Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Nov 4;65(Pt 12):o2991. doi: 10.1107/S1600536809045644

Cinnamyl 2-oxo-2H-chromene-3-carboxyl­ate

Cui-Lian Xu a,*, Nan Yang b, Guo-Yu Yang a, Su-Fang Fan a, Cao-Yuan Niu a
PMCID: PMC2972065  PMID: 21578731

Abstract

The title compound, C19H14O4, was prepared by the reaction of 2-oxo-2H-chromene-3-acyl chloride with cinnamic alcohol. The whole mol­ecule is not planar, the dihedral angle between the planes of coumarin and benzene rings being 13.94 (4)°, but the plane of the coumarin ring and that of the ester group are almost coplanar, making a dihedral angle of 2.9 (1)°. In the crystal structure, weak inter­molecular C—H⋯O hydrogen bonds link two mol­ecules into dimers, and π–π stacking inter­actions between inversion-related rings of the coumarin groups [centroid–centroid distance 3.8380 (15) Å with a slippage of 1.535 Å], which connect the dimers into columns extending along [010].

Related literature

For the medicinal and biological activity of coumarins and their derivatives, see: Borges et al. (2005); Kontogiorgis & Hadjipavlou-Litina (2005); Gursoy & Karali (2003). For the development of coumarin derivatives as anti-HIV agents, see: Yu et al. (2003, 2007). For the structure of menthyl 2-oxo-2H-chromene-3-carboxyl­ate, see: Xu et al. (2009).graphic file with name e-65-o2991-scheme1.jpg

Experimental

Crystal data

  • C19H14O4

  • M r = 306.30

  • Monoclinic, Inline graphic

  • a = 5.7026 (11) Å

  • b = 8.2969 (17) Å

  • c = 31.693 (6) Å

  • β = 92.96 (3)°

  • V = 1497.5 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 291 K

  • 0.20 × 0.18 × 0.18 mm

Data collection

  • Rigaku R-AXIS-IV diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.981, T max = 0.983

  • 4266 measured reflections

  • 2485 independent reflections

  • 2002 reflections with I > 2σ(I)

  • R int = 0.060

Refinement

  • R[F 2 > 2σ(F 2)] = 0.058

  • wR(F 2) = 0.147

  • S = 1.08

  • 2485 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: R-AXIS (Rigaku, 1997); cell refinement: R-AXIS data reduction: R-AXIS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and DIAMOND (Brandenburg, 2005); software used to prepare material for publication: TEXSAN (Molecular Structure Corporation & Rigaku, 2000).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809045644/si2212sup1.cif

e-65-o2991-sup1.cif (18.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809045644/si2212Isup2.hkl

e-65-o2991-Isup2.hkl (122.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5A⋯O3i 0.93 2.54 3.344 (3) 145
C7—H7A⋯O3i 0.93 2.46 3.292 (3) 149

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported by the Natural Science Foundation of Henan Province (No. 2009A150012).

supplementary crystallographic information

Comment

The coumarins and derivatives display a wide range of biological activities, such as antiviral effect (Borges et al., 2005), anti-inflammatories (Kontogiorgis & Hadjipavlou-Litina, 2005), anti-bacterials (Gursoy & Karali, 2003), and anti-proliferative properties. (Yu et al., 2003; Yu et al., 2007), as well as being a kind of basic flavor compounds. As part of work, we have synthesized the title compound (I) and report its crystal structure here.

The molecular structure of (I) is shown in Fig. 1. It crystallizes in the E conformation, with an C11—C12—C13—C14 torsion angle of -19.6 (3)°. The plane of the coumarin ring and that of the ester group are almost co-planar, with a small dihedral angle of 2.9 (1) °, but the coumarin ring is not coplanar with the C14-benzene ring, forming a dihedral angle of 13.94 (4)°.

There are weak intermolecular C—H···O hydrogen bonds (Table 1) that link two molecules into a dimer (Fig. 2), and π-π stackings between two parallel rings [Cg1:O1, C1, C6, C7, C8, C9 and Cg2:C1i - C6i. Symmetry code:(i) -x, 1 - y, -z] with a slippage of 1.535 Å and Cg1···Cg2 distance of 3.8380 (15) Å that helps to connect dimers into columns along the b axis (Fig. 3). The perpendicular distance between the stacked coumarin rings is 3.518 Å.

Experimental

Compound (I) was synthesized as reported by Xu et al. (2009), starting from 2-oxo-2H-chromene-3-acyl chloride and cinnamic alcohol in equimolar amounts. Single crystals of the title compound suitable for X-ray diffractions were obtained by slow evaporation of a mixed solvent (ethyl acetate: petroleum ether = 1: 3, 7 ml) solution of the title compound (0.030 g).

Refinement

All H atoms were placed in calculated positions, with C—H= 0.93 Å, and Uiso(H)=1.2Ueq(C) for aromatic and vinyl H atoms; C—H=0.97 Å, and Uiso(H)=1.2 Ueq(C) for methylene H atoms. The final difference map had a highest peak at 0.64 Å from atom C8 and a deepest hole at 0.95 Å from atom C9, but were otherwise featureless.

Figures

Fig. 1.

Fig. 1.

PLATON plot of (I) showing the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

Part of the crystal structure of the title compound showing weak C—H···O hydrogen bonds as dashed lines.

Fig. 3.

Fig. 3.

Packing diagram of the title compound.

Crystal data

C19H14O4 F(000) = 640
Mr = 306.30 Dx = 1.359 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 378 reflections
a = 5.7026 (11) Å θ = 1.3–25.0°
b = 8.2969 (17) Å µ = 0.10 mm1
c = 31.693 (6) Å T = 291 K
β = 92.96 (3)° Block, colourless
V = 1497.5 (5) Å3 0.20 × 0.18 × 0.18 mm
Z = 4

Data collection

Rigaku R-AXIS-IV diffractometer 2485 independent reflections
Radiation source: fine-focus sealed tube 2002 reflections with I > 2σ(I)
graphite Rint = 0.060
Detector resolution: 0 pixels mm-1 θmax = 25.0°, θmin = 1.3°
Oscillation frames scans h = 0→6
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) k = −9→9
Tmin = 0.981, Tmax = 0.983 l = −37→37
4266 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058 H-atom parameters constrained
wR(F2) = 0.147 w = 1/[σ2(Fo2) + (0.0708P)2 + 0.2535P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max < 0.001
2485 reflections Δρmax = 0.24 e Å3
209 parameters Δρmin = −0.22 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.044 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 −0.2090 (3) 0.32886 (19) 0.02988 (4) 0.0567 (4)
O2 −0.1217 (3) 0.2749 (2) 0.09679 (5) 0.0696 (5)
O3 0.4778 (3) 0.0109 (2) 0.06191 (4) 0.0638 (5)
O4 0.2725 (3) 0.09462 (19) 0.11589 (4) 0.0534 (4)
C1 −0.1652 (4) 0.3240 (3) −0.01256 (6) 0.0470 (5)
C2 −0.3243 (4) 0.4004 (3) −0.04038 (7) 0.0621 (6)
H2A −0.4552 0.4528 −0.0306 0.075*
C3 −0.2838 (5) 0.3967 (3) −0.08278 (7) 0.0638 (7)
H3A −0.3886 0.4483 −0.1018 0.077*
C4 −0.0916 (4) 0.3184 (3) −0.09790 (7) 0.0623 (7)
H4A −0.0674 0.3179 −0.1267 0.075*
C5 0.0644 (4) 0.2410 (3) −0.07000 (6) 0.0557 (6)
H5A 0.1928 0.1867 −0.0801 0.067*
C6 0.0297 (3) 0.2440 (2) −0.02644 (6) 0.0438 (5)
C7 0.1821 (4) 0.1682 (3) 0.00463 (6) 0.0445 (5)
H7A 0.3137 0.1139 −0.0041 0.053*
C8 0.1425 (3) 0.1722 (2) 0.04622 (6) 0.0421 (5)
C9 −0.0628 (4) 0.2578 (3) 0.06115 (6) 0.0493 (5)
C10 0.3154 (4) 0.0854 (3) 0.07502 (6) 0.0451 (5)
C11 0.4328 (4) 0.0061 (3) 0.14417 (6) 0.0581 (6)
H11A 0.5829 0.0613 0.1468 0.070*
H11B 0.4586 −0.1009 0.1329 0.070*
C12 0.3306 (4) −0.0062 (3) 0.18634 (6) 0.0532 (6)
H12A 0.4147 −0.0667 0.2067 0.064*
C13 0.1334 (4) 0.0596 (3) 0.19788 (6) 0.0483 (5)
H13A 0.0479 0.1190 0.1775 0.058*
C14 0.0349 (4) 0.0481 (2) 0.24006 (6) 0.0448 (5)
C15 −0.1666 (4) 0.1337 (3) 0.24838 (7) 0.0557 (6)
H15A −0.2359 0.1990 0.2274 0.067*
C16 −0.2664 (4) 0.1240 (3) 0.28701 (7) 0.0643 (7)
H16A −0.4015 0.1826 0.2918 0.077*
C17 −0.1661 (4) 0.0276 (3) 0.31857 (7) 0.0610 (7)
H17A −0.2350 0.0190 0.3444 0.073*
C18 0.0363 (5) −0.0556 (3) 0.31136 (7) 0.0592 (6)
H18A 0.1065 −0.1187 0.3327 0.071*
C19 0.1365 (4) −0.0463 (3) 0.27266 (6) 0.0530 (6)
H19A 0.2733 −0.1036 0.2682 0.064*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0587 (9) 0.0672 (10) 0.0450 (8) 0.0205 (8) 0.0100 (7) −0.0005 (7)
O2 0.0735 (11) 0.0936 (13) 0.0434 (8) 0.0265 (10) 0.0188 (8) −0.0040 (8)
O3 0.0654 (10) 0.0836 (12) 0.0431 (8) 0.0282 (9) 0.0102 (7) −0.0002 (8)
O4 0.0606 (9) 0.0657 (10) 0.0341 (7) 0.0156 (8) 0.0053 (6) −0.0006 (7)
C1 0.0493 (12) 0.0461 (12) 0.0459 (11) 0.0017 (10) 0.0064 (9) 0.0010 (9)
C2 0.0594 (14) 0.0684 (16) 0.0585 (14) 0.0179 (12) 0.0030 (11) 0.0045 (12)
C3 0.0639 (15) 0.0732 (16) 0.0535 (13) 0.0069 (13) −0.0047 (11) 0.0118 (12)
C4 0.0654 (15) 0.0820 (18) 0.0397 (12) −0.0056 (13) 0.0043 (10) 0.0094 (11)
C5 0.0543 (13) 0.0722 (16) 0.0412 (11) 0.0038 (11) 0.0089 (10) 0.0023 (11)
C6 0.0452 (12) 0.0473 (11) 0.0394 (10) −0.0008 (9) 0.0069 (9) 0.0009 (9)
C7 0.0449 (11) 0.0473 (12) 0.0421 (11) 0.0058 (9) 0.0098 (8) −0.0009 (9)
C8 0.0484 (11) 0.0415 (11) 0.0370 (10) 0.0023 (9) 0.0078 (8) −0.0018 (8)
C9 0.0527 (13) 0.0529 (13) 0.0428 (11) 0.0059 (10) 0.0085 (9) −0.0026 (10)
C10 0.0494 (12) 0.0493 (12) 0.0374 (10) 0.0022 (10) 0.0092 (9) −0.0028 (9)
C11 0.0596 (14) 0.0747 (15) 0.0396 (11) 0.0136 (12) −0.0006 (10) −0.0011 (11)
C12 0.0599 (14) 0.0633 (14) 0.0360 (10) 0.0072 (11) −0.0022 (9) 0.0020 (10)
C13 0.0534 (13) 0.0513 (12) 0.0398 (10) 0.0007 (10) −0.0027 (9) 0.0028 (9)
C14 0.0460 (12) 0.0469 (11) 0.0412 (10) −0.0055 (9) −0.0008 (9) −0.0016 (9)
C15 0.0502 (12) 0.0658 (14) 0.0505 (12) 0.0030 (11) −0.0015 (10) 0.0049 (11)
C16 0.0529 (14) 0.0815 (18) 0.0593 (14) 0.0091 (13) 0.0096 (11) −0.0045 (13)
C17 0.0665 (15) 0.0762 (17) 0.0413 (12) −0.0027 (13) 0.0130 (10) −0.0016 (11)
C18 0.0770 (16) 0.0593 (14) 0.0410 (11) 0.0070 (13) 0.0004 (10) 0.0015 (10)
C19 0.0620 (14) 0.0541 (13) 0.0429 (11) 0.0086 (11) 0.0017 (10) 0.0006 (10)

Geometric parameters (Å, °)

O1—C1 1.381 (2) C8—C10 1.494 (3)
O1—C9 1.393 (3) C11—C12 1.489 (3)
O2—C9 1.203 (2) C11—H11A 0.9700
O3—C10 1.205 (2) C11—H11B 0.9700
O4—C10 1.333 (2) C12—C13 1.319 (3)
O4—C11 1.447 (3) C12—H12A 0.9300
C1—C6 1.385 (3) C13—C14 1.480 (3)
C1—C2 1.386 (3) C13—H13A 0.9300
C2—C3 1.375 (3) C14—C15 1.388 (3)
C2—H2A 0.9300 C14—C19 1.398 (3)
C3—C4 1.381 (4) C15—C16 1.379 (3)
C3—H3A 0.9300 C15—H15A 0.9300
C4—C5 1.380 (3) C16—C17 1.382 (3)
C4—H4A 0.9300 C16—H16A 0.9300
C5—C6 1.405 (3) C17—C18 1.374 (4)
C5—H5A 0.9300 C17—H17A 0.9300
C6—C7 1.426 (3) C18—C19 1.382 (3)
C7—C8 1.349 (3) C18—H18A 0.9300
C7—H7A 0.9300 C19—H19A 0.9300
C8—C9 1.469 (3)
C1—O1—C9 123.31 (16) O4—C10—C8 114.69 (17)
C10—O4—C11 115.52 (16) O4—C11—C12 109.07 (18)
O1—C1—C6 120.76 (18) O4—C11—H11A 109.9
O1—C1—C2 117.44 (19) C12—C11—H11A 109.9
C6—C1—C2 121.8 (2) O4—C11—H11B 109.9
C3—C2—C1 118.3 (2) C12—C11—H11B 109.9
C3—C2—H2A 120.9 H11A—C11—H11B 108.3
C1—C2—H2A 120.9 C13—C12—C11 126.8 (2)
C2—C3—C4 121.7 (2) C13—C12—H12A 116.6
C2—C3—H3A 119.1 C11—C12—H12A 116.6
C4—C3—H3A 119.1 C12—C13—C14 126.4 (2)
C5—C4—C3 119.6 (2) C12—C13—H13A 116.8
C5—C4—H4A 120.2 C14—C13—H13A 116.8
C3—C4—H4A 120.2 C15—C14—C19 117.52 (19)
C4—C5—C6 120.2 (2) C15—C14—C13 119.69 (19)
C4—C5—H5A 119.9 C19—C14—C13 122.79 (19)
C6—C5—H5A 119.9 C16—C15—C14 121.5 (2)
C1—C6—C5 118.45 (19) C16—C15—H15A 119.2
C1—C6—C7 117.54 (18) C14—C15—H15A 119.2
C5—C6—C7 124.00 (19) C15—C16—C17 120.1 (2)
C8—C7—C6 122.51 (18) C15—C16—H16A 119.9
C8—C7—H7A 118.7 C17—C16—H16A 119.9
C6—C7—H7A 118.7 C18—C17—C16 119.4 (2)
C7—C8—C9 120.19 (18) C18—C17—H17A 120.3
C7—C8—C10 116.55 (18) C16—C17—H17A 120.3
C9—C8—C10 123.26 (17) C17—C18—C19 120.6 (2)
O2—C9—O1 115.64 (19) C17—C18—H18A 119.7
O2—C9—C8 128.7 (2) C19—C18—H18A 119.7
O1—C9—C8 115.68 (17) C18—C19—C14 120.8 (2)
O3—C10—O4 123.20 (19) C18—C19—H19A 119.6
O3—C10—C8 122.10 (18) C14—C19—H19A 119.6
C9—O1—C1—C6 0.9 (3) C7—C8—C9—O1 1.1 (3)
C9—O1—C1—C2 −179.7 (2) C10—C8—C9—O1 −178.51 (18)
O1—C1—C2—C3 −180.0 (2) C11—O4—C10—O3 −1.0 (3)
C6—C1—C2—C3 −0.5 (4) C11—O4—C10—C8 177.69 (18)
C1—C2—C3—C4 0.5 (4) C7—C8—C10—O3 −2.4 (3)
C2—C3—C4—C5 0.2 (4) C9—C8—C10—O3 177.2 (2)
C3—C4—C5—C6 −1.0 (4) C7—C8—C10—O4 178.87 (18)
O1—C1—C6—C5 179.21 (19) C9—C8—C10—O4 −1.5 (3)
C2—C1—C6—C5 −0.2 (3) C10—O4—C11—C12 −166.07 (19)
O1—C1—C6—C7 −0.2 (3) O4—C11—C12—C13 −3.8 (3)
C2—C1—C6—C7 −179.6 (2) C11—C12—C13—C14 −179.2 (2)
C4—C5—C6—C1 1.0 (3) C12—C13—C14—C15 175.4 (2)
C4—C5—C6—C7 −179.7 (2) C12—C13—C14—C19 −4.5 (3)
C1—C6—C7—C8 −0.1 (3) C19—C14—C15—C16 −1.2 (3)
C5—C6—C7—C8 −179.4 (2) C13—C14—C15—C16 178.8 (2)
C6—C7—C8—C9 −0.4 (3) C14—C15—C16—C17 0.0 (4)
C6—C7—C8—C10 179.19 (19) C15—C16—C17—C18 1.4 (4)
C1—O1—C9—O2 178.6 (2) C16—C17—C18—C19 −1.5 (4)
C1—O1—C9—C8 −1.4 (3) C17—C18—C19—C14 0.2 (4)
C7—C8—C9—O2 −178.9 (2) C15—C14—C19—C18 1.1 (3)
C10—C8—C9—O2 1.5 (4) C13—C14—C19—C18 −178.9 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C5—H5A···O3i 0.93 2.54 3.344 (3) 145
C7—H7A···O3i 0.93 2.46 3.292 (3) 149

Symmetry codes: (i) −x+1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2212).

References

  1. Borges, F., Roleira, F., Milhazes, N., Santana, L. & Uriarte, E. (2005). Curr. Med. Chem. 12, 887–916. [DOI] [PubMed]
  2. Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR. Bonn, Germany.
  3. Gursoy, A. & Karali, N. (2003). Turk. J. Chem, 27, 545–551.
  4. Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
  5. Kontogiorgis, C. A. & Hadjipavlou-Litina, D. J. (2005). J. Med. Chem. 48, 6400–6408. [DOI] [PubMed]
  6. Molecular Structure Corporation & Rigaku (2000). TEXSAN. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
  7. Rigaku (1997). R-AXIS. Rigaku Corporation, Tokyo, Japan.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  10. Xu, C.-L., Liu, S.-Y., Chen, G., Yang, G.-Y. & Zhao, M.-Q. (2009). Acta Cryst. E65, o2431. [DOI] [PMC free article] [PubMed]
  11. Yu, D., Morris-Natschke, S. L. & Lee, K.-H. (2007). Med. Res. Rev. 27, 108–132. [DOI] [PubMed]
  12. Yu, D., Suzuki, M., Xie, L., Morris-Natschke, S. L. & Lee, K. H. (2003). Med. Res. Rev. 23, 322–345. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809045644/si2212sup1.cif

e-65-o2991-sup1.cif (18.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809045644/si2212Isup2.hkl

e-65-o2991-Isup2.hkl (122.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES