Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Nov 14;65(Pt 12):o3070. doi: 10.1107/S1600536809047072

1-[3,5-Bis(trifluoro­meth­yl)phen­yl]-3-[(5-ethenyl-1-aza­bicyclo­[2.2.2]octan-2-yl)(6-methoxy­quinolin-4-yl)meth­yl]thio­urea–l-proline–methanol (1/1/1)1

Savitha Muramulla a, Hadi D Arman a, Cong-Gui Zhao a,, Edward R T Tiekink b,*
PMCID: PMC2972067  PMID: 21578800

Abstract

In the methanol solvate of the title 1:1 cocrystal, C29H28F6N4OS·C5H9NO2·CH4O, the l-proline mol­ecule exists as a zwitterion. In the crystal, the disubstituted thio­urea, l-proline and methanol mol­ecules are linked by N—H⋯O and N—H⋯N hydrogen bonds, forming a two-dimensional array in the ab plane.

Related literature

For background to pre-catalyst mol­ecules for the Michael addition of acetone to trans-β-nitro­styrene, see: Mandal & Zhao (2008). For a related structure, see: Muramulla et al. (2009). For discussion on the definition of a co-crystal, see: Zukerman-Schpector & Tiekink (2008). For the synthesis, see: Vakulya et al. (2005).graphic file with name e-65-o3070-scheme1.jpg

Experimental

Crystal data

  • C29H28F6N4OS·C5H9NO2·CH4O

  • M r = 741.79

  • Orthorhombic, Inline graphic

  • a = 11.597 (3) Å

  • b = 13.044 (4) Å

  • c = 23.907 (7) Å

  • V = 3616.4 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 98 K

  • 0.28 × 0.25 × 0.05 mm

Data collection

  • Rigaku AFC12K/SATURN724 diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.722, T max = 1.000

  • 26093 measured reflections

  • 8250 independent reflections

  • 7519 reflections with I > 2σ(I)

  • R int = 0.059

Refinement

  • R[F 2 > 2σ(F 2)] = 0.060

  • wR(F 2) = 0.149

  • S = 1.06

  • 8250 reflections

  • 471 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.27 e Å−3

  • Absolute structure: Flack (1983), 3638 Friedel pairs

  • Flack parameter: −0.03 (10)

Data collection: CrystalClear (Rigaku/MSC 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809047072/hb5216sup1.cif

e-65-o3070-sup1.cif (31.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809047072/hb5216Isup2.hkl

e-65-o3070-Isup2.hkl (395.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1n⋯O2i 0.88 1.87 2.749 (3) 177
N2—H2n⋯O3i 0.88 1.95 2.806 (3) 165
N5—H5a⋯N4 0.92 2.16 2.912 (3) 138
N5—H5a⋯O3i 0.92 2.40 3.111 (3) 134
N5—H5b⋯O4ii 0.92 2.03 2.858 (3) 149
O4—H4o⋯N3iii 0.84 1.98 2.805 (4) 168

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

CGZ thanks the National Science Foundation (grant No. CHE-0909954) for financial support of this project.

supplementary crystallographic information

Comment

The title co-crystal (Zukerman-Schpector & Tiekink, 2008), (I), has been evaluated as a pre-catalyst for the Michael addition of acetone to trans-β-nitrostyrene (Mandal & Zhao, 2008; Muramulla et al., 2009). The combination of quinidine thiourea and L-proline is activating both the nucleophile and electrophile of the Michael reactions. The asymmetric Michael addition of acidic carbon pronucleophiles to nitroolefins is an important carbon-carbon bond forming reaction that provides access to synthetically useful enantioenriched nitroalkanes.

The absolute structure of the co-crystal, isolated as a methanol solvate, (I), has been determined, Figs 1 and 2, and reveals the chirality at the N4, C10, C21, C23, C24 and C30 atoms of the disubstituted thiourea molecule to be S, R, R, R, S and S, respectively. The L-proline molecule exists as a zwitterion, a conclusion confirmed by the equality of the C35–O2 (1.257 (3) Å) and C35–O3 distances (1.250 (4) Å), and by the pattern of hydrogen bonding interactions involving both ammonium-H atoms. The proline ring conformation is an envelope on atom C(32).

In the crystal structure, molecules are connected into a supramolecular chain along the a axis which, in turn, are connected into layers in the ab plane, Table 1. Each N–H atom of the disubstituted urea molecule is hydrogen bonded to a carboxylate-O atom. One of the ammonium-H atoms of the proline molecule links a neighbouring molecule by forming an N5–H5a···N4 hydrogen bond with the nitrogen atom of the dabco residue; the H5a atom also forms a weak N–H···O contact with a carboxylate-O3 atom to provide extra stability to the chain. The second ammonium-H forms a N–H···O hydrogen bond with the solvent methanol molecule. As shown in Fig. 3, the hydrogen bonding scheme described thus far leads to the formation of a supramolecular chain. The pyridine-N3 atoms are directed to the periphery of this chain and these hydrogen bond with the methanol molecule to form links between chains to generate a 2-D array, Fig. 4.

Experimental

Compound (I) was prepared from the reaction of quinidine thiourea (30 mg, 0.05 mmol), prepared using a literature procedure (Vakulya et al., 2005), and L-proline (Sigma Aldrich; 0.05 mmol) in a 1:1 ratio in methanol (2 ml). The vial was left uncorked and kept in a beaker half filled with pentane sealed with parafilm. After 1 day, crystals were isolated.

Refinement

The H atoms were geometrically placed (O—H = 0.84 Å and C—H = 0.95–1.00 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O, methyl-C). In the absence of significant anomalous scattering effects, 1951 Friedel pairs were averaged in the final refinement. The absolute configuration was determined on the basis of the known configuration of L-proline starting material.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the disubstituted urea molecule in (I), showing displacement ellipsoids at the 70% probability level.

Fig. 2.

Fig. 2.

Molecular structure of zwitterionic L-proline, showing displacement ellipsoids at the 70% probability level.

Fig. 3.

Fig. 3.

Supramolecular chain along the a axis in (I) mediated by N–H···O (orange dashed lines) and N–H···N hydrogen bonds (blue dashed lines).

Fig. 4.

Fig. 4.

2-D array in the ab plane in (I) mediated by N–H···O (orange dashed lines) and N–H···N hydrogen bonds (blue dashed lines).

Crystal data

C29H28F6N4OS·C5H9NO2·CH4O F(000) = 1552
Mr = 741.79 Dx = 1.362 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 16196 reflections
a = 11.597 (3) Å θ = 2.3–40.2°
b = 13.044 (4) Å µ = 0.17 mm1
c = 23.907 (7) Å T = 98 K
V = 3616.4 (18) Å3 Plate, colourless
Z = 4 0.28 × 0.25 × 0.05 mm

Data collection

Rigaku AFC12K/SATURN724 diffractometer 8250 independent reflections
Radiation source: fine-focus sealed tube 7519 reflections with I > 2σ(I)
graphite Rint = 0.059
ω scans θmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) h = −12→15
Tmin = 0.722, Tmax = 1.000 k = −16→16
26093 measured reflections l = −31→30

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060 H-atom parameters constrained
wR(F2) = 0.149 w = 1/[σ2(Fo2) + (0.0632P)2 + 2.0147P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max < 0.001
8250 reflections Δρmax = 0.44 e Å3
471 parameters Δρmin = −0.27 e Å3
3 restraints Absolute structure: Flack (1983), 3638 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: −0.03 (10)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.20467 (6) 1.01378 (6) 0.06774 (3) 0.03013 (16)
F1 −0.27893 (18) 0.9872 (2) 0.24180 (9) 0.0572 (6)
F2 −0.16591 (19) 1.00733 (17) 0.31179 (9) 0.0499 (5)
F3 −0.23783 (18) 0.86002 (16) 0.29538 (10) 0.0489 (5)
F4 0.2087 (2) 0.8036 (2) 0.30422 (9) 0.0617 (7)
F5 0.2224 (2) 0.71239 (17) 0.22931 (13) 0.0701 (8)
F6 0.30477 (17) 0.85610 (18) 0.23501 (10) 0.0513 (6)
O1 0.52077 (19) 1.13957 (19) −0.08112 (11) 0.0406 (6)
N1 −0.0075 (2) 0.9329 (2) 0.08569 (10) 0.0266 (5)
H1N −0.0783 0.9226 0.0737 0.032*
N2 0.0423 (2) 0.95532 (18) −0.00465 (10) 0.0244 (5)
H2N −0.0232 0.9231 −0.0106 0.029*
N3 0.0920 (3) 1.3256 (2) −0.06678 (12) 0.0354 (6)
N4 0.0730 (2) 0.83257 (18) −0.10719 (10) 0.0251 (5)
C1 0.0756 (2) 0.9653 (2) 0.04910 (12) 0.0252 (5)
C2 0.0023 (3) 0.9169 (2) 0.14352 (12) 0.0262 (6)
C3 −0.0951 (3) 0.9368 (2) 0.17688 (12) 0.0264 (6)
H3 −0.1636 0.9628 0.1604 0.032*
C4 −0.0906 (3) 0.9185 (2) 0.23392 (12) 0.0277 (6)
C5 0.0068 (3) 0.8775 (2) 0.25935 (12) 0.0274 (6)
H5 0.0087 0.8649 0.2985 0.033*
C6 0.1016 (3) 0.8556 (2) 0.22551 (12) 0.0267 (6)
C7 0.1005 (3) 0.8754 (2) 0.16783 (12) 0.0273 (6)
H7 0.1663 0.8606 0.1456 0.033*
C8 −0.1931 (3) 0.9433 (2) 0.27009 (13) 0.0326 (6)
C9 0.2074 (3) 0.8054 (2) 0.24908 (12) 0.0314 (6)
C10 0.1097 (2) 0.9926 (2) −0.05211 (11) 0.0240 (5)
H10 0.1914 0.9693 −0.0481 0.029*
C11 0.1065 (3) 1.1100 (2) −0.05523 (11) 0.0268 (6)
C12 0.0038 (3) 1.1606 (2) −0.05184 (13) 0.0317 (6)
H12 −0.0652 1.1233 −0.0451 0.038*
C13 −0.0004 (3) 1.2689 (2) −0.05832 (14) 0.0358 (7)
H13 −0.0732 1.3020 −0.0564 0.043*
C14 0.1968 (3) 1.2774 (2) −0.06935 (12) 0.0303 (6)
C15 0.2093 (3) 1.1689 (2) −0.06446 (12) 0.0272 (5)
C16 0.3214 (3) 1.1273 (2) −0.06837 (13) 0.0291 (6)
H16 0.3315 1.0553 −0.0650 0.035*
C17 0.4170 (3) 1.1892 (2) −0.07707 (13) 0.0331 (7)
C18 0.4039 (3) 1.2961 (2) −0.08108 (13) 0.0367 (7)
H18 0.4696 1.3385 −0.0863 0.044*
C19 0.2961 (3) 1.3391 (2) −0.07744 (13) 0.0353 (7)
H19 0.2879 1.4114 −0.0804 0.042*
C20 0.6235 (3) 1.2008 (3) −0.08248 (16) 0.0441 (9)
H20A 0.6225 1.2446 −0.1158 0.066*
H20B 0.6912 1.1560 −0.0837 0.066*
H20C 0.6269 1.2438 −0.0489 0.066*
C21 0.0576 (3) 0.9460 (2) −0.10557 (11) 0.0253 (5)
H21 −0.0272 0.9595 −0.1044 0.030*
C22 0.1037 (3) 0.9946 (2) −0.16008 (12) 0.0316 (6)
H22A 0.0518 1.0504 −0.1725 0.038*
H22B 0.1814 1.0238 −0.1538 0.038*
C23 0.1093 (3) 0.9104 (2) −0.20482 (12) 0.0296 (6)
H23 0.1227 0.9413 −0.2426 0.035*
C24 0.2072 (3) 0.8353 (2) −0.19002 (12) 0.0309 (6)
H24 0.1966 0.7716 −0.2127 0.037*
C25 0.1918 (3) 0.8074 (2) −0.12748 (12) 0.0287 (6)
H25A 0.2063 0.7332 −0.1223 0.034*
H25B 0.2491 0.8454 −0.1049 0.034*
C26 −0.0115 (3) 0.7913 (2) −0.14802 (12) 0.0286 (6)
H26A −0.0904 0.7976 −0.1325 0.034*
H26B 0.0042 0.7177 −0.1545 0.034*
C27 −0.0043 (3) 0.8501 (2) −0.20430 (12) 0.0298 (6)
H27A −0.0064 0.8013 −0.2360 0.036*
H27B −0.0705 0.8976 −0.2080 0.036*
C28 0.3260 (3) 0.8790 (4) −0.20272 (16) 0.0503 (10)
H28 0.3631 0.9173 −0.1741 0.060*
C29 0.3799 (4) 0.8677 (3) −0.2495 (2) 0.0744 (16)
H29A 0.3455 0.8298 −0.2791 0.089*
H29B 0.4541 0.8972 −0.2544 0.089*
O2 0.27276 (18) 0.59342 (16) −0.04507 (9) 0.0308 (5)
O3 0.3580 (2) 0.67889 (19) 0.02523 (10) 0.0397 (6)
N5 0.0627 (2) 0.66700 (18) −0.02563 (10) 0.0251 (5)
H5A 0.0321 0.7254 −0.0412 0.030*
H5B 0.0929 0.6274 −0.0539 0.030*
C30 0.1558 (2) 0.6948 (2) 0.01543 (12) 0.0254 (6)
H30 0.1605 0.7710 0.0195 0.030*
C31 0.1171 (3) 0.6463 (3) 0.07085 (13) 0.0367 (7)
H31A 0.1510 0.5772 0.0756 0.044*
H31B 0.1396 0.6896 0.1030 0.044*
C32 −0.0125 (3) 0.6405 (3) 0.06533 (16) 0.0436 (8)
H32A −0.0486 0.7078 0.0728 0.052*
H32B −0.0452 0.5889 0.0913 0.052*
C33 −0.0294 (3) 0.6086 (3) 0.00486 (15) 0.0400 (8)
H33A −0.0190 0.5337 0.0003 0.048*
H33B −0.1071 0.6279 −0.0087 0.048*
C34 0.2729 (3) 0.6519 (2) −0.00328 (12) 0.0274 (6)
O4 0.0694 (2) 0.52089 (17) 0.88533 (10) 0.0431 (6)
H4O 0.0870 0.4641 0.8995 0.065*
C35 −0.0103 (3) 0.4973 (3) 0.84173 (15) 0.0406 (7)
H36A −0.0892 0.5029 0.8561 0.061*
H36B 0.0034 0.4273 0.8284 0.061*
H36C 0.0002 0.5457 0.8108 0.061*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0295 (3) 0.0384 (4) 0.0225 (3) −0.0023 (3) −0.0030 (3) 0.0013 (3)
F1 0.0466 (11) 0.0944 (18) 0.0307 (10) 0.0325 (13) 0.0052 (9) 0.0051 (11)
F2 0.0609 (13) 0.0517 (12) 0.0370 (11) 0.0014 (10) 0.0119 (10) −0.0207 (10)
F3 0.0517 (12) 0.0437 (11) 0.0512 (13) −0.0029 (9) 0.0233 (11) 0.0025 (10)
F4 0.0498 (12) 0.108 (2) 0.0278 (10) 0.0225 (14) −0.0036 (10) 0.0171 (12)
F5 0.0691 (16) 0.0384 (12) 0.103 (2) 0.0207 (11) −0.0424 (16) −0.0196 (13)
F6 0.0359 (10) 0.0605 (14) 0.0576 (14) −0.0024 (10) −0.0059 (10) 0.0194 (11)
O1 0.0327 (11) 0.0404 (13) 0.0486 (15) −0.0101 (10) 0.0050 (11) −0.0062 (11)
N1 0.0281 (11) 0.0337 (13) 0.0180 (11) −0.0001 (10) −0.0024 (10) 0.0006 (9)
N2 0.0277 (11) 0.0269 (12) 0.0185 (11) −0.0027 (9) −0.0002 (9) 0.0019 (9)
N3 0.0502 (16) 0.0284 (12) 0.0277 (13) 0.0041 (11) −0.0036 (13) −0.0010 (11)
N4 0.0308 (12) 0.0245 (11) 0.0199 (11) −0.0001 (9) −0.0005 (10) −0.0007 (9)
C1 0.0322 (14) 0.0230 (13) 0.0206 (12) 0.0027 (11) 0.0011 (11) 0.0000 (10)
C2 0.0342 (14) 0.0238 (13) 0.0205 (13) −0.0004 (11) 0.0010 (12) −0.0031 (10)
C3 0.0312 (14) 0.0264 (13) 0.0215 (13) 0.0022 (11) −0.0018 (11) 0.0007 (10)
C4 0.0336 (14) 0.0270 (13) 0.0226 (13) 0.0027 (12) 0.0029 (12) −0.0025 (11)
C5 0.0360 (15) 0.0276 (13) 0.0188 (13) 0.0021 (12) 0.0002 (12) 0.0006 (10)
C6 0.0327 (14) 0.0271 (14) 0.0204 (13) 0.0004 (12) −0.0019 (12) 0.0006 (10)
C7 0.0295 (14) 0.0299 (14) 0.0227 (13) 0.0036 (12) 0.0024 (11) −0.0012 (11)
C8 0.0396 (16) 0.0355 (15) 0.0228 (14) 0.0050 (13) 0.0025 (13) −0.0006 (12)
C9 0.0345 (15) 0.0348 (15) 0.0250 (14) 0.0054 (13) −0.0028 (13) 0.0015 (11)
C10 0.0298 (13) 0.0240 (13) 0.0181 (12) −0.0004 (11) 0.0001 (10) 0.0020 (10)
C11 0.0381 (15) 0.0252 (13) 0.0171 (13) 0.0017 (11) −0.0005 (12) −0.0009 (10)
C12 0.0375 (15) 0.0311 (15) 0.0266 (14) 0.0014 (13) −0.0012 (13) 0.0003 (11)
C13 0.0458 (18) 0.0315 (15) 0.0302 (16) 0.0088 (14) −0.0041 (15) −0.0028 (12)
C14 0.0432 (16) 0.0253 (13) 0.0224 (13) −0.0021 (12) −0.0013 (13) 0.0007 (11)
C15 0.0395 (15) 0.0251 (13) 0.0171 (12) −0.0025 (12) −0.0018 (12) −0.0010 (10)
C16 0.0378 (15) 0.0274 (13) 0.0220 (13) −0.0024 (11) −0.0002 (12) −0.0027 (11)
C17 0.0418 (17) 0.0343 (16) 0.0233 (15) −0.0095 (13) −0.0005 (13) −0.0033 (11)
C18 0.0502 (19) 0.0310 (16) 0.0291 (16) −0.0145 (14) −0.0032 (14) −0.0004 (12)
C19 0.0545 (18) 0.0221 (13) 0.0293 (16) −0.0095 (14) 0.0004 (15) 0.0007 (11)
C20 0.0378 (17) 0.052 (2) 0.043 (2) −0.0150 (16) 0.0059 (15) −0.0086 (16)
C21 0.0319 (14) 0.0237 (13) 0.0202 (12) −0.0012 (11) −0.0023 (11) 0.0025 (10)
C22 0.0472 (17) 0.0266 (14) 0.0209 (13) −0.0050 (13) −0.0010 (12) 0.0037 (11)
C23 0.0342 (15) 0.0331 (15) 0.0214 (13) −0.0057 (12) −0.0027 (12) 0.0029 (11)
C24 0.0295 (14) 0.0423 (16) 0.0210 (13) 0.0002 (13) 0.0020 (12) −0.0027 (12)
C25 0.0321 (15) 0.0326 (15) 0.0213 (13) 0.0047 (12) 0.0009 (11) 0.0017 (11)
C26 0.0330 (15) 0.0309 (14) 0.0217 (13) −0.0074 (12) 0.0004 (12) −0.0019 (11)
C27 0.0344 (14) 0.0343 (15) 0.0207 (13) −0.0027 (12) −0.0036 (12) 0.0001 (11)
C28 0.0372 (18) 0.087 (3) 0.0270 (17) −0.0125 (18) 0.0021 (14) 0.0054 (18)
C29 0.073 (3) 0.051 (2) 0.098 (4) −0.024 (2) 0.049 (3) −0.013 (3)
O2 0.0304 (11) 0.0346 (11) 0.0275 (10) −0.0001 (9) 0.0004 (9) −0.0076 (8)
O3 0.0342 (12) 0.0472 (14) 0.0376 (13) 0.0069 (10) −0.0082 (10) −0.0150 (11)
N5 0.0296 (12) 0.0230 (11) 0.0227 (11) 0.0038 (9) −0.0034 (10) −0.0015 (9)
C30 0.0287 (14) 0.0256 (13) 0.0220 (14) −0.0002 (11) −0.0039 (11) −0.0001 (10)
C31 0.0424 (17) 0.0456 (18) 0.0221 (14) 0.0013 (14) 0.0009 (14) 0.0018 (13)
C32 0.0428 (18) 0.0484 (19) 0.0396 (19) −0.0055 (15) 0.0124 (17) −0.0022 (16)
C33 0.0317 (16) 0.0484 (19) 0.0400 (19) −0.0103 (14) 0.0109 (14) −0.0094 (15)
C34 0.0336 (15) 0.0263 (14) 0.0222 (13) 0.0029 (11) −0.0019 (12) 0.0001 (10)
O4 0.0703 (16) 0.0265 (11) 0.0324 (12) 0.0038 (11) −0.0218 (12) −0.0040 (9)
C35 0.0451 (18) 0.0412 (18) 0.0354 (17) 0.0002 (15) −0.0088 (15) −0.0022 (14)

Geometric parameters (Å, °)

S1—C1 1.685 (3) C20—H20A 0.9800
F1—C8 1.333 (4) C20—H20B 0.9800
F2—C8 1.338 (4) C20—H20C 0.9800
F3—C8 1.348 (4) C21—C22 1.545 (4)
F4—C9 1.319 (4) C21—H21 1.0000
F5—C9 1.314 (4) C22—C23 1.534 (4)
F6—C9 1.351 (4) C22—H22A 0.9900
O1—C17 1.370 (4) C22—H22B 0.9900
O1—C20 1.435 (4) C23—C27 1.535 (4)
N1—C1 1.369 (4) C23—C24 1.541 (4)
N1—C2 1.403 (4) C23—H23 1.0000
N1—H1N 0.8799 C24—C28 1.521 (4)
N2—C1 1.348 (4) C24—C25 1.549 (4)
N2—C10 1.461 (3) C24—H24 1.0000
N2—H2N 0.8799 C25—H25A 0.9900
N3—C13 1.317 (4) C25—H25B 0.9900
N3—C14 1.370 (4) C26—C27 1.551 (4)
N4—C26 1.484 (4) C26—H26A 0.9900
N4—C21 1.491 (4) C26—H26B 0.9900
N4—C25 1.497 (4) C27—H27A 0.9900
C2—C7 1.389 (4) C27—H27B 0.9900
C2—C3 1.406 (4) C28—C29 1.290 (6)
C3—C4 1.385 (4) C28—H28 0.9500
C3—H3 0.9500 C29—H29A 0.9500
C4—C5 1.389 (4) C29—H29B 0.9500
C4—C8 1.505 (4) O2—C34 1.257 (3)
C5—C6 1.395 (4) O3—C34 1.250 (4)
C5—H5 0.9500 N5—C33 1.501 (4)
C6—C7 1.403 (4) N5—C30 1.504 (4)
C6—C9 1.500 (4) N5—H5A 0.9200
C7—H7 0.9500 N5—H5B 0.9200
C10—C11 1.533 (4) C30—C34 1.535 (4)
C10—C21 1.538 (4) C30—C31 1.535 (4)
C10—H10 1.0000 C30—H30 1.0000
C11—C12 1.364 (4) C31—C32 1.511 (5)
C11—C15 1.436 (4) C31—H31A 0.9900
C12—C13 1.423 (4) C31—H31B 0.9900
C12—H12 0.9500 C32—C33 1.517 (5)
C13—H13 0.9500 C32—H32A 0.9900
C14—C19 1.418 (4) C32—H32B 0.9900
C14—C15 1.427 (4) C33—H33A 0.9900
C15—C16 1.411 (4) C33—H33B 0.9900
C16—C17 1.387 (4) O4—C35 1.426 (4)
C16—H16 0.9500 O4—H4O 0.8400
C17—C18 1.406 (5) C35—H36A 0.9800
C18—C19 1.373 (5) C35—H36B 0.9800
C18—H18 0.9500 C35—H36C 0.9800
C19—H19 0.9500
C17—O1—C20 117.9 (3) N4—C21—H21 107.0
C1—N1—C2 128.2 (3) C10—C21—H21 107.0
C1—N1—H1N 119.7 C22—C21—H21 107.0
C2—N1—H1N 112.1 C23—C22—C21 108.0 (2)
C1—N2—C10 123.7 (2) C23—C22—H22A 110.1
C1—N2—H2N 116.5 C21—C22—H22A 110.1
C10—N2—H2N 119.7 C23—C22—H22B 110.1
C13—N3—C14 118.1 (3) C21—C22—H22B 110.1
C26—N4—C21 107.4 (2) H22A—C22—H22B 108.4
C26—N4—C25 108.4 (2) C22—C23—C27 109.0 (2)
C21—N4—C25 109.7 (2) C22—C23—C24 109.0 (2)
N2—C1—N1 112.2 (2) C27—C23—C24 107.7 (2)
N2—C1—S1 122.9 (2) C22—C23—H23 110.3
N1—C1—S1 124.9 (2) C27—C23—H23 110.3
C7—C2—N1 122.5 (3) C24—C23—H23 110.3
C7—C2—C3 119.5 (3) C28—C24—C23 112.6 (3)
N1—C2—C3 117.8 (3) C28—C24—C25 112.7 (3)
C4—C3—C2 119.8 (3) C23—C24—C25 106.7 (2)
C4—C3—H3 120.1 C28—C24—H24 108.3
C2—C3—H3 120.1 C23—C24—H24 108.3
C3—C4—C5 121.8 (3) C25—C24—H24 108.3
C3—C4—C8 119.9 (3) N4—C25—C24 111.5 (2)
C5—C4—C8 118.2 (3) N4—C25—H25A 109.3
C4—C5—C6 117.8 (3) C24—C25—H25A 109.3
C4—C5—H5 121.1 N4—C25—H25B 109.3
C6—C5—H5 121.1 C24—C25—H25B 109.3
C5—C6—C7 121.6 (3) H25A—C25—H25B 108.0
C5—C6—C9 121.1 (3) N4—C26—C27 110.8 (2)
C7—C6—C9 117.2 (3) N4—C26—H26A 109.5
C2—C7—C6 119.4 (3) C27—C26—H26A 109.5
C2—C7—H7 120.3 N4—C26—H26B 109.5
C6—C7—H7 120.3 C27—C26—H26B 109.5
F1—C8—F2 106.6 (3) H26A—C26—H26B 108.1
F1—C8—F3 106.6 (3) C23—C27—C26 107.9 (2)
F2—C8—F3 105.1 (3) C23—C27—H27A 110.1
F1—C8—C4 113.0 (3) C26—C27—H27A 110.1
F2—C8—C4 112.1 (3) C23—C27—H27B 110.1
F3—C8—C4 112.8 (3) C26—C27—H27B 110.1
F5—C9—F4 110.0 (3) H27A—C27—H27B 108.4
F5—C9—F6 104.6 (3) C29—C28—C24 124.7 (4)
F4—C9—F6 104.4 (3) C29—C28—H28 117.6
F5—C9—C6 112.1 (3) C24—C28—H28 117.6
F4—C9—C6 113.1 (3) C28—C29—H29A 120.0
F6—C9—C6 112.1 (2) C28—C29—H29B 120.0
N2—C10—C11 111.0 (2) H29A—C29—H29B 120.0
N2—C10—C21 107.7 (2) C33—N5—C30 108.4 (2)
C11—C10—C21 110.2 (2) C33—N5—H5A 110.0
N2—C10—H10 109.3 C30—N5—H5A 110.0
C11—C10—H10 109.3 C33—N5—H5B 110.0
C21—C10—H10 109.3 C30—N5—H5B 110.0
C12—C11—C15 118.4 (3) H5A—N5—H5B 108.4
C12—C11—C10 120.1 (3) N5—C30—C34 110.9 (2)
C15—C11—C10 121.5 (3) N5—C30—C31 104.7 (2)
C11—C12—C13 120.2 (3) C34—C30—C31 111.1 (2)
C11—C12—H12 119.9 N5—C30—H30 110.0
C13—C12—H12 119.9 C34—C30—H30 110.0
N3—C13—C12 123.1 (3) C31—C30—H30 110.0
N3—C13—H13 118.4 C32—C31—C30 103.7 (3)
C12—C13—H13 118.4 C32—C31—H31A 111.0
N3—C14—C19 117.8 (3) C30—C31—H31A 111.0
N3—C14—C15 122.8 (3) C32—C31—H31B 111.0
C19—C14—C15 119.4 (3) C30—C31—H31B 111.0
C16—C15—C14 118.0 (3) H31A—C31—H31B 109.0
C16—C15—C11 124.7 (3) C31—C32—C33 103.0 (3)
C14—C15—C11 117.3 (3) C31—C32—H32A 111.2
C17—C16—C15 121.5 (3) C33—C32—H32A 111.2
C17—C16—H16 119.3 C31—C32—H32B 111.2
C15—C16—H16 119.3 C33—C32—H32B 111.2
O1—C17—C16 116.0 (3) H32A—C32—H32B 109.1
O1—C17—C18 123.9 (3) N5—C33—C32 103.4 (3)
C16—C17—C18 120.1 (3) N5—C33—H33A 111.1
C19—C18—C17 119.9 (3) C32—C33—H33A 111.1
C19—C18—H18 120.0 N5—C33—H33B 111.1
C17—C18—H18 120.0 C32—C33—H33B 111.1
C18—C19—C14 121.1 (3) H33A—C33—H33B 109.0
C18—C19—H19 119.5 O3—C34—O2 127.2 (3)
C14—C19—H19 119.5 O3—C34—C30 115.9 (2)
O1—C20—H20A 109.5 O2—C34—C30 116.9 (3)
O1—C20—H20B 109.5 C35—O4—H4O 105.2
H20A—C20—H20B 109.5 O4—C35—H36A 109.5
O1—C20—H20C 109.5 O4—C35—H36B 109.5
H20A—C20—H20C 109.5 H36A—C35—H36B 109.5
H20B—C20—H20C 109.5 O4—C35—H36C 109.5
N4—C21—C10 111.5 (2) H36A—C35—H36C 109.5
N4—C21—C22 110.1 (2) H36B—C35—H36C 109.5
C10—C21—C22 113.8 (2)
C10—N2—C1—N1 174.2 (2) C14—C15—C16—C17 −0.4 (4)
C10—N2—C1—S1 −5.1 (4) C11—C15—C16—C17 −179.7 (3)
C2—N1—C1—N2 169.3 (3) C20—O1—C17—C16 −171.7 (3)
C2—N1—C1—S1 −11.5 (4) C20—O1—C17—C18 8.2 (5)
C1—N1—C2—C7 −38.0 (4) C15—C16—C17—O1 −178.8 (3)
C1—N1—C2—C3 146.9 (3) C15—C16—C17—C18 1.3 (5)
C7—C2—C3—C4 2.4 (4) O1—C17—C18—C19 178.9 (3)
N1—C2—C3—C4 177.6 (3) C16—C17—C18—C19 −1.2 (5)
C2—C3—C4—C5 −2.1 (4) C17—C18—C19—C14 0.3 (5)
C2—C3—C4—C8 177.8 (3) N3—C14—C19—C18 −179.3 (3)
C3—C4—C5—C6 0.4 (4) C15—C14—C19—C18 0.5 (5)
C8—C4—C5—C6 −179.4 (3) C26—N4—C21—C10 160.9 (2)
C4—C5—C6—C7 1.0 (4) C25—N4—C21—C10 −81.6 (3)
C4—C5—C6—C9 −176.3 (3) C26—N4—C21—C22 −71.8 (3)
N1—C2—C7—C6 −176.0 (3) C25—N4—C21—C22 45.7 (3)
C3—C2—C7—C6 −1.0 (4) N2—C10—C21—N4 −66.2 (3)
C5—C6—C7—C2 −0.7 (4) C11—C10—C21—N4 172.7 (2)
C9—C6—C7—C2 176.7 (3) N2—C10—C21—C22 168.5 (2)
C3—C4—C8—F1 −3.3 (4) C11—C10—C21—C22 47.4 (3)
C5—C4—C8—F1 176.6 (3) N4—C21—C22—C23 19.9 (3)
C3—C4—C8—F2 −123.8 (3) C10—C21—C22—C23 145.9 (3)
C5—C4—C8—F2 56.1 (4) C21—C22—C23—C27 46.9 (3)
C3—C4—C8—F3 117.8 (3) C21—C22—C23—C24 −70.5 (3)
C5—C4—C8—F3 −62.3 (4) C22—C23—C24—C28 −75.7 (3)
C5—C6—C9—F5 112.8 (3) C27—C23—C24—C28 166.2 (3)
C7—C6—C9—F5 −64.5 (4) C22—C23—C24—C25 48.3 (3)
C5—C6—C9—F4 −12.2 (4) C27—C23—C24—C25 −69.8 (3)
C7—C6—C9—F4 170.4 (3) C26—N4—C25—C24 48.2 (3)
C5—C6—C9—F6 −129.9 (3) C21—N4—C25—C24 −68.7 (3)
C7—C6—C9—F6 52.7 (4) C28—C24—C25—N4 141.8 (3)
C1—N2—C10—C11 −71.9 (3) C23—C24—C25—N4 17.8 (3)
C1—N2—C10—C21 167.5 (3) C21—N4—C26—C27 50.5 (3)
N2—C10—C11—C12 −48.9 (4) C25—N4—C26—C27 −67.9 (3)
C21—C10—C11—C12 70.2 (3) C22—C23—C27—C26 −66.9 (3)
N2—C10—C11—C15 134.2 (3) C24—C23—C27—C26 51.2 (3)
C21—C10—C11—C15 −106.7 (3) N4—C26—C27—C23 15.6 (3)
C15—C11—C12—C13 1.0 (4) C23—C24—C28—C29 −90.9 (5)
C10—C11—C12—C13 −176.0 (3) C25—C24—C28—C29 148.4 (5)
C14—N3—C13—C12 −0.1 (5) C33—N5—C30—C34 122.3 (3)
C11—C12—C13—N3 −1.1 (5) C33—N5—C30—C31 2.4 (3)
C13—N3—C14—C19 −178.9 (3) N5—C30—C31—C32 −26.2 (3)
C13—N3—C14—C15 1.4 (5) C34—C30—C31—C32 −146.0 (3)
N3—C14—C15—C16 179.3 (3) C30—C31—C32—C33 40.0 (3)
C19—C14—C15—C16 −0.5 (4) C30—N5—C33—C32 22.2 (3)
N3—C14—C15—C11 −1.4 (4) C31—C32—C33—N5 −38.3 (4)
C19—C14—C15—C11 178.8 (3) N5—C30—C34—O3 173.5 (3)
C12—C11—C15—C16 179.4 (3) C31—C30—C34—O3 −70.4 (3)
C10—C11—C15—C16 −3.6 (4) N5—C30—C34—O2 −6.9 (4)
C12—C11—C15—C14 0.2 (4) C31—C30—C34—O2 109.1 (3)
C10—C11—C15—C14 177.1 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1n···O2i 0.88 1.87 2.749 (3) 177
N2—H2n···O3i 0.88 1.95 2.806 (3) 165
N5—H5a···N4 0.92 2.16 2.912 (3) 138
N5—H5a···O3i 0.92 2.40 3.111 (3) 134
N5—H5b···O4ii 0.92 2.03 2.858 (3) 149
O4—H4o···N3iii 0.84 1.98 2.805 (4) 168

Symmetry codes: (i) x−1/2, −y+3/2, −z; (ii) x, y, z−1; (iii) x, y−1, z+1.

Footnotes

1

Data reported in this paper were previously deposited with the CCDC (No. 727265).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5216).

References

  1. Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  2. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  3. Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
  4. Mandal, T. & Zhao, C.-G. (2008). Angew Chem. Int Ed 47, 7714–7717. [DOI] [PubMed]
  5. Muramulla, S., Arman, H. D., Zhao, C.-G. & Tiekink, E. R. T. (2009). Acta Cryst. E65, o2962. [DOI] [PMC free article] [PubMed]
  6. Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Vakulya, B., Varga, S., Csámpai, A. & Soós, T. (2005). Org. Lett. 7, 1967–1969. [DOI] [PubMed]
  9. Zukerman-Schpector, J. & Tiekink, E. R. T. (2008). Z. Kristallogr. 223, 233–234.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809047072/hb5216sup1.cif

e-65-o3070-sup1.cif (31.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809047072/hb5216Isup2.hkl

e-65-o3070-Isup2.hkl (395.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES