Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Nov 25;65(Pt 12):o3187. doi: 10.1107/S1600536809049496

2-Pyridone: monoclinic polymorph

Hadi D Arman a, Pavel Poplaukhin b, Edward R T Tiekink c,*
PMCID: PMC2972078  PMID: 21578899

Abstract

The asymmetric unit in the title compound, C5H5NO, comprises two independent but virtually identical mol­ecules of 2-pyridone, and represents a monoclinic polymorph of the previously reported ortho­rhom­bic (P212121) form [Penfold (1953). Acta Cryst. 6, 591–600; Ohms et al. (1984). Z. Kristallogr. 169, 185–200; Yang & Craven (1998). Acta Cryst. B54, 912–920]. The independent mol­ecules are linked into supra­molecular dimers via eight-membered {⋯HNC(O)}2 amide synthons in contrast to the helical supra­molecular chains, mediated by {⋯HNC(O)} links, found in the ortho­rhom­bic form.

Related literature

For the structure of the ortho­rhom­bic form of 2-pyridone, see: Penfold (1953); Ohms et al. (1984); Yang & Craven (1998). For related studies of co-crystal formation, see: Broker & Tiekink (2007); Ellis et al. (2009). For analysis of the geometric structures, see: Spek (2009).graphic file with name e-65-o3187-scheme1.jpg

Experimental

Crystal data

  • C5H5NO

  • M r = 95.10

  • Monoclinic, Inline graphic

  • a = 6.2027 (13) Å

  • b = 16.327 (4) Å

  • c = 9.1046 (18) Å

  • β = 92.242 (7)°

  • V = 921.3 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 98 K

  • 0.44 × 0.39 × 0.15 mm

Data collection

  • Rigaku AFC12K/SATURN724 diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.840, T max = 1

  • 6582 measured reflections

  • 1903 independent reflections

  • 1724 reflections with I > 2σ(I)

  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.117

  • S = 1.10

  • 1903 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809049496/hg2602sup1.cif

e-65-o3187-sup1.cif (15KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809049496/hg2602Isup2.hkl

e-65-o3187-Isup2.hkl (91.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1n⋯O2 0.88 1.86 2.7450 (16) 177
N2—H2n⋯O1 0.88 1.92 2.7915 (16) 171
C2—H2⋯O1i 0.95 2.53 3.3943 (18) 150
C4—H4⋯O2ii 0.95 2.54 3.2989 (18) 137

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

supplementary crystallographic information

Comment

Crystals of the monoclinic polymorph of 2-pyridone, (I), were isolated during an on-going study into the phenomenon of co-crystal formation (Broker & Tiekink, 2007; Ellis et al., 2009). The orthorhombic form of (I) has been characterized previously (Penfold, 1953; Ohms et al., 1984; Yang & Craven, 1998).

In (I), two independent molecules comprise the asymmetric unit, Fig. 1, and these are virtually identical as seen in the r.m.s. values for bond distances and angles of 0.0025 Å and 0.184 °, respectively (Spek, 2009). Each molecule is essentially planar with the maximum deviation of 0.0102 (14) Å found for the C2 atom in the N1-molecule and 0.0029 (14) Å for the C6 atom in the N2-molecule. The pattern of bond distances matches those in the previously determined orthorhombic form.

The crystal packing in (I) is sustained by eight-membered {···HNC(O)}2 amide synthons whereby the two independent molecules are linked, Table 1 and Fig. 1. The dimeric aggregate is effectively planar with the dihedral between the two 2-pyridone rings being 7.88 (6) °, The dimers are connected into zigzag layers in the ac plane via C—H···O interactions, Table 1 and Fig. 2. The major difference between the two polymeric forms of 2-pyridone rests in the mode of association between the 2-pyridone molecules. In the orthorhombic form, the molecules are lined into supramolecular helical chains through a continuing sequence of {···HNC( O)} links.

Experimental

2-Hydroxypyridine (Fluka) was dissolved in chloroform and layered with hexanes. Large rod-like colourless crystals formed within a week.

Refinement

The N– and C-bound H-atoms were placed in calculated positions (N–H = 0.88 Å and C–H 0.95 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2Ueq(N, C).

Figures

Fig. 1.

Fig. 1.

Molecular structures of the two independent molecules comprising the asymmetric unit in (I), showing atom-labelling scheme and displacement ellipsoids at the 50% probability level. The molecules are connected by N–H···O hydrogen bonds (orange dashed lines).

Fig. 2.

Fig. 2.

View of the stacking of layers along the b axis in crystal structure of (I). Colour code: O, red; N, blue; C, grey; and H, green. The N–H···O hydrogen bonds (orange) and C–H···O contacts (green) are shown as dashed lines.

Crystal data

C5H5NO F(000) = 400
Mr = 95.10 Dx = 1.371 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2yn Cell parameters from 3046 reflections
a = 6.2027 (13) Å θ = 3.3–40.2°
b = 16.327 (4) Å µ = 0.10 mm1
c = 9.1046 (18) Å T = 98 K
β = 92.242 (7)° Prism, colourless
V = 921.3 (3) Å3 0.44 × 0.39 × 0.15 mm
Z = 8

Data collection

Rigaku AFC12K/SATURN724 diffractometer 1903 independent reflections
Radiation source: fine-focus sealed tube 1724 reflections with I > 2σ(I)
graphite Rint = 0.037
ω scans θmax = 26.5°, θmin = 2.5°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) h = −7→5
Tmin = 0.840, Tmax = 1 k = −20→20
6582 measured reflections l = −11→11

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117 H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0583P)2 + 0.275P] where P = (Fo2 + 2Fc2)/3
1903 reflections (Δ/σ)max = 0.001
127 parameters Δρmax = 0.21 e Å3
0 restraints Δρmin = −0.22 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.27541 (14) 0.36020 (6) 0.47704 (10) 0.0239 (2)
N1 −0.07408 (17) 0.31779 (7) 0.48531 (12) 0.0201 (3)
H1N −0.1007 0.3587 0.5450 0.024*
C1 0.1321 (2) 0.30993 (8) 0.43716 (14) 0.0195 (3)
C2 −0.2397 (2) 0.26660 (8) 0.44686 (15) 0.0232 (3)
H2 −0.3795 0.2769 0.4819 0.028*
C3 −0.2074 (2) 0.20065 (8) 0.35857 (15) 0.0236 (3)
H3 −0.3219 0.1641 0.3330 0.028*
C4 0.0019 (2) 0.18832 (8) 0.30615 (14) 0.0224 (3)
H4 0.0289 0.1426 0.2450 0.027*
C5 0.1649 (2) 0.24113 (8) 0.34226 (14) 0.0209 (3)
H5 0.3033 0.2324 0.3039 0.025*
O2 −0.14759 (15) 0.44304 (6) 0.67815 (11) 0.0263 (3)
N2 0.19925 (17) 0.48837 (7) 0.67120 (12) 0.0204 (3)
H2N 0.2238 0.4519 0.6027 0.024*
C6 −0.0049 (2) 0.49182 (8) 0.72495 (14) 0.0199 (3)
C7 −0.0344 (2) 0.55309 (8) 0.83511 (15) 0.0236 (3)
H7 −0.1717 0.5592 0.8765 0.028*
C8 0.1311 (2) 0.60263 (9) 0.88132 (16) 0.0267 (3)
H8 0.1078 0.6427 0.9547 0.032*
C9 0.3370 (2) 0.59536 (9) 0.82168 (17) 0.0276 (3)
H9 0.4526 0.6299 0.8539 0.033*
C10 0.3652 (2) 0.53746 (9) 0.71679 (15) 0.0243 (3)
H10 0.5022 0.5313 0.6751 0.029*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0186 (5) 0.0256 (5) 0.0277 (5) −0.0021 (4) 0.0025 (4) −0.0048 (4)
N1 0.0186 (6) 0.0198 (5) 0.0219 (5) 0.0010 (4) 0.0027 (4) −0.0035 (4)
C1 0.0180 (6) 0.0210 (6) 0.0195 (6) 0.0012 (5) 0.0000 (5) 0.0018 (5)
C2 0.0178 (6) 0.0248 (7) 0.0272 (7) −0.0013 (5) 0.0026 (5) −0.0022 (5)
C3 0.0208 (7) 0.0220 (7) 0.0281 (7) −0.0021 (5) 0.0013 (5) −0.0036 (5)
C4 0.0244 (7) 0.0202 (6) 0.0227 (6) 0.0036 (5) −0.0004 (5) −0.0025 (5)
C5 0.0179 (6) 0.0239 (7) 0.0211 (6) 0.0031 (5) 0.0031 (5) −0.0010 (5)
O2 0.0206 (5) 0.0245 (5) 0.0342 (5) −0.0041 (4) 0.0062 (4) −0.0078 (4)
N2 0.0209 (6) 0.0183 (5) 0.0221 (5) −0.0003 (4) 0.0029 (4) −0.0014 (4)
C6 0.0191 (6) 0.0183 (6) 0.0222 (6) 0.0011 (5) 0.0009 (5) 0.0029 (5)
C7 0.0212 (6) 0.0252 (7) 0.0245 (7) 0.0031 (5) 0.0025 (5) −0.0007 (5)
C8 0.0268 (7) 0.0262 (7) 0.0270 (7) 0.0035 (5) −0.0010 (6) −0.0063 (5)
C9 0.0227 (7) 0.0256 (7) 0.0342 (8) −0.0026 (5) −0.0024 (6) −0.0043 (6)
C10 0.0176 (6) 0.0251 (7) 0.0304 (7) −0.0016 (5) 0.0015 (5) 0.0016 (6)

Geometric parameters (Å, °)

O1—C1 1.2529 (16) O2—C6 1.2530 (16)
N1—C2 1.3597 (17) N2—C10 1.3567 (17)
N1—C1 1.3743 (17) N2—C6 1.3762 (17)
N1—H1N 0.8800 N2—H2N 0.8800
C1—C5 1.4365 (18) C6—C7 1.4335 (18)
C2—C3 1.3633 (19) C7—C8 1.3607 (19)
C2—H2 0.9500 C7—H7 0.9500
C3—C4 1.4151 (18) C8—C9 1.412 (2)
C3—H3 0.9500 C8—H8 0.9500
C4—C5 1.3590 (19) C9—C10 1.360 (2)
C4—H4 0.9500 C9—H9 0.9500
C5—H5 0.9500 C10—H10 0.9500
C2—N1—C1 124.33 (11) C10—N2—C6 124.37 (11)
C2—N1—H1N 117.8 C10—N2—H2N 117.8
C1—N1—H1N 117.8 C6—N2—H2N 117.8
O1—C1—N1 120.32 (11) O2—C6—N2 120.04 (12)
O1—C1—C5 124.83 (12) O2—C6—C7 124.99 (12)
N1—C1—C5 114.84 (11) N2—C6—C7 114.96 (11)
N1—C2—C3 120.67 (12) C8—C7—C6 121.03 (12)
N1—C2—H2 119.7 C8—C7—H7 119.5
C3—C2—H2 119.7 C6—C7—H7 119.5
C2—C3—C4 118.00 (12) C7—C8—C9 120.93 (13)
C2—C3—H3 121.0 C7—C8—H8 119.5
C4—C3—H3 121.0 C9—C8—H8 119.5
C5—C4—C3 120.77 (12) C10—C9—C8 118.12 (13)
C5—C4—H4 119.6 C10—C9—H9 120.9
C3—C4—H4 119.6 C8—C9—H9 120.9
C4—C5—C1 121.36 (12) N2—C10—C9 120.59 (12)
C4—C5—H5 119.3 N2—C10—H10 119.7
C1—C5—H5 119.3 C9—C10—H10 119.7
C2—N1—C1—O1 179.47 (12) C10—N2—C6—O2 −178.77 (12)
C2—N1—C1—C5 −1.04 (18) C10—N2—C6—C7 0.61 (18)
C1—N1—C2—C3 2.1 (2) O2—C6—C7—C8 178.83 (13)
N1—C2—C3—C4 −1.3 (2) N2—C6—C7—C8 −0.51 (19)
C2—C3—C4—C5 −0.4 (2) C6—C7—C8—C9 0.2 (2)
C3—C4—C5—C1 1.5 (2) C7—C8—C9—C10 0.0 (2)
O1—C1—C5—C4 178.72 (12) C6—N2—C10—C9 −0.4 (2)
N1—C1—C5—C4 −0.74 (18) C8—C9—C10—N2 0.1 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1n···O2 0.88 1.86 2.7450 (16) 177
N2—H2n···O1 0.88 1.92 2.7915 (16) 171
C2—H2···O1i 0.95 2.53 3.3943 (18) 150
C4—H4···O2ii 0.95 2.54 3.2989 (18) 137

Symmetry codes: (i) x−1, y, z; (ii) x+1/2, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2602).

References

  1. Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  2. Broker, G. A. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 1096–1109.
  3. Ellis, C. A., Miller, M. A., Spencer, J., Zukerman-Schpector, J. & Tiekink, E. R. T. (2009). CrystEngComm, 11, 1352–1361.
  4. Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
  5. Ohms, U., Guth, H., Hellner, E., Dannohl, H. & Schweig, A. (1984). Z. Kristallogr. 169, 185–200.
  6. Penfold, B. R. (1953). Acta Cryst. 6, 591–600.
  7. Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  10. Westrip, S. P. (2009). publCIF. In preparation.
  11. Yang, H. W. & Craven, B. M. (1998). Acta Cryst. B54, 912–920. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809049496/hg2602sup1.cif

e-65-o3187-sup1.cif (15KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809049496/hg2602Isup2.hkl

e-65-o3187-Isup2.hkl (91.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES