Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Nov 28;65(Pt 12):m1687. doi: 10.1107/S1600536809049757

cis-Diammine(glycolato-κ2 O 1,O 2)platinum(II)

Qing-Kun Wang a, Shao-Ping Pu b,c,*, Yan-Wei Cong b, Yong-Nian Li b, Chun-Fang Luan b
PMCID: PMC2972061  PMID: 21578692

Abstract

The reaction of cis-[Pt(NO3)2(NH3)2] and sodium glycolate yielded the title compound, [Pt(C2H2O3)(NH3)2]. The PtII atom, coordinated by two N atoms of ammine and two O atoms of the carboxyl­ate and oxido groups of the glycolate ligand, is in a square-planar environment. In the crystal structure, mol­ecules are connected by inter­molecular N—H⋯O hydrogen bonds, forming a three-dimensional network.

Related literature

The title compound is a second-generation platinum derivative that has an anti­tumour activity comparable to that of cisplatin, one of the most effective anti-cancer drugs for testicular, lung, bladder and other carcinomas, but which is less toxic to the kidney, see: Inuyama et al. (1992); Kameyama et al. (1990); Noda et al. (1992); Taguchi et al. (1992); Yamamoto et al. (2000). For related structures, see: Yuge & Miyamoto (1998); Griffith et al. (2007).graphic file with name e-65-m1687-scheme1.jpg

Experimental

Crystal data

  • [Pt(C2H2O3)(NH3)2]

  • M r = 303.19

  • Orthorhombic, Inline graphic

  • a = 5.6293 (6) Å

  • b = 7.2853 (8) Å

  • c = 14.1107 (16) Å

  • V = 578.70 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 24.17 mm−1

  • T = 298 K

  • 0.24 × 0.12 × 0.10 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002) T min = 0.068, T max = 0.196

  • 3739 measured reflections

  • 1354 independent reflections

  • 1307 reflections with I > 2σ(I)

  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.020

  • wR(F 2) = 0.042

  • S = 0.99

  • 1354 reflections

  • 76 parameters

  • H-atom parameters constrained

  • Δρmax = 1.24 e Å−3

  • Δρmin = −1.10 e Å−3

  • Absolute structure: Flack (1983), 489 Friedel pairs

  • Flack parameter: 0.013 (17)

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809049757/rn2056sup1.cif

e-65-m1687-sup1.cif (14.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809049757/rn2056Isup2.hkl

e-65-m1687-Isup2.hkl (66.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯O2i 0.89 2.01 2.883 (8) 167
N1—H1B⋯O2ii 0.89 2.44 3.107 (7) 132
N1—H1B⋯O3iii 0.89 2.45 3.049 (7) 125
N1—H1A⋯O3iv 0.89 2.00 2.888 (7) 173
N2—H2C⋯O3v 0.89 2.32 3.108 (7) 147
N2—H2B⋯O2ii 0.89 2.21 3.014 (8) 150
N2—H2A⋯O3iii 0.89 2.26 3.010 (7) 142

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

This work was supported by the Kunming Innovation Fund for Technology, Kunming IPM Pharmaceutical Co Ltd (08 G100110).

supplementary crystallographic information

Comment

Cis-diamminedichloro-platinum(II) (cisplatin) is one of the most effective anti-cancer drugs for testicular, lung, bladder and other carcinomas. However, the clinical usefulness of this drug has frequently been limited by serious nephrotoxicity and gastrointestinal toxicity and the development of acquired resistance. In an attempt to overcome these drawbacks of cisplatin, numerous analogues have been prepared and evaluated in a search for alternative active agents. Among these compounds, the title compound, cis-diammine(glycolato-o,o')platinum(II), is a second-generation platinum derivative that has an antitumour activity comparable to cisplatin but is less toxic to the kidney (Kameyama et al.,1990), as seen in preclinical experiments. It produced promising response rates in phase II trials for treatment of squamous cell carcinoma arising from the head and neck (Inuyama et al.,1992), lung (Yamamoto et al.,2000), oesophagus (Taguchi et al.,1992), and uterine cervix (Noda et al., 1992). For related structures see: (Yuge & Miyamoto, 1998; Griffith et al., 2007) The compound forms a hydrogen-bonded structure (Fig. 2), in which one of the H atoms of ammonia serves as a donor to the O atom of the glycollate of an adjacent molecule and these hydrogen-bond interactions give rise to a three-dimensional network.

Experimental

Cis-[Pt(NO3)2(NH3)2] (2.0 nmol) was dissolved in 50 ml water and sodium glycolate (2.0 mmol in 50 ml water) was added thereto. The mixture was adjusted to pH=7 with NaOH solution and stirred at 323k for 3 h. The solution was condensed at 313k under reduced pressure to 5 ml, then a yellow crystalline product was precipitated. The compound was crystallized from water to obtain crystals suitable for X-ray structure analysis.

Refinement

All H atoms were initially located in a difference Fourier map. The H atoms bonded to carbon and nitrogen were placed at calculated positions (C—H = 0.97Å and N—H = 0.89 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2Ueq(C), Uiso(H) = 1.5Ueq(N).

Figures

Fig. 1.

Fig. 1.

The molecular structure of title complex with the atomic labeling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

The crystal packing, showing the N—H···O hydrogen-bond network. Only the H atoms involved in hydrogen bonding are shown. Hydrogen bonds are shown as dashed lines.

Crystal data

[Pt(C2H2O3)(NH3)2] Dx = 3.480 Mg m3
Mr = 303.19 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121 Cell parameters from 1354 reflections
a = 5.6293 (6) Å θ = 2.9–28.3°
b = 7.2853 (8) Å µ = 24.17 mm1
c = 14.1107 (16) Å T = 298 K
V = 578.70 (11) Å3 Block, colourless
Z = 4 0.24 × 0.12 × 0.10 mm
F(000) = 544

Data collection

Bruker APEXII CCD area-detector diffractometer 1354 independent reflections
Radiation source: fine-focus sealed tube 1307 reflections with I > 2σ(I)
graphite Rint = 0.034
phi and ω scans θmax = 28.3°, θmin = 2.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) h = −6→7
Tmin = 0.068, Tmax = 0.196 k = −9→9
3739 measured reflections l = −17→18

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.020 w = 1/[σ2(Fo2) + (0.0103P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.042 (Δ/σ)max = 0.001
S = 0.99 Δρmax = 1.24 e Å3
1354 reflections Δρmin = −1.10 e Å3
76 parameters Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.0087 (3)
Primary atom site location: structure-invariant direct methods Absolute structure: Flack (1983), 489 Friedel pairs
Secondary atom site location: difference Fourier map Flack parameter: 0.013 (17)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Pt1 0.10734 (4) 0.96205 (3) 0.178777 (16) 0.01860 (9)
N2 0.0429 (10) 0.9713 (9) 0.3193 (4) 0.0310 (12)
H2A 0.1574 1.0347 0.3479 0.047*
H2B 0.0392 0.8577 0.3424 0.047*
H2C −0.0964 1.0256 0.3296 0.047*
N1 0.4267 (10) 0.8432 (8) 0.2082 (3) 0.0272 (13)
H1A 0.4471 0.7457 0.1711 0.041*
H1B 0.4298 0.8085 0.2686 0.041*
H1C 0.5427 0.9237 0.1976 0.041*
O1 0.1557 (8) 0.9447 (7) 0.0377 (3) 0.0308 (11)
O2 −0.2005 (8) 1.0830 (7) 0.1425 (3) 0.0263 (11)
C1 −0.0264 (12) 0.9948 (9) −0.0099 (4) 0.0230 (15)
C2 −0.2372 (12) 1.0639 (11) 0.0439 (5) 0.0332 (17)
H2E −0.2827 1.1823 0.0182 0.040*
H2D −0.3688 0.9803 0.0337 0.040*
O3 −0.0334 (8) 0.9898 (7) −0.0983 (3) 0.0288 (11)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Pt1 0.02166 (13) 0.02149 (13) 0.01266 (12) −0.00028 (10) −0.00029 (9) 0.00010 (9)
N2 0.030 (3) 0.043 (3) 0.020 (3) 0.003 (2) 0.001 (2) −0.003 (3)
N1 0.033 (3) 0.036 (3) 0.012 (2) 0.010 (3) 0.005 (2) 0.003 (2)
O1 0.028 (3) 0.046 (3) 0.018 (2) 0.004 (2) 0.0023 (19) −0.006 (2)
O2 0.027 (2) 0.038 (3) 0.014 (2) 0.008 (2) −0.0030 (18) −0.0067 (19)
C1 0.027 (3) 0.024 (4) 0.018 (3) −0.003 (2) 0.003 (2) 0.003 (2)
C2 0.032 (4) 0.052 (5) 0.016 (3) 0.011 (3) −0.002 (3) −0.004 (3)
O3 0.036 (3) 0.038 (3) 0.012 (2) −0.002 (2) −0.0002 (18) −0.0005 (19)

Geometric parameters (Å, °)

Pt1—O2 2.010 (5) N1—H1B 0.8900
Pt1—O1 2.013 (4) N1—H1C 0.8900
Pt1—N2 2.017 (5) O1—C1 1.279 (8)
Pt1—N1 2.038 (5) O2—C2 1.413 (7)
N2—H2A 0.8900 C1—O3 1.248 (8)
N2—H2B 0.8900 C1—C2 1.496 (9)
N2—H2C 0.8900 C2—H2E 0.9700
N1—H1A 0.8900 C2—H2D 0.9700
O2—Pt1—O1 83.82 (18) Pt1—N1—H1C 109.5
O2—Pt1—N2 94.6 (2) H1A—N1—H1C 109.5
O1—Pt1—N2 176.9 (2) H1B—N1—H1C 109.5
O2—Pt1—N1 176.77 (19) C1—O1—Pt1 113.2 (4)
O1—Pt1—N1 93.18 (18) C2—O2—Pt1 109.5 (4)
N2—Pt1—N1 88.4 (2) O3—C1—O1 122.8 (6)
Pt1—N2—H2A 109.5 O3—C1—C2 119.5 (6)
Pt1—N2—H2B 109.5 O1—C1—C2 117.7 (5)
H2A—N2—H2B 109.5 O2—C2—C1 114.7 (6)
Pt1—N2—H2C 109.5 O2—C2—H2E 108.6
H2A—N2—H2C 109.5 C1—C2—H2E 108.6
H2B—N2—H2C 109.5 O2—C2—H2D 108.6
Pt1—N1—H1A 109.5 C1—C2—H2D 108.6
Pt1—N1—H1B 109.5 H2E—C2—H2D 107.6
H1A—N1—H1B 109.5
O2—Pt1—O1—C1 −6.9 (4) Pt1—O1—C1—O3 −178.2 (5)
N2—Pt1—O1—C1 53 (5) Pt1—O1—C1—C2 2.4 (8)
N1—Pt1—O1—C1 174.3 (5) Pt1—O2—C2—C1 −11.1 (7)
O1—Pt1—O2—C2 9.7 (4) O3—C1—C2—O2 −173.3 (6)
N2—Pt1—O2—C2 −167.7 (5) O1—C1—C2—O2 6.1 (10)
N1—Pt1—O2—C2 31 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1C···O2i 0.89 2.01 2.883 (8) 167
N1—H1B···O2ii 0.89 2.44 3.107 (7) 132
N1—H1B···O3iii 0.89 2.45 3.049 (7) 125
N1—H1A···O3iv 0.89 2.00 2.888 (7) 173
N2—H2C···O3v 0.89 2.32 3.108 (7) 147
N2—H2B···O2ii 0.89 2.21 3.014 (8) 150
N2—H2A···O3iii 0.89 2.26 3.010 (7) 142

Symmetry codes: (i) x+1, y, z; (ii) −x, y−1/2, −z+1/2; (iii) −x+1/2, −y+2, z+1/2; (iv) x+1/2, −y+3/2, −z; (v) −x−1/2, −y+2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RN2056).

References

  1. Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  3. Griffith, D., Bergamo, A., Pin, S., Vadori, M., Helge, M. B., Sava, G. & Marmion, C. (2007). Polyhedron, 26, 4697–4706.
  4. Inuyama, Y., Miyake, H., Horiuchi, M., Hayasaki, K., Komiyama, S. & Ota, K. (1992). Gan To Kagaku Ryoho, 19, 871–877. [PubMed]
  5. Kameyama, Y., Okazaki, N., Nakagawa, M., Koshida, H., Nakamura, M. & Gemba, M. (1990). Toxicol. Lett 52, 15–24. [DOI] [PubMed]
  6. Noda, K., Ikeda, M., Yakushiji, M., Nishimura, H., Terashima, Y., Sasaki, H., Hata, T., Kuramoto, H., Tanaka, K., Takahashi, T., Hirabayashi, K., Yamabe, T. & Hatae, M. (1992). Gan To Kagaku Ryoho, 19, 885–892. [PubMed]
  7. Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Taguchi, T., Wakui, A., Nabeya, K., Kurihara, M., Isono, K., Kakegawa, T. & Oka, K. (1992). Gan To Kagaku Ryoho, 19, 483–488. [PubMed]
  10. Yamamoto, N., Tamura, T., Kurata, T., Yamamoto, N., Sekine, I., Kunitoh, H., Kodama, T. & Saijo, N. (2000). Proc. Am. Soc. Clin. Oncol. 19, 203a (abstr 792).
  11. Yuge, H. & Miyamoto, T. K. (1998). Inorg. Chim. Acta, 297, 105–110.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809049757/rn2056sup1.cif

e-65-m1687-sup1.cif (14.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809049757/rn2056Isup2.hkl

e-65-m1687-Isup2.hkl (66.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES