Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Nov 18;65(Pt 12):o3109. doi: 10.1107/S1600536809048193

N-Benzyl-N-cyclo­hexyl-4-methyl­benzene­sulfonamide

Islam Ullah Khan a, Zeeshan Haider a, Muhammad Zia-ur-Rehman b,*, Muhammad Shafiq a, Muhammad Nadeem Arshad a
PMCID: PMC2972048  PMID: 21578835

Abstract

In the title compound, C20H25NO2S, the cyclo­hexyl ring exists in a chair form and the mean plane through all six atoms makes dihedral angles of 56.12 (9) and 55.19 (10)° with the benzene and phenyl rings, respectively. The dihedral angle between the two aromatic rings is 77.23 (7)°. A weak intra­molecular C—H⋯O interaction occurs.

Related literature

For the biological activity of sulfonamides, see: Ozbek et al. (2007); Parari et al. (2008); Ratish et al. (2009); Selnam et al. (2001). For related structures, see: Khan et al. (2009); Zia-ur-Rehman et al. (2009); Gowda et al. (2007a ,b ,c ). For bond-length data, see: Allen et al. (1987).graphic file with name e-65-o3109-scheme1.jpg

Experimental

Crystal data

  • C20H25NO2S

  • M r = 343.47

  • Orthorhombic, Inline graphic

  • a = 9.0702 (4) Å

  • b = 11.1054 (5) Å

  • c = 18.1971 (8) Å

  • V = 1832.96 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 296 K

  • 0.24 × 0.18 × 0.13 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.956, T max = 0.976

  • 11619 measured reflections

  • 4493 independent reflections

  • 2764 reflections with I > 2σ(I)

  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.097

  • S = 0.98

  • 4493 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.25 e Å−3

  • Absolute structure: Flack (1983), 1915 Friedel pairs

  • Flack parameter: 0.04 (8)

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

Supplementary Material

Crystal structure: contains datablocks I, New_Global_Publ_Block. DOI: 10.1107/S1600536809048193/is2488sup1.cif

e-65-o3109-sup1.cif (21.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809048193/is2488Isup2.hkl

e-65-o3109-Isup2.hkl (220.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O1 0.98 2.38 2.903 (3) 113

Acknowledgments

The authors are grateful to the Higher Education Commission of Pakistan for financial support for the purchase of diffractometer.

supplementary crystallographic information

Comment

Sulfonamides are well known as anti-inflamatory (Ratish et al., 2009), anti-microbial (Ozbek et al., 2007; Parari et al., 2008), anti HIV (Selnam et al., 2001) compounds. In continuation of our work regarding the synthesis of various sulfur containing heterocycles (Zia-ur-Rehman et al., 2009; Khan et al., 2009), the structure of N-benzyl-N-cyclohexyl-4-methyl benzene sulfonamide, (I), has been determined.

Bond lengths and bond angles of the title molecule (Fig. 1) are almost similar to those in the related molecules (Gowda et al., 2007a,b,c) and are within the normal ranges (Allen et al., 1987). The two aromatic rings as usual are essentially planar, while the cyclohexane ring is in a chair form. The dihedral angles between the two aromatic rings (C1—C6) & (C14—C19), the benzene (C1—C6) ring & the mean plane of cyclohexyl ring (C7—C12), and the phenyl (C14—C19) ring & the mean plane cyclohexyl ring (C7—C12) are 77.23 (7), 56.12 (9) and 55.19 (10)°, respectively, while the r.m.s. deviations for the (C1—C6), (C7—C12) & (C14—C19) rings are 0.0056, 0.2320 and 0.0046 Å, respectively. An intramolecular C—H···O hydrogen bond gives rise to a five membered hydrogen bonded ring (Table 1).

Experimental

A mixture of N-cyclohexyl-4-methyl benzene sulfonamide (1.089 g, 4.3 mmol), sodium hydride (0.21 g, 0.88 mmol) and N, N-dimethylformamide (10 ml) was stirred at room temperature for half an hour followed by addition of benzyl chloride (1.14 g, 9.0 mmol). Stirring was continued further for a period of three hours and the contents were poured over crushed ice. Precipitated product was isolated, washed and crystallized from a methanol solution.

Refinement

All H atoms were identified in a difference map and then were treated as riding (C—H = 0.93–0.98 Å), with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), with displacement ellipsoids at the 50% probability level.

Crystal data

C20H25NO2S F(000) = 736
Mr = 343.47 Dx = 1.245 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 2246 reflections
a = 9.0702 (4) Å θ = 2.9–20.7°
b = 11.1054 (5) Å µ = 0.19 mm1
c = 18.1971 (8) Å T = 296 K
V = 1832.96 (14) Å3 Blocks, yellow
Z = 4 0.24 × 0.18 × 0.13 mm

Data collection

Bruker APEXII CCD area-detector diffractometer 4493 independent reflections
Radiation source: fine-focus sealed tube 2764 reflections with I > 2σ(I)
graphite Rint = 0.036
φ and ω scans θmax = 28.3°, θmin = 2.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −12→12
Tmin = 0.956, Tmax = 0.976 k = −14→7
11619 measured reflections l = −24→22

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049 H-atom parameters constrained
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0397P)2] where P = (Fo2 + 2Fc2)/3
S = 0.98 (Δ/σ)max < 0.001
4493 reflections Δρmax = 0.16 e Å3
218 parameters Δρmin = −0.24 e Å3
0 restraints Absolute structure: Flack (1983), 1915 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.04 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.13668 (7) 0.35270 (6) 0.83512 (3) 0.04431 (17)
O1 0.0611 (2) 0.45762 (15) 0.86060 (9) 0.0603 (5)
O2 0.28860 (18) 0.36124 (17) 0.81433 (9) 0.0604 (5)
N1 0.04730 (19) 0.30283 (17) 0.76418 (9) 0.0396 (5)
C1 0.1256 (3) 0.2456 (2) 0.90607 (11) 0.0386 (5)
C2 0.2185 (3) 0.1481 (2) 0.90729 (13) 0.0520 (6)
H2 0.2872 0.1375 0.8699 0.062*
C3 0.2102 (3) 0.0660 (2) 0.96364 (14) 0.0556 (7)
H3 0.2729 −0.0002 0.9632 0.067*
C4 0.1123 (3) 0.0789 (2) 1.02044 (13) 0.0492 (6)
C5 0.0189 (3) 0.1763 (3) 1.01803 (13) 0.0634 (8)
H5 −0.0498 0.1867 1.0554 0.076*
C6 0.0247 (3) 0.2591 (3) 0.96159 (13) 0.0607 (8)
H6 −0.0399 0.3241 0.9612 0.073*
C7 −0.1161 (2) 0.3031 (2) 0.76700 (11) 0.0404 (6)
H7 −0.1444 0.3559 0.8078 0.049*
C8 −0.1825 (2) 0.1808 (2) 0.78275 (15) 0.0573 (7)
H8A −0.1451 0.1507 0.8292 0.069*
H8B −0.1539 0.1246 0.7445 0.069*
C9 −0.3505 (3) 0.1892 (3) 0.78615 (16) 0.0700 (8)
H9A −0.3916 0.1094 0.7933 0.084*
H9B −0.3790 0.2385 0.8278 0.084*
C10 −0.4124 (3) 0.2434 (3) 0.71630 (16) 0.0723 (9)
H10A −0.3913 0.1904 0.6752 0.087*
H10B −0.5186 0.2508 0.7207 0.087*
C11 −0.3468 (3) 0.3647 (3) 0.70192 (14) 0.0630 (8)
H11A −0.3752 0.4195 0.7409 0.076*
H11B −0.3852 0.3961 0.6560 0.076*
C12 −0.1796 (2) 0.3582 (3) 0.69771 (13) 0.0556 (7)
H12A −0.1509 0.3100 0.6556 0.067*
H12B −0.1398 0.4385 0.6911 0.067*
C13 0.1222 (3) 0.2229 (2) 0.71193 (11) 0.0423 (6)
H13A 0.0613 0.1522 0.7043 0.051*
H13B 0.2143 0.1964 0.7336 0.051*
C14 0.1544 (2) 0.2793 (2) 0.63832 (12) 0.0412 (6)
C15 0.2396 (3) 0.3820 (2) 0.63277 (14) 0.0582 (8)
H15 0.2745 0.4194 0.6751 0.070*
C16 0.2731 (3) 0.4293 (3) 0.56453 (18) 0.0753 (9)
H16 0.3311 0.4981 0.5614 0.090*
C17 0.2222 (4) 0.3763 (3) 0.50164 (17) 0.0773 (10)
H17 0.2457 0.4082 0.4559 0.093*
C18 0.1365 (4) 0.2759 (3) 0.50727 (15) 0.0756 (9)
H18 0.1007 0.2393 0.4649 0.091*
C19 0.1022 (3) 0.2279 (2) 0.57493 (14) 0.0572 (7)
H19 0.0430 0.1597 0.5777 0.069*
C20 0.1098 (3) −0.0076 (3) 1.08385 (14) 0.0736 (9)
H20A 0.0270 0.0100 1.1149 0.110*
H20B 0.1993 0.0003 1.1116 0.110*
H20C 0.1015 −0.0884 1.0656 0.110*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0498 (4) 0.0418 (3) 0.0414 (3) −0.0050 (3) −0.0074 (3) −0.0030 (3)
O1 0.0852 (13) 0.0385 (10) 0.0573 (12) 0.0057 (9) −0.0130 (9) −0.0102 (9)
O2 0.0487 (10) 0.0769 (14) 0.0555 (11) −0.0207 (10) −0.0072 (8) 0.0060 (10)
N1 0.0385 (11) 0.0467 (13) 0.0337 (11) 0.0014 (9) −0.0024 (8) −0.0059 (9)
C1 0.0404 (13) 0.0399 (14) 0.0353 (12) −0.0011 (12) −0.0071 (11) −0.0064 (10)
C2 0.0575 (15) 0.0552 (16) 0.0432 (15) 0.0053 (15) 0.0086 (11) −0.0058 (15)
C3 0.0648 (17) 0.0481 (17) 0.0538 (17) 0.0098 (14) −0.0022 (14) −0.0005 (14)
C4 0.0535 (17) 0.0530 (17) 0.0413 (14) −0.0061 (14) −0.0065 (13) 0.0013 (12)
C5 0.0583 (17) 0.089 (3) 0.0429 (16) 0.0123 (17) 0.0101 (12) 0.0069 (16)
C6 0.0546 (17) 0.078 (2) 0.0499 (16) 0.0238 (15) 0.0055 (13) 0.0068 (15)
C7 0.0394 (14) 0.0433 (14) 0.0385 (12) 0.0043 (11) 0.0007 (11) −0.0047 (10)
C8 0.0416 (16) 0.0557 (19) 0.0747 (19) −0.0022 (12) 0.0023 (12) 0.0114 (15)
C9 0.0506 (16) 0.070 (2) 0.089 (2) −0.0053 (15) 0.0082 (16) 0.0075 (17)
C10 0.0379 (16) 0.104 (3) 0.075 (2) 0.0028 (16) −0.0055 (13) −0.010 (2)
C11 0.0489 (16) 0.084 (2) 0.0561 (16) 0.0138 (17) −0.0051 (12) 0.0061 (17)
C12 0.0495 (16) 0.0620 (18) 0.0552 (16) 0.0061 (14) −0.0051 (11) 0.0098 (16)
C13 0.0404 (13) 0.0429 (15) 0.0437 (14) 0.0034 (12) 0.0023 (11) −0.0019 (11)
C14 0.0426 (14) 0.0415 (15) 0.0396 (13) 0.0057 (12) 0.0020 (11) −0.0025 (11)
C15 0.0599 (18) 0.062 (2) 0.0528 (16) −0.0095 (15) −0.0029 (13) 0.0043 (14)
C16 0.073 (2) 0.078 (2) 0.075 (2) −0.0156 (18) 0.0113 (18) 0.022 (2)
C17 0.094 (2) 0.090 (3) 0.0482 (19) 0.011 (2) 0.0187 (16) 0.0196 (19)
C18 0.102 (2) 0.079 (2) 0.0459 (17) 0.015 (2) 0.0012 (18) −0.0021 (16)
C19 0.0699 (19) 0.0531 (18) 0.0486 (16) 0.0012 (14) 0.0012 (13) −0.0011 (14)
C20 0.093 (2) 0.066 (2) 0.0620 (18) −0.0067 (18) −0.0045 (16) 0.0123 (16)

Geometric parameters (Å, °)

S1—O1 1.4291 (17) C10—C11 1.495 (4)
S1—O2 1.4321 (17) C10—H10A 0.9700
S1—N1 1.6219 (18) C10—H10B 0.9700
S1—C1 1.758 (2) C11—C12 1.520 (3)
N1—C13 1.467 (3) C11—H11A 0.9700
N1—C7 1.483 (3) C11—H11B 0.9700
C1—C6 1.371 (3) C12—H12A 0.9700
C1—C2 1.372 (3) C12—H12B 0.9700
C2—C3 1.374 (3) C13—C14 1.507 (3)
C2—H2 0.9300 C13—H13A 0.9700
C3—C4 1.370 (3) C13—H13B 0.9700
C3—H3 0.9300 C14—C19 1.372 (3)
C4—C5 1.374 (3) C14—C15 1.381 (3)
C4—C20 1.502 (3) C15—C16 1.382 (4)
C5—C6 1.379 (3) C15—H15 0.9300
C5—H5 0.9300 C16—C17 1.367 (4)
C6—H6 0.9300 C16—H16 0.9300
C7—C8 1.513 (3) C17—C18 1.364 (4)
C7—C12 1.515 (3) C17—H17 0.9300
C7—H7 0.9800 C18—C19 1.377 (4)
C8—C9 1.528 (3) C18—H18 0.9300
C8—H8A 0.9700 C19—H19 0.9300
C8—H8B 0.9700 C20—H20A 0.9600
C9—C10 1.514 (4) C20—H20B 0.9600
C9—H9A 0.9700 C20—H20C 0.9600
C9—H9B 0.9700
O1—S1—O2 119.55 (12) C9—C10—H10A 109.5
O1—S1—N1 107.27 (10) C11—C10—H10B 109.5
O2—S1—N1 107.05 (10) C9—C10—H10B 109.5
O1—S1—C1 106.61 (10) H10A—C10—H10B 108.0
O2—S1—C1 107.08 (11) C10—C11—C12 111.3 (2)
N1—S1—C1 108.96 (10) C10—C11—H11A 109.4
C13—N1—C7 119.09 (18) C12—C11—H11A 109.4
C13—N1—S1 119.41 (15) C10—C11—H11B 109.4
C7—N1—S1 118.11 (14) C12—C11—H11B 109.4
C6—C1—C2 118.9 (2) H11A—C11—H11B 108.0
C6—C1—S1 120.3 (2) C7—C12—C11 110.9 (2)
C2—C1—S1 120.71 (18) C7—C12—H12A 109.5
C1—C2—C3 120.1 (2) C11—C12—H12A 109.5
C1—C2—H2 119.9 C7—C12—H12B 109.5
C3—C2—H2 119.9 C11—C12—H12B 109.5
C4—C3—C2 121.9 (2) H12A—C12—H12B 108.1
C4—C3—H3 119.0 N1—C13—C14 114.46 (18)
C2—C3—H3 119.0 N1—C13—H13A 108.6
C3—C4—C5 117.2 (2) C14—C13—H13A 108.6
C3—C4—C20 121.5 (3) N1—C13—H13B 108.6
C5—C4—C20 121.3 (2) C14—C13—H13B 108.6
C4—C5—C6 121.7 (2) H13A—C13—H13B 107.6
C4—C5—H5 119.2 C19—C14—C15 118.4 (2)
C6—C5—H5 119.2 C19—C14—C13 120.5 (2)
C1—C6—C5 120.1 (3) C15—C14—C13 121.1 (2)
C1—C6—H6 120.0 C14—C15—C16 120.2 (3)
C5—C6—H6 120.0 C14—C15—H15 119.9
N1—C7—C8 113.73 (19) C16—C15—H15 119.9
N1—C7—C12 110.59 (18) C17—C16—C15 121.0 (3)
C8—C7—C12 111.7 (2) C17—C16—H16 119.5
N1—C7—H7 106.8 C15—C16—H16 119.5
C8—C7—H7 106.8 C18—C17—C16 118.8 (3)
C12—C7—H7 106.8 C18—C17—H17 120.6
C7—C8—C9 110.4 (2) C16—C17—H17 120.6
C7—C8—H8A 109.6 C17—C18—C19 120.8 (3)
C9—C8—H8A 109.6 C17—C18—H18 119.6
C7—C8—H8B 109.6 C19—C18—H18 119.6
C9—C8—H8B 109.6 C14—C19—C18 120.9 (3)
H8A—C8—H8B 108.1 C14—C19—H19 119.6
C10—C9—C8 111.1 (2) C18—C19—H19 119.6
C10—C9—H9A 109.4 C4—C20—H20A 109.5
C8—C9—H9A 109.4 C4—C20—H20B 109.5
C10—C9—H9B 109.4 H20A—C20—H20B 109.5
C8—C9—H9B 109.4 C4—C20—H20C 109.5
H9A—C9—H9B 108.0 H20A—C20—H20C 109.5
C11—C10—C9 110.9 (2) H20B—C20—H20C 109.5
C11—C10—H10A 109.5
O1—S1—N1—C13 159.58 (16) S1—N1—C7—C8 −101.8 (2)
O2—S1—N1—C13 30.12 (19) C13—N1—C7—C12 −69.2 (3)
C1—S1—N1—C13 −85.37 (18) S1—N1—C7—C12 131.65 (18)
O1—S1—N1—C7 −41.37 (19) N1—C7—C8—C9 178.9 (2)
O2—S1—N1—C7 −170.83 (17) C12—C7—C8—C9 −55.1 (3)
C1—S1—N1—C7 73.68 (19) C7—C8—C9—C10 55.6 (3)
O1—S1—C1—C6 16.6 (2) C8—C9—C10—C11 −56.8 (3)
O2—S1—C1—C6 145.7 (2) C9—C10—C11—C12 56.8 (3)
N1—S1—C1—C6 −98.9 (2) N1—C7—C12—C11 −177.1 (2)
O1—S1—C1—C2 −162.71 (19) C8—C7—C12—C11 55.2 (3)
O2—S1—C1—C2 −33.6 (2) C10—C11—C12—C7 −56.0 (3)
N1—S1—C1—C2 81.8 (2) C7—N1—C13—C14 91.6 (2)
C6—C1—C2—C3 −0.3 (4) S1—N1—C13—C14 −109.5 (2)
S1—C1—C2—C3 179.01 (18) N1—C13—C14—C19 −123.0 (2)
C1—C2—C3—C4 −1.0 (4) N1—C13—C14—C15 58.5 (3)
C2—C3—C4—C5 1.6 (4) C19—C14—C15—C16 −1.3 (4)
C2—C3—C4—C20 −176.6 (2) C13—C14—C15—C16 177.2 (2)
C3—C4—C5—C6 −1.0 (4) C14—C15—C16—C17 0.4 (5)
C20—C4—C5—C6 177.2 (3) C15—C16—C17—C18 0.4 (5)
C2—C1—C6—C5 0.9 (4) C16—C17—C18—C19 −0.4 (5)
S1—C1—C6—C5 −178.4 (2) C15—C14—C19—C18 1.3 (4)
C4—C5—C6—C1 −0.2 (4) C13—C14—C19—C18 −177.2 (3)
C13—N1—C7—C8 57.3 (3) C17—C18—C19—C14 −0.5 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C7—H7···O1 0.98 2.38 2.903 (3) 113

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2488).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  4. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  5. Gowda, B. T., Foro, S. & Fuess, H. (2007a). Acta Cryst. E63, o2339.
  6. Gowda, B. T., Foro, S. & Fuess, H. (2007b). Acta Cryst. E63, o2570.
  7. Gowda, B. T., Foro, S. & Fuess, H. (2007c). Acta Cryst. E63, o2597.
  8. Khan, I. U., Haider, Z., Zia-ur-Rehman, M., Arshad, M. N. & Shafiq, M. (2009). Acta Cryst. E65, o2867. [DOI] [PMC free article] [PubMed]
  9. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  10. Ozbek, N., Katircioğ lu, H., Karacan, N. & Baykal, T. (2007). Bioorg. Med. Chem 15, 5105–5109. [DOI] [PubMed]
  11. Parari, M. K., Panda, G., Srivastava, K. & Puri, S. K. (2008). Bioorg. Med. Chem. Lett. 18, 776–781. [DOI] [PubMed]
  12. Ratish, G. I., Javed, K., Ahmad, S., Bano, S., Alam, M. S., Pillai, K. K., Singh, S. & Bagchi, V. (2009). Bioorg. & Med. Chem. Lett. 19, 255–258. [DOI] [PubMed]
  13. Selnam, P., Chandramohan, M., Clercq, E. D., Witvrouw, M. & Pannecouque, C. (2001). Eur. J. Pharm. Sci 14, 313–316. [DOI] [PubMed]
  14. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  17. Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem 44, 1311–1316. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, New_Global_Publ_Block. DOI: 10.1107/S1600536809048193/is2488sup1.cif

e-65-o3109-sup1.cif (21.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809048193/is2488Isup2.hkl

e-65-o3109-Isup2.hkl (220.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES