylidene donor would be preferable, this wasn't feasible from synthetic viewpoint. An initial report based on the earlier conventional data collection has been given (Kay et al., 2008).

The asymmetric unit of crystals of (I) contains one independent copy of the molecule and a partial (1/4) acetonitrile molecule disordered around a twofold symmetry site (Figure 1). The linking atoms to the 3,5-bis-benzyloxy-benzoic acid (C20,C21,O2) are disordered over two conformations with refined occupancies of 0.780:0.220 (6). The CDFP ring (atoms C4/C5/O1/C6/C7) and the cyano groups appended to C2 are coplanar (Table 2). The geometric parameters are consistent with the localized electron configuration shown in the scheme with ony subtle differences to the closely related quinoline molecules (NAJKUT & NOJLAA, Gainsford et al., 2008); the similarity is reflected in the bond length alternation (Marder et al., 1993) BLA values of -0.042 (here) and -0.015 & -0.042 respectively. The interplanar angles (Table 2) show the overall moleculear non-planarity of the adjacent planar entities.

The molecular packing is provided by mainly CH···N(cyano) interactions but also a C–H···O interaction with one benzolyoxy oxygen and C—H ···π crosslinks (Figure 2). Two adjacent molecules are linked through the methyl hydrogen atoms (entries 1 & 2, Table 1) and extended into layers parallel to the (3,0,1) plane via the H16, H17 & H19C (entries 3,4 & 5) and the C–H···O5 (entry 6) interactions. These layers are crosslinked via methyl H8B interaction with phenyl ring C30—C35 (entry 7, Table 1; Figure 2).

An opportunity arose to recollect data on the Australian synchrotron, which is the data presented here. The conventional laboratory results are quite similar but that data did not support refinement of the partial acetonitrile solvent molecule. There were about 2.5 times more observed data in the synchrotron data set (collected in 5% of the conventional time) giving smaller su (by ~70%) values, but overall both datasets gave similar agreement factors. Given the overall agreement data statistics (see exptl_refinement) and the different crystal used, further comparison seems unwarranted.

Experimental

The title compound was synthesized by a published procedure (Clarke et al., 2009). Black crystals suitable for X-ray structure determination were grown in acetonitrile by slow evaporation of the solvent at room temperature.

Refinement

A total of 12 outlier reflections were omitted from the processed set, from which 16 intense reflections with poor internal agreement had been removed. An examination of the data did not establish definitively that these latter data, with Fo >> Fc, represented data from a multiple crystal fragment or were subject to twinning.

The acetonitrile solvent is disordered with the N atom on a 2 fold site; the occupancy was determined with an average isotropic U & then fixed at 0.25 with a common Uiso which refined to 0.082 (2) Å2. Atoms C20, C21 & O2 were found to be in two conformations which refined to occupancies of 0.780:0.220 (6); the minor conformer atoms (C20A,C20B & O2B) were refined isotropically to a common final value of 0.019 (2) Å2. The final difference minimum & maxima (-0.5 & 0.90 e/Å-3) are close to atoms N2S & C1S of the disordered acetonitrile carbon indicating imperfect modelling of the disorder.

All H atoms bound to carbon were constrained to their expected geometries (C–H 0.98, 0.99, 1.00 Å). Methyl H atoms were refined with Uiso = 1.5Ueq(C); all other H atoms were refined with Uiso = 1.2Ueq(C,N).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the asymmetric unit (Farrugia, 1997); displacement ellipsoids are shown at the 50% probability level. Only the major conformation for atoms C20, C21 & O2 are shown; hydrogen atoms on the acetonitrile are omitted.

Fig. 2.

Fig. 2.

Packing diagram (Mercury, Macrae et al.,(2006)) of the unit cell Only H atoms involved in significant interactions are shown. Contact atoms are shown as balls; a limited set of labels are given (see Table 2). Symmetry codes: (i) x, 1 - y, 1/2 + z (ii) 1/2 - x, y - 1/2, 1/2 - z

Crystal data

C42H36N4O5·0.25C2H3N Z = 8
Mr = 687.01 F(000) = 2892
Monoclinic, C2/c Dx = 1.270 Mg m3
Hall symbol: -C 2yc Synchrotron radiation, λ = 0.77300 Å
a = 29.374 (6) Å µ = 0.08 mm1
b = 15.825 (3) Å T = 100 K
c = 16.317 (3) Å Needle, black
β = 108.61 (3)° 0.26 × 0.08 × 0.04 mm
V = 7188 (3) Å3

Data collection

ADSC Quantum 210r CCD diffractometer 4076 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.098
graphite θmax = 26.0°, θmin = 1.6°
ω scans h = −33→33
38733 measured reflections k = −17→17
5381 independent reflections l = −18→18

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060 H-atom parameters constrained
wR(F2) = 0.167 w = 1/[σ2(Fo2) + (0.0862P)2 + 13.1795P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.001
5381 reflections Δρmax = 0.91 e Å3
482 parameters Δρmin = −0.50 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0128 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 0.17400 (7) 0.94070 (11) 0.02908 (12) 0.0290 (5)
O3 0.11459 (9) 0.63005 (13) 0.23553 (15) 0.0475 (7)
O4 0.03753 (7) 0.32537 (12) 0.37018 (13) 0.0330 (5)
O5 0.00478 (8) 0.60170 (12) 0.42819 (14) 0.0361 (5)
N1 0.22209 (10) 0.92896 (14) −0.22501 (16) 0.0329 (6)
N2 0.19059 (12) 1.12873 (16) −0.0685 (2) 0.0538 (9)
N3 0.19800 (10) 0.73140 (14) −0.16212 (16) 0.0324 (6)
N4 0.21359 (9) 0.36102 (13) −0.10782 (15) 0.0278 (6)
C1 0.21038 (11) 0.94562 (16) −0.16563 (19) 0.0256 (7)
C2 0.19611 (11) 0.96943 (16) −0.09403 (18) 0.0267 (7)
C3 0.19290 (12) 1.05714 (18) −0.0795 (2) 0.0354 (8)
C4 0.17049 (10) 0.79170 (16) 0.02949 (17) 0.0241 (6)
C5 0.16325 (11) 0.86922 (16) 0.07822 (18) 0.0255 (7)
C6 0.18610 (10) 0.91040 (16) −0.03864 (18) 0.0257 (7)
C7 0.18566 (10) 0.82216 (16) −0.04015 (17) 0.0234 (6)
C8 0.11152 (12) 0.88153 (18) 0.0772 (2) 0.0331 (7)
H8A 0.1025 0.8352 0.1088 0.050*
H8B 0.0900 0.8818 0.0172 0.050*
H8C 0.1088 0.9355 0.1047 0.050*
C9 0.19856 (12) 0.87367 (17) 0.16911 (18) 0.0335 (8)
H9A 0.1968 0.9296 0.1937 0.050*
H9B 0.2312 0.8639 0.1673 0.050*
H9C 0.1905 0.8304 0.2051 0.050*
C10 0.19329 (11) 0.77332 (16) −0.10791 (18) 0.0243 (7)
C11 0.16310 (11) 0.71102 (16) 0.05218 (18) 0.0292 (7)
H11 0.1496 0.7033 0.0974 0.035*
C12 0.17441 (11) 0.63825 (16) 0.01213 (18) 0.0265 (7)
H12 0.1922 0.6482 −0.0263 0.032*
C13 0.16333 (13) 0.55628 (17) 0.0211 (2) 0.0395 (9)
C14 0.18049 (11) 0.48951 (17) −0.02358 (19) 0.0305 (7)
C15 0.20573 (12) 0.50609 (17) −0.08233 (19) 0.0331 (8)
H15 0.2114 0.5630 −0.0947 0.040*
C16 0.22209 (11) 0.44259 (16) −0.12181 (19) 0.0305 (7)
H16 0.2398 0.4560 −0.1598 0.037*
C17 0.18892 (11) 0.34164 (16) −0.05347 (18) 0.0282 (7)
H17 0.1827 0.2841 −0.0444 0.034*
C18 0.17278 (11) 0.40315 (17) −0.01131 (19) 0.0294 (7)
H18 0.1559 0.3875 0.0273 0.035*
C19 0.23173 (14) 0.29362 (18) −0.1516 (2) 0.0420 (9)
H19A 0.2652 0.2809 −0.1183 0.063*
H19B 0.2300 0.3125 −0.2098 0.063*
H19C 0.2121 0.2427 −0.1559 0.063*
C22 0.10633 (14) 0.55612 (19) 0.2443 (2) 0.0465 (9)
C23 0.07702 (11) 0.52344 (18) 0.29680 (18) 0.0309 (7)
C24 0.07207 (11) 0.43685 (18) 0.30567 (18) 0.0300 (7)
H24 0.0867 0.3979 0.2776 0.036*
C25 0.04542 (10) 0.40880 (17) 0.35614 (18) 0.0262 (7)
C26 0.02430 (11) 0.46596 (18) 0.39724 (18) 0.0288 (7)
H26 0.0064 0.4461 0.4326 0.035*
C27 0.02924 (10) 0.55180 (17) 0.38689 (18) 0.0275 (7)
C28 0.05616 (10) 0.58211 (18) 0.33736 (17) 0.0278 (7)
H28 0.0602 0.6411 0.3313 0.033*
C29 0.05841 (11) 0.26294 (18) 0.32904 (19) 0.0311 (7)
H29A 0.0938 0.2683 0.3499 0.037*
H29B 0.0471 0.2718 0.2657 0.037*
C30 0.04418 (11) 0.17648 (18) 0.34973 (18) 0.0289 (7)
C31 0.06809 (12) 0.10686 (19) 0.33084 (19) 0.0346 (7)
H31 0.0930 0.1150 0.3062 0.041*
C32 0.05569 (12) 0.02574 (19) 0.3477 (2) 0.0404 (8)
H32 0.0723 −0.0214 0.3350 0.048*
C33 0.01922 (12) 0.01313 (19) 0.3829 (2) 0.0400 (8)
H33 0.0108 −0.0425 0.3946 0.048*
C34 −0.00487 (12) 0.08144 (18) 0.4010 (2) 0.0344 (7)
H34 −0.0301 0.0728 0.4248 0.041*
C35 0.00742 (11) 0.16279 (18) 0.38470 (19) 0.0313 (7)
H35 −0.0094 0.2096 0.3975 0.038*
C36 0.01009 (12) 0.69126 (18) 0.4277 (2) 0.0373 (8)
H36A −0.0175 0.7178 0.4401 0.045*
H36B 0.0091 0.7092 0.3690 0.045*
C37 0.05594 (11) 0.72330 (17) 0.4923 (2) 0.0310 (7)
C38 0.07674 (13) 0.79806 (19) 0.4777 (2) 0.0419 (9)
H38 0.0645 0.8257 0.4234 0.050*
C39 0.11551 (14) 0.8330 (2) 0.5421 (3) 0.0510 (10)
H39 0.1291 0.8848 0.5317 0.061*
C40 0.13430 (13) 0.7930 (2) 0.6206 (2) 0.0452 (9)
H40 0.1604 0.8175 0.6647 0.054*
C41 0.11505 (11) 0.71712 (19) 0.6349 (2) 0.0365 (8)
H41 0.1287 0.6881 0.6880 0.044*
C42 0.07586 (11) 0.68318 (17) 0.5719 (2) 0.0306 (7)
H42 0.0623 0.6317 0.5831 0.037*
O2A 0.12743 (10) 0.49113 (14) 0.21304 (16) 0.0282 (9) 0.780 (6)
C20A 0.12933 (15) 0.5332 (2) 0.0708 (2) 0.0250 (10) 0.780 (6)
H20A 0.1070 0.5806 0.0687 0.030* 0.780 (6)
H20B 0.1102 0.4830 0.0445 0.030* 0.780 (6)
C21A 0.15854 (14) 0.5148 (2) 0.1632 (3) 0.0282 (10) 0.780 (6)
H21A 0.1813 0.4682 0.1648 0.034* 0.780 (6)
H21B 0.1774 0.5654 0.1893 0.034* 0.780 (6)
O2B 0.0926 (3) 0.5060 (5) 0.1643 (5) 0.019 (2)* 0.220 (6)
C20B 0.1638 (5) 0.5335 (8) 0.1196 (10) 0.019 (2)* 0.220 (6)
H20C 0.1782 0.4778 0.1402 0.022* 0.220 (6)
H20D 0.1786 0.5782 0.1622 0.022* 0.220 (6)
C21B 0.1100 (4) 0.5333 (7) 0.0924 (7) 0.019 (2)* 0.220 (6)
H21C 0.0978 0.5908 0.0735 0.022* 0.220 (6)
H21D 0.0973 0.4946 0.0427 0.022* 0.220 (6)
C1S 0.0950 (4) 0.8005 (7) 0.2786 (7) 0.082 (2)* 0.25
H1S1 0.1110 0.8128 0.3399 0.122* 0.25
H1S2 0.1098 0.8340 0.2434 0.122* 0.25
H1S3 0.0984 0.7402 0.2679 0.122* 0.25
C2S 0.0488 (7) 0.8199 (13) 0.2578 (13) 0.082 (2)* 0.25
N2S 0.0000 0.8254 (7) 0.2500 0.082 (2)* 0.50

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0542 (14) 0.0113 (9) 0.0335 (11) −0.0014 (8) 0.0307 (10) −0.0023 (8)
O3 0.0843 (19) 0.0267 (13) 0.0502 (14) −0.0171 (11) 0.0479 (14) −0.0105 (10)
O4 0.0472 (13) 0.0229 (11) 0.0416 (12) −0.0021 (9) 0.0320 (11) −0.0020 (9)
O5 0.0417 (13) 0.0275 (11) 0.0486 (13) −0.0024 (9) 0.0275 (11) −0.0090 (9)
N1 0.0529 (17) 0.0207 (12) 0.0339 (15) −0.0020 (11) 0.0264 (14) 0.0032 (11)
N2 0.096 (3) 0.0168 (15) 0.075 (2) 0.0010 (14) 0.065 (2) 0.0018 (13)
N3 0.0564 (18) 0.0185 (12) 0.0320 (14) 0.0034 (11) 0.0278 (13) 0.0006 (11)
N4 0.0481 (16) 0.0150 (12) 0.0299 (13) −0.0032 (10) 0.0262 (12) −0.0014 (10)
C1 0.0384 (17) 0.0120 (13) 0.0318 (16) −0.0006 (12) 0.0190 (15) 0.0062 (12)
C2 0.0480 (19) 0.0128 (13) 0.0292 (15) −0.0002 (12) 0.0261 (15) −0.0002 (11)
C3 0.059 (2) 0.0188 (17) 0.0429 (19) 0.0017 (14) 0.0372 (17) 0.0035 (13)
C4 0.0392 (17) 0.0157 (14) 0.0232 (14) −0.0017 (12) 0.0182 (13) −0.0006 (11)
C5 0.0445 (18) 0.0148 (13) 0.0254 (15) −0.0025 (12) 0.0226 (14) 0.0012 (11)
C6 0.0379 (17) 0.0176 (14) 0.0273 (15) −0.0007 (12) 0.0185 (14) −0.0025 (11)
C7 0.0391 (17) 0.0131 (13) 0.0246 (15) −0.0012 (11) 0.0192 (13) −0.0016 (11)
C8 0.051 (2) 0.0228 (15) 0.0374 (18) 0.0002 (13) 0.0306 (16) −0.0021 (13)
C9 0.056 (2) 0.0209 (15) 0.0295 (17) −0.0008 (14) 0.0217 (16) −0.0040 (12)
C10 0.0417 (18) 0.0124 (13) 0.0253 (15) −0.0008 (12) 0.0196 (14) 0.0043 (12)
C11 0.053 (2) 0.0178 (14) 0.0268 (15) −0.0027 (13) 0.0268 (15) −0.0001 (12)
C12 0.0448 (18) 0.0183 (14) 0.0241 (15) −0.0001 (12) 0.0219 (14) 0.0010 (11)
C13 0.075 (2) 0.0164 (15) 0.0474 (19) −0.0038 (15) 0.0483 (19) −0.0002 (13)
C14 0.052 (2) 0.0167 (14) 0.0342 (17) −0.0028 (13) 0.0292 (16) −0.0011 (12)
C15 0.064 (2) 0.0126 (13) 0.0368 (17) −0.0090 (13) 0.0352 (17) −0.0036 (12)
C16 0.052 (2) 0.0177 (14) 0.0328 (16) −0.0078 (13) 0.0293 (16) −0.0025 (12)
C17 0.0458 (19) 0.0138 (13) 0.0318 (16) −0.0041 (12) 0.0220 (15) −0.0003 (12)
C18 0.0470 (19) 0.0186 (14) 0.0325 (16) −0.0055 (13) 0.0268 (15) −0.0003 (12)
C19 0.076 (3) 0.0174 (15) 0.050 (2) −0.0004 (15) 0.045 (2) −0.0058 (14)
C22 0.085 (3) 0.0296 (19) 0.044 (2) −0.0158 (17) 0.047 (2) −0.0121 (15)
C23 0.0440 (19) 0.0305 (16) 0.0248 (15) −0.0070 (14) 0.0201 (15) −0.0043 (13)
C24 0.0406 (18) 0.0285 (16) 0.0298 (16) −0.0040 (13) 0.0236 (15) −0.0066 (13)
C25 0.0327 (17) 0.0228 (15) 0.0269 (15) −0.0044 (12) 0.0150 (14) 0.0004 (12)
C26 0.0322 (17) 0.0306 (16) 0.0300 (16) −0.0060 (13) 0.0188 (14) −0.0026 (13)
C27 0.0303 (17) 0.0283 (16) 0.0260 (15) 0.0002 (12) 0.0120 (14) −0.0044 (12)
C28 0.0378 (18) 0.0256 (15) 0.0225 (15) −0.0055 (13) 0.0131 (14) −0.0007 (12)
C29 0.0403 (18) 0.0289 (16) 0.0316 (16) 0.0023 (13) 0.0223 (15) −0.0007 (13)
C30 0.0345 (17) 0.0289 (16) 0.0278 (16) 0.0013 (13) 0.0163 (14) −0.0012 (12)
C31 0.0413 (19) 0.0351 (17) 0.0341 (17) 0.0027 (14) 0.0216 (15) −0.0026 (14)
C32 0.053 (2) 0.0279 (17) 0.046 (2) 0.0078 (15) 0.0244 (18) −0.0046 (14)
C33 0.053 (2) 0.0254 (16) 0.045 (2) −0.0016 (15) 0.0217 (18) −0.0003 (14)
C34 0.0448 (19) 0.0296 (17) 0.0358 (17) −0.0023 (14) 0.0229 (16) 0.0019 (13)
C35 0.0394 (18) 0.0291 (16) 0.0327 (17) 0.0048 (13) 0.0216 (15) 0.0001 (13)
C36 0.044 (2) 0.0261 (16) 0.049 (2) 0.0071 (14) 0.0245 (17) −0.0001 (14)
C37 0.0404 (18) 0.0198 (14) 0.0454 (19) 0.0050 (13) 0.0314 (16) −0.0027 (13)
C38 0.060 (2) 0.0276 (17) 0.051 (2) 0.0024 (16) 0.0357 (19) 0.0044 (15)
C39 0.063 (2) 0.0293 (18) 0.080 (3) −0.0146 (17) 0.050 (2) −0.0101 (18)
C40 0.048 (2) 0.043 (2) 0.054 (2) −0.0058 (16) 0.0307 (19) −0.0148 (18)
C41 0.0397 (19) 0.0334 (17) 0.0434 (19) 0.0032 (14) 0.0233 (16) −0.0057 (15)
C42 0.0396 (18) 0.0209 (14) 0.0422 (18) 0.0020 (13) 0.0285 (16) −0.0024 (13)
O2A 0.045 (2) 0.0226 (13) 0.0289 (16) −0.0052 (12) 0.0292 (15) −0.0001 (11)
C20A 0.039 (3) 0.0168 (17) 0.028 (2) −0.0010 (16) 0.023 (2) −0.0015 (15)
C21A 0.042 (2) 0.025 (2) 0.026 (2) −0.0020 (17) 0.0231 (19) −0.0012 (16)

Geometric parameters (Å, °)

O1—C6 1.352 (3) C24—H24 0.9500
O1—C5 1.478 (3) C25—C26 1.385 (4)
O3—C22 1.212 (4) C26—C27 1.382 (4)
O4—C25 1.372 (3) C26—H26 0.9500
O4—C29 1.437 (3) C27—C28 1.384 (4)
O5—C27 1.380 (3) C28—H28 0.9500
O5—C36 1.426 (3) C29—C30 1.500 (4)
N1—C1 1.157 (3) C29—H29A 0.9900
N2—C3 1.152 (4) C29—H29B 0.9900
N3—C10 1.149 (3) C30—C35 1.390 (4)
N4—C17 1.347 (4) C30—C31 1.393 (4)
N4—C16 1.348 (3) C31—C32 1.386 (4)
N4—C19 1.475 (3) C31—H31 0.9500
C1—C2 1.412 (4) C32—C33 1.382 (5)
C2—C6 1.395 (4) C32—H32 0.9500
C2—C3 1.417 (4) C33—C34 1.374 (4)
C4—C11 1.366 (4) C33—H33 0.9500
C4—C7 1.430 (4) C34—C35 1.385 (4)
C4—C5 1.513 (4) C34—H34 0.9500
C5—C9 1.516 (4) C35—H35 0.9500
C5—C8 1.527 (4) C36—C37 1.508 (5)
C6—C7 1.397 (4) C36—H36A 0.9900
C7—C10 1.424 (4) C36—H36B 0.9900
C8—H8A 0.9800 C37—C38 1.386 (4)
C8—H8B 0.9800 C37—C42 1.396 (4)
C8—H8C 0.9800 C38—C39 1.394 (5)
C9—H9A 0.9800 C38—H38 0.9500
C9—H9B 0.9800 C39—C40 1.378 (5)
C9—H9C 0.9800 C39—H39 0.9500
C11—C12 1.415 (4) C40—C41 1.378 (5)
C11—H11 0.9500 C40—H40 0.9500
C12—C13 1.357 (4) C41—C42 1.383 (4)
C12—H12 0.9500 C41—H41 0.9500
C13—C14 1.462 (4) C42—H42 0.9500
C13—C20A 1.518 (5) O2A—C21A 1.452 (5)
C13—C20B 1.643 (15) C20A—C21A 1.507 (6)
C14—C18 1.410 (4) C20A—H20A 0.9900
C14—C15 1.411 (4) C20A—H20B 0.9900
C15—C16 1.361 (4) C21A—H21A 0.9900
C15—H15 0.9500 C21A—H21B 0.9900
C16—H16 0.9500 O2B—C21B 1.486 (14)
C17—C18 1.362 (4) C20B—C21B 1.498 (17)
C17—H17 0.9500 C20B—H20C 0.9900
C18—H18 0.9500 C20B—H20D 0.9900
C19—H19A 0.9800 C21B—H21C 0.9900
C19—H19B 0.9800 C21B—H21D 0.9900
C19—H19C 0.9800 C1S—C2S 1.33 (2)
C22—O2A 1.380 (4) C1S—H1S1 0.9800
C22—O2B 1.470 (9) C1S—H1S2 0.9800
C22—C23 1.488 (4) C1S—H1S3 0.9800
C23—C24 1.390 (4) C2S—N2S 1.40 (2)
C23—C28 1.391 (4) N2S—C2Si 1.40 (2)
C24—C25 1.378 (4)
C6—O1—C5 109.24 (19) C27—C26—C25 120.1 (3)
C25—O4—C29 117.6 (2) C27—C26—H26 119.9
C27—O5—C36 119.4 (2) C25—C26—H26 119.9
C17—N4—C16 119.8 (2) O5—C27—C26 114.3 (2)
C17—N4—C19 120.5 (2) O5—C27—C28 124.8 (3)
C16—N4—C19 119.7 (2) C26—C27—C28 120.9 (3)
N1—C1—C2 177.7 (3) C27—C28—C23 117.8 (3)
C6—C2—C1 122.5 (2) C27—C28—H28 121.1
C6—C2—C3 120.5 (2) C23—C28—H28 121.1
C1—C2—C3 117.0 (2) O4—C29—C30 109.3 (2)
N2—C3—C2 179.0 (3) O4—C29—H29A 109.8
C11—C4—C7 130.3 (2) C30—C29—H29A 109.8
C11—C4—C5 123.7 (2) O4—C29—H29B 109.8
C7—C4—C5 106.0 (2) C30—C29—H29B 109.8
O1—C5—C4 104.19 (19) H29A—C29—H29B 108.3
O1—C5—C9 107.3 (2) C35—C30—C31 118.7 (3)
C4—C5—C9 112.6 (2) C35—C30—C29 122.9 (3)
O1—C5—C8 106.3 (2) C31—C30—C29 118.4 (3)
C4—C5—C8 113.8 (2) C32—C31—C30 120.4 (3)
C9—C5—C8 111.9 (2) C32—C31—H31 119.8
O1—C6—C2 117.2 (2) C30—C31—H31 119.8
O1—C6—C7 111.5 (2) C33—C32—C31 120.3 (3)
C2—C6—C7 131.4 (2) C33—C32—H32 119.9
C6—C7—C10 123.6 (2) C31—C32—H32 119.9
C6—C7—C4 109.1 (2) C34—C33—C32 119.7 (3)
C10—C7—C4 126.9 (2) C34—C33—H33 120.1
C5—C8—H8A 109.5 C32—C33—H33 120.1
C5—C8—H8B 109.5 C33—C34—C35 120.4 (3)
H8A—C8—H8B 109.5 C33—C34—H34 119.8
C5—C8—H8C 109.5 C35—C34—H34 119.8
H8A—C8—H8C 109.5 C34—C35—C30 120.5 (3)
H8B—C8—H8C 109.5 C34—C35—H35 119.8
C5—C9—H9A 109.5 C30—C35—H35 119.8
C5—C9—H9B 109.5 O5—C36—C37 113.9 (2)
H9A—C9—H9B 109.5 O5—C36—H36A 108.8
C5—C9—H9C 109.5 C37—C36—H36A 108.8
H9A—C9—H9C 109.5 O5—C36—H36B 108.8
H9B—C9—H9C 109.5 C37—C36—H36B 108.8
N3—C10—C7 177.0 (3) H36A—C36—H36B 107.7
C4—C11—C12 123.7 (2) C38—C37—C42 118.1 (3)
C4—C11—H11 118.2 C38—C37—C36 120.7 (3)
C12—C11—H11 118.2 C42—C37—C36 120.9 (3)
C13—C12—C11 129.0 (3) C37—C38—C39 120.6 (3)
C13—C12—H12 115.5 C37—C38—H38 119.7
C11—C12—H12 115.5 C39—C38—H38 119.7
C12—C13—C14 120.3 (3) C40—C39—C38 120.5 (3)
C12—C13—C20A 120.6 (3) C40—C39—H39 119.8
C14—C13—C20A 118.9 (3) C38—C39—H39 119.8
C12—C13—C20B 112.8 (5) C39—C40—C41 119.6 (3)
C14—C13—C20B 115.7 (5) C39—C40—H40 120.2
C18—C14—C15 114.8 (2) C41—C40—H40 120.2
C18—C14—C13 122.2 (2) C40—C41—C42 120.1 (3)
C15—C14—C13 123.0 (2) C40—C41—H41 119.9
C16—C15—C14 121.7 (3) C42—C41—H41 119.9
C16—C15—H15 119.1 C41—C42—C37 121.1 (3)
C14—C15—H15 119.1 C41—C42—H42 119.4
N4—C16—C15 120.9 (3) C37—C42—H42 119.4
N4—C16—H16 119.5 C22—O2A—C21A 116.9 (2)
C15—C16—H16 119.5 C21A—C20A—C13 108.7 (3)
N4—C17—C18 121.1 (2) C21A—C20A—H20A 110.0
N4—C17—H17 119.4 C13—C20A—H20A 110.0
C18—C17—H17 119.4 C21A—C20A—H20B 110.0
C17—C18—C14 121.6 (3) C13—C20A—H20B 110.0
C17—C18—H18 119.2 H20A—C20A—H20B 108.3
C14—C18—H18 119.2 O2A—C21A—C20A 110.6 (3)
N4—C19—H19A 109.5 O2A—C21A—H21A 109.5
N4—C19—H19B 109.5 C20A—C21A—H21A 109.5
H19A—C19—H19B 109.5 O2A—C21A—H21B 109.5
N4—C19—H19C 109.5 C20A—C21A—H21B 109.5
H19A—C19—H19C 109.5 H21A—C21A—H21B 108.1
H19B—C19—H19C 109.5 C22—O2B—C21B 118.6 (7)
O3—C22—O2A 123.0 (3) C21B—C20B—C13 91.8 (9)
O3—C22—O2B 115.1 (4) C21B—C20B—H20C 113.3
O2A—C22—O2B 45.3 (3) C13—C20B—H20C 113.3
O3—C22—C23 125.3 (3) C21B—C20B—H20D 113.3
O2A—C22—C23 111.4 (3) C13—C20B—H20D 113.3
O2B—C22—C23 106.2 (4) H20C—C20B—H20D 110.6
C24—C23—C28 122.1 (3) O2B—C21B—C20B 111.3 (10)
C24—C23—C22 120.1 (3) O2B—C21B—H21C 109.4
C28—C23—C22 117.8 (3) C20B—C21B—H21C 109.4
C25—C24—C23 118.5 (3) O2B—C21B—H21D 109.4
C25—C24—H24 120.7 C20B—C21B—H21D 109.4
C23—C24—H24 120.7 H21C—C21B—H21D 108.0
O4—C25—C24 124.6 (2) C1S—C2S—N2S 166.3 (18)
O4—C25—C26 114.9 (2) C2Si—N2S—C2S 172.9 (19)
C24—C25—C26 120.4 (3)
C6—O1—C5—C4 −0.3 (3) C28—C23—C24—C25 0.2 (5)
C6—O1—C5—C9 119.3 (2) C22—C23—C24—C25 178.8 (3)
C6—O1—C5—C8 −120.8 (2) C29—O4—C25—C24 −0.2 (4)
C11—C4—C5—O1 −178.4 (3) C29—O4—C25—C26 179.8 (3)
C7—C4—C5—O1 1.6 (3) C23—C24—C25—O4 179.8 (3)
C11—C4—C5—C9 65.7 (4) C23—C24—C25—C26 −0.3 (4)
C7—C4—C5—C9 −114.4 (3) O4—C25—C26—C27 −179.1 (3)
C11—C4—C5—C8 −63.0 (4) C24—C25—C26—C27 0.9 (4)
C7—C4—C5—C8 116.9 (3) C36—O5—C27—C26 175.3 (3)
C5—O1—C6—C2 178.2 (3) C36—O5—C27—C28 −5.9 (4)
C5—O1—C6—C7 −1.2 (3) C25—C26—C27—O5 177.3 (3)
C1—C2—C6—O1 178.3 (3) C25—C26—C27—C28 −1.6 (5)
C3—C2—C6—O1 −0.8 (4) O5—C27—C28—C23 −177.3 (3)
C1—C2—C6—C7 −2.5 (5) C26—C27—C28—C23 1.5 (4)
C3—C2—C6—C7 178.4 (3) C24—C23—C28—C27 −0.9 (5)
O1—C6—C7—C10 174.9 (3) C22—C23—C28—C27 −179.4 (3)
C2—C6—C7—C10 −4.3 (5) C25—O4—C29—C30 −178.0 (2)
O1—C6—C7—C4 2.3 (4) O4—C29—C30—C35 14.4 (4)
C2—C6—C7—C4 −177.0 (3) O4—C29—C30—C31 −167.4 (3)
C11—C4—C7—C6 177.6 (3) C35—C30—C31—C32 −0.8 (5)
C5—C4—C7—C6 −2.3 (3) C29—C30—C31—C32 −179.1 (3)
C11—C4—C7—C10 5.3 (5) C30—C31—C32—C33 0.5 (5)
C5—C4—C7—C10 −174.7 (3) C31—C32—C33—C34 0.2 (5)
C7—C4—C11—C12 6.6 (5) C32—C33—C34—C35 −0.5 (5)
C5—C4—C11—C12 −173.4 (3) C33—C34—C35—C30 0.1 (5)
C4—C11—C12—C13 −170.8 (3) C31—C30—C35—C34 0.5 (5)
C11—C12—C13—C14 −177.2 (3) C29—C30—C35—C34 178.7 (3)
C11—C12—C13—C20A 8.4 (6) C27—O5—C36—C37 −78.9 (3)
C11—C12—C13—C20B −35.0 (7) O5—C36—C37—C38 152.5 (3)
C12—C13—C14—C18 175.4 (3) O5—C36—C37—C42 −34.0 (4)
C20A—C13—C14—C18 −10.1 (5) C42—C37—C38—C39 −1.9 (4)
C20B—C13—C14—C18 34.2 (7) C36—C37—C38—C39 171.8 (3)
C12—C13—C14—C15 −5.0 (5) C37—C38—C39—C40 1.2 (5)
C20A—C13—C14—C15 169.6 (3) C38—C39—C40—C41 1.1 (5)
C20B—C13—C14—C15 −146.1 (6) C39—C40—C41—C42 −2.6 (5)
C18—C14—C15—C16 −1.5 (5) C40—C41—C42—C37 1.9 (4)
C13—C14—C15—C16 178.8 (3) C38—C37—C42—C41 0.4 (4)
C17—N4—C16—C15 −0.6 (5) C36—C37—C42—C41 −173.3 (3)
C19—N4—C16—C15 179.9 (3) O3—C22—O2A—C21A −3.8 (5)
C14—C15—C16—N4 1.8 (5) C23—C22—O2A—C21A −177.8 (3)
C16—N4—C17—C18 −0.8 (4) C12—C13—C20A—C21A −93.6 (4)
C19—N4—C17—C18 178.7 (3) C14—C13—C20A—C21A 91.9 (4)
N4—C17—C18—C14 1.0 (5) C22—O2A—C21A—C20A −82.2 (4)
C15—C14—C18—C17 0.2 (5) C13—C20A—C21A—O2A −179.1 (2)
C13—C14—C18—C17 179.9 (3) O3—C22—O2B—C21B 26.8 (9)
O3—C22—C23—C24 −176.7 (4) C23—C22—O2B—C21B 170.0 (7)
O2A—C22—C23—C24 −2.8 (5) C12—C13—C20B—C21B 104.1 (7)
O2B—C22—C23—C24 45.0 (5) C14—C13—C20B—C21B −111.9 (7)
O3—C22—C23—C28 1.9 (6) C22—O2B—C21B—C20B 60.6 (11)
O2A—C22—C23—C28 175.8 (3) C13—C20B—C21B—O2B 174.5 (7)
O2B—C22—C23—C28 −136.4 (4)

Symmetry codes: (i) −x, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C9—H9A···N1ii 0.98 2.59 3.529 (4) 161
C9—H9B···N3iii 0.98 2.59 3.497 (5) 153
C16—H16···N1iv 0.95 2.51 3.406 (4) 156
C17—H17···N2v 0.95 2.51 3.380 (4) 152
C19—H19C···N2v 0.98 2.50 3.340 (4) 143
C26—H26···O5vi 0.95 2.51 3.398 (4) 155
C8—H8B···Cg1vii 0.98 2.54 3.515 (3) 171

Symmetry codes: (ii) x, −y+2, z+1/2; (iii) −x+1/2, −y+3/2, −z; (iv) −x+1/2, y−1/2, −z−1/2; (v) x, y−1, z; (vi) −x, −y+1, −z+1; (vii) x, −y+1, z−1/2.

Table 2 Interplanar angles of the planar entities (°)

Plane C1–C12,N1–N3,O1 C12–C19,N4 C22–C30,O3–O4 C29–C35 C37–C42 SIGPa
C1–C12,N1–N3,O1 14.59 (10) 18.77 (7) 31.92 (12) 64.58 (13) 0.025 (3)
C12–C19,N4 14.59 (10) 4.90 (9) 18.33 (13) 75.25 (15) 0.033 (3)
C22–C30,O3–O4 18.77 (7) 4.90 (9) 13.48 (11) 80.11 (12) 0.026 (3)
C29–C35b 31.92 (12) 18.33 (13) 13.48 (11) 86.94 (16) 0.004 (3)

Notes: (a) Sqrt(Sum(j=1:N)(D(j)**2/(N-3)) (Spek, 2009); (b) SIGP for plane C37–C42 is 0.014 (3) Å.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2693).

References

  1. ADSC (2009). ADSC Quantum 210r software. http://www.adsc-xray.com/
  2. Bruker (2001). XPREP for UNIX. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Clarke, D. J., Teshome, A., Bhuiyan, M. D. H., Ashraf, M., Middleton, A. P., Gainsford, G. J., Asselberghs, I., Clays, K., Smith, G. J. & Kay, A. J. (2009). Proc AIP Conference Proceedings, AMN-4, Dunedin, New Zealand, pp. 92–93.
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Gainsford, G. J., Bhuiyan, M. D. H. & Kay, A. J. (2007). Acta Cryst. C63, o633–o637. [DOI] [PubMed]
  6. Gainsford, G. J., Bhuiyan, M. D. H. & Kay, A. J. (2008). Acta Cryst. C64, o616–o619. [DOI] [PubMed]
  7. Kabsch, W. (1993). J. Appl. Cryst. 26, 795–800.
  8. Kay, A. J., Gainsford, G. J. & Bhuiyan, D. (2008). Poster 8, ICONO10 Conference Abstracts, p. 141.
  9. Kay, A. J., Woolhouse, A. D., Zhao, Y. & Clays, K. (2004). J. Mater. Chem. 14, 1321–1330.
  10. Kim, T.-D., Kang, J.-W., Luo, J., Jang, S.-H., Ka, J.-W., Tucker, N., Benedict, J. B., Dalton, L. R., Gray, T., Overney, R. M., Park, D. H., Herman, W. N. & Jen, A. K.-Y. (2007). J. Am. Chem. Soc. 129, 488–489. [DOI] [PubMed]
  11. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  12. Marder, S. R., Perry, J. W., Tiemann, B. G., Gorman, C. B., Gilmour, S., Biddle, S. L. & Bourhill, G. (1993). J. Am. Chem. Soc. 115, 2524–2526.
  13. McPhillips, T. M., McPhillips, S. E., Chiu, H.-J., Cohen, A. E., Deacon, A. M., Ellis, P. J., Garman, E., Gonzalez, A., Sauter, N. K., Phizackerley, R. P., Soltis, S. M. & Kuhn, P. (2002). J. Synchrotron Rad. 9, 401–406. [DOI] [PubMed]
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809050430/sj2693sup1.cif

e-65-o3261-sup1.cif (32.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809050430/sj2693Isup2.hkl

e-65-o3261-Isup2.hkl (258.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES