Abstract
The asymmetric unit in the title compound, C5H5NO, comprises two independent but virtually identical molecules of 2-pyridone, and represents a monoclinic polymorph of the previously reported orthorhombic (P212121) form [Penfold (1953 ▶). Acta Cryst. 6, 591–600; Ohms et al. (1984 ▶). Z. Kristallogr. 169, 185–200; Yang & Craven (1998 ▶). Acta Cryst. B54, 912–920]. The independent molecules are linked into supramolecular dimers via eight-membered {⋯HNC(O)}2 amide synthons in contrast to the helical supramolecular chains, mediated by {⋯HNC(O)} links, found in the orthorhombic form.
Related literature
For the structure of the orthorhombic form of 2-pyridone, see: Penfold (1953 ▶); Ohms et al. (1984 ▶); Yang & Craven (1998 ▶). For related studies of co-crystal formation, see: Broker & Tiekink (2007 ▶); Ellis et al. (2009 ▶). For analysis of the geometric structures, see: Spek (2009 ▶).
Experimental
Crystal data
C5H5NO
M r = 95.10
Monoclinic,
a = 6.2027 (13) Å
b = 16.327 (4) Å
c = 9.1046 (18) Å
β = 92.242 (7)°
V = 921.3 (3) Å3
Z = 8
Mo Kα radiation
μ = 0.10 mm−1
T = 98 K
0.44 × 0.39 × 0.15 mm
Data collection
Rigaku AFC12K/SATURN724 diffractometer
Absorption correction: multi-scan (ABSCOR; Higashi, 1995 ▶) T min = 0.840, T max = 1
6582 measured reflections
1903 independent reflections
1724 reflections with I > 2σ(I)
R int = 0.037
Refinement
R[F 2 > 2σ(F 2)] = 0.044
wR(F 2) = 0.117
S = 1.10
1903 reflections
127 parameters
H-atom parameters constrained
Δρmax = 0.21 e Å−3
Δρmin = −0.22 e Å−3
Data collection: CrystalClear (Rigaku/MSC, 2005 ▶); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: DIAMOND (Brandenburg, 2006 ▶); software used to prepare material for publication: publCIF (Westrip, 2009 ▶).
Supplementary Material
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809049496/hg2602sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536809049496/hg2602Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| N1—H1n⋯O2 | 0.88 | 1.86 | 2.7450 (16) | 177 |
| N2—H2n⋯O1 | 0.88 | 1.92 | 2.7915 (16) | 171 |
| C2—H2⋯O1i | 0.95 | 2.53 | 3.3943 (18) | 150 |
| C4—H4⋯O2ii | 0.95 | 2.54 | 3.2989 (18) | 137 |
Symmetry codes: (i)
; (ii)
.
supplementary crystallographic information
Comment
Crystals of the monoclinic polymorph of 2-pyridone, (I), were isolated during an on-going study into the phenomenon of co-crystal formation (Broker & Tiekink, 2007; Ellis et al., 2009). The orthorhombic form of (I) has been characterized previously (Penfold, 1953; Ohms et al., 1984; Yang & Craven, 1998).
In (I), two independent molecules comprise the asymmetric unit, Fig. 1, and these are virtually identical as seen in the r.m.s. values for bond distances and angles of 0.0025 Å and 0.184 °, respectively (Spek, 2009). Each molecule is essentially planar with the maximum deviation of 0.0102 (14) Å found for the C2 atom in the N1-molecule and 0.0029 (14) Å for the C6 atom in the N2-molecule. The pattern of bond distances matches those in the previously determined orthorhombic form.
The crystal packing in (I) is sustained by eight-membered {···HNC(O)}2 amide synthons whereby the two independent molecules are linked, Table 1 and Fig. 1. The dimeric aggregate is effectively planar with the dihedral between the two 2-pyridone rings being 7.88 (6) °, The dimers are connected into zigzag layers in the ac plane via C—H···O interactions, Table 1 and Fig. 2. The major difference between the two polymeric forms of 2-pyridone rests in the mode of association between the 2-pyridone molecules. In the orthorhombic form, the molecules are lined into supramolecular helical chains through a continuing sequence of {···HNC( O)} links.
Experimental
2-Hydroxypyridine (Fluka) was dissolved in chloroform and layered with hexanes. Large rod-like colourless crystals formed within a week.
Refinement
The N– and C-bound H-atoms were placed in calculated positions (N–H = 0.88 Å and C–H 0.95 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2Ueq(N, C).
Figures
Fig. 1.

Molecular structures of the two independent molecules comprising the asymmetric unit in (I), showing atom-labelling scheme and displacement ellipsoids at the 50% probability level. The molecules are connected by N–H···O hydrogen bonds (orange dashed lines).
Fig. 2.

View of the stacking of layers along the b axis in crystal structure of (I). Colour code: O, red; N, blue; C, grey; and H, green. The N–H···O hydrogen bonds (orange) and C–H···O contacts (green) are shown as dashed lines.
Crystal data
| C5H5NO | F(000) = 400 |
| Mr = 95.10 | Dx = 1.371 Mg m−3 |
| Monoclinic, P21/n | Mo Kα radiation, λ = 0.71069 Å |
| Hall symbol: -P 2yn | Cell parameters from 3046 reflections |
| a = 6.2027 (13) Å | θ = 3.3–40.2° |
| b = 16.327 (4) Å | µ = 0.10 mm−1 |
| c = 9.1046 (18) Å | T = 98 K |
| β = 92.242 (7)° | Prism, colourless |
| V = 921.3 (3) Å3 | 0.44 × 0.39 × 0.15 mm |
| Z = 8 |
Data collection
| Rigaku AFC12K/SATURN724 diffractometer | 1903 independent reflections |
| Radiation source: fine-focus sealed tube | 1724 reflections with I > 2σ(I) |
| graphite | Rint = 0.037 |
| ω scans | θmax = 26.5°, θmin = 2.5° |
| Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | h = −7→5 |
| Tmin = 0.840, Tmax = 1 | k = −20→20 |
| 6582 measured reflections | l = −11→11 |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.044 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.117 | H-atom parameters constrained |
| S = 1.10 | w = 1/[σ2(Fo2) + (0.0583P)2 + 0.275P] where P = (Fo2 + 2Fc2)/3 |
| 1903 reflections | (Δ/σ)max = 0.001 |
| 127 parameters | Δρmax = 0.21 e Å−3 |
| 0 restraints | Δρmin = −0.22 e Å−3 |
Special details
| Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| O1 | 0.27541 (14) | 0.36020 (6) | 0.47704 (10) | 0.0239 (2) | |
| N1 | −0.07408 (17) | 0.31779 (7) | 0.48531 (12) | 0.0201 (3) | |
| H1N | −0.1007 | 0.3587 | 0.5450 | 0.024* | |
| C1 | 0.1321 (2) | 0.30993 (8) | 0.43716 (14) | 0.0195 (3) | |
| C2 | −0.2397 (2) | 0.26660 (8) | 0.44686 (15) | 0.0232 (3) | |
| H2 | −0.3795 | 0.2769 | 0.4819 | 0.028* | |
| C3 | −0.2074 (2) | 0.20065 (8) | 0.35857 (15) | 0.0236 (3) | |
| H3 | −0.3219 | 0.1641 | 0.3330 | 0.028* | |
| C4 | 0.0019 (2) | 0.18832 (8) | 0.30615 (14) | 0.0224 (3) | |
| H4 | 0.0289 | 0.1426 | 0.2450 | 0.027* | |
| C5 | 0.1649 (2) | 0.24113 (8) | 0.34226 (14) | 0.0209 (3) | |
| H5 | 0.3033 | 0.2324 | 0.3039 | 0.025* | |
| O2 | −0.14759 (15) | 0.44304 (6) | 0.67815 (11) | 0.0263 (3) | |
| N2 | 0.19925 (17) | 0.48837 (7) | 0.67120 (12) | 0.0204 (3) | |
| H2N | 0.2238 | 0.4519 | 0.6027 | 0.024* | |
| C6 | −0.0049 (2) | 0.49182 (8) | 0.72495 (14) | 0.0199 (3) | |
| C7 | −0.0344 (2) | 0.55309 (8) | 0.83511 (15) | 0.0236 (3) | |
| H7 | −0.1717 | 0.5592 | 0.8765 | 0.028* | |
| C8 | 0.1311 (2) | 0.60263 (9) | 0.88132 (16) | 0.0267 (3) | |
| H8 | 0.1078 | 0.6427 | 0.9547 | 0.032* | |
| C9 | 0.3370 (2) | 0.59536 (9) | 0.82168 (17) | 0.0276 (3) | |
| H9 | 0.4526 | 0.6299 | 0.8539 | 0.033* | |
| C10 | 0.3652 (2) | 0.53746 (9) | 0.71679 (15) | 0.0243 (3) | |
| H10 | 0.5022 | 0.5313 | 0.6751 | 0.029* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| O1 | 0.0186 (5) | 0.0256 (5) | 0.0277 (5) | −0.0021 (4) | 0.0025 (4) | −0.0048 (4) |
| N1 | 0.0186 (6) | 0.0198 (5) | 0.0219 (5) | 0.0010 (4) | 0.0027 (4) | −0.0035 (4) |
| C1 | 0.0180 (6) | 0.0210 (6) | 0.0195 (6) | 0.0012 (5) | 0.0000 (5) | 0.0018 (5) |
| C2 | 0.0178 (6) | 0.0248 (7) | 0.0272 (7) | −0.0013 (5) | 0.0026 (5) | −0.0022 (5) |
| C3 | 0.0208 (7) | 0.0220 (7) | 0.0281 (7) | −0.0021 (5) | 0.0013 (5) | −0.0036 (5) |
| C4 | 0.0244 (7) | 0.0202 (6) | 0.0227 (6) | 0.0036 (5) | −0.0004 (5) | −0.0025 (5) |
| C5 | 0.0179 (6) | 0.0239 (7) | 0.0211 (6) | 0.0031 (5) | 0.0031 (5) | −0.0010 (5) |
| O2 | 0.0206 (5) | 0.0245 (5) | 0.0342 (5) | −0.0041 (4) | 0.0062 (4) | −0.0078 (4) |
| N2 | 0.0209 (6) | 0.0183 (5) | 0.0221 (5) | −0.0003 (4) | 0.0029 (4) | −0.0014 (4) |
| C6 | 0.0191 (6) | 0.0183 (6) | 0.0222 (6) | 0.0011 (5) | 0.0009 (5) | 0.0029 (5) |
| C7 | 0.0212 (6) | 0.0252 (7) | 0.0245 (7) | 0.0031 (5) | 0.0025 (5) | −0.0007 (5) |
| C8 | 0.0268 (7) | 0.0262 (7) | 0.0270 (7) | 0.0035 (5) | −0.0010 (6) | −0.0063 (5) |
| C9 | 0.0227 (7) | 0.0256 (7) | 0.0342 (8) | −0.0026 (5) | −0.0024 (6) | −0.0043 (6) |
| C10 | 0.0176 (6) | 0.0251 (7) | 0.0304 (7) | −0.0016 (5) | 0.0015 (5) | 0.0016 (6) |
Geometric parameters (Å, °)
| O1—C1 | 1.2529 (16) | O2—C6 | 1.2530 (16) |
| N1—C2 | 1.3597 (17) | N2—C10 | 1.3567 (17) |
| N1—C1 | 1.3743 (17) | N2—C6 | 1.3762 (17) |
| N1—H1N | 0.8800 | N2—H2N | 0.8800 |
| C1—C5 | 1.4365 (18) | C6—C7 | 1.4335 (18) |
| C2—C3 | 1.3633 (19) | C7—C8 | 1.3607 (19) |
| C2—H2 | 0.9500 | C7—H7 | 0.9500 |
| C3—C4 | 1.4151 (18) | C8—C9 | 1.412 (2) |
| C3—H3 | 0.9500 | C8—H8 | 0.9500 |
| C4—C5 | 1.3590 (19) | C9—C10 | 1.360 (2) |
| C4—H4 | 0.9500 | C9—H9 | 0.9500 |
| C5—H5 | 0.9500 | C10—H10 | 0.9500 |
| C2—N1—C1 | 124.33 (11) | C10—N2—C6 | 124.37 (11) |
| C2—N1—H1N | 117.8 | C10—N2—H2N | 117.8 |
| C1—N1—H1N | 117.8 | C6—N2—H2N | 117.8 |
| O1—C1—N1 | 120.32 (11) | O2—C6—N2 | 120.04 (12) |
| O1—C1—C5 | 124.83 (12) | O2—C6—C7 | 124.99 (12) |
| N1—C1—C5 | 114.84 (11) | N2—C6—C7 | 114.96 (11) |
| N1—C2—C3 | 120.67 (12) | C8—C7—C6 | 121.03 (12) |
| N1—C2—H2 | 119.7 | C8—C7—H7 | 119.5 |
| C3—C2—H2 | 119.7 | C6—C7—H7 | 119.5 |
| C2—C3—C4 | 118.00 (12) | C7—C8—C9 | 120.93 (13) |
| C2—C3—H3 | 121.0 | C7—C8—H8 | 119.5 |
| C4—C3—H3 | 121.0 | C9—C8—H8 | 119.5 |
| C5—C4—C3 | 120.77 (12) | C10—C9—C8 | 118.12 (13) |
| C5—C4—H4 | 119.6 | C10—C9—H9 | 120.9 |
| C3—C4—H4 | 119.6 | C8—C9—H9 | 120.9 |
| C4—C5—C1 | 121.36 (12) | N2—C10—C9 | 120.59 (12) |
| C4—C5—H5 | 119.3 | N2—C10—H10 | 119.7 |
| C1—C5—H5 | 119.3 | C9—C10—H10 | 119.7 |
| C2—N1—C1—O1 | 179.47 (12) | C10—N2—C6—O2 | −178.77 (12) |
| C2—N1—C1—C5 | −1.04 (18) | C10—N2—C6—C7 | 0.61 (18) |
| C1—N1—C2—C3 | 2.1 (2) | O2—C6—C7—C8 | 178.83 (13) |
| N1—C2—C3—C4 | −1.3 (2) | N2—C6—C7—C8 | −0.51 (19) |
| C2—C3—C4—C5 | −0.4 (2) | C6—C7—C8—C9 | 0.2 (2) |
| C3—C4—C5—C1 | 1.5 (2) | C7—C8—C9—C10 | 0.0 (2) |
| O1—C1—C5—C4 | 178.72 (12) | C6—N2—C10—C9 | −0.4 (2) |
| N1—C1—C5—C4 | −0.74 (18) | C8—C9—C10—N2 | 0.1 (2) |
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| N1—H1n···O2 | 0.88 | 1.86 | 2.7450 (16) | 177 |
| N2—H2n···O1 | 0.88 | 1.92 | 2.7915 (16) | 171 |
| C2—H2···O1i | 0.95 | 2.53 | 3.3943 (18) | 150 |
| C4—H4···O2ii | 0.95 | 2.54 | 3.2989 (18) | 137 |
Symmetry codes: (i) x−1, y, z; (ii) x+1/2, −y+1/2, z−1/2.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2602).
References
- Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
- Broker, G. A. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 1096–1109.
- Ellis, C. A., Miller, M. A., Spencer, J., Zukerman-Schpector, J. & Tiekink, E. R. T. (2009). CrystEngComm, 11, 1352–1361.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Ohms, U., Guth, H., Hellner, E., Dannohl, H. & Schweig, A. (1984). Z. Kristallogr. 169, 185–200.
- Penfold, B. R. (1953). Acta Cryst. 6, 591–600.
- Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
- Westrip, S. P. (2009). publCIF. In preparation.
- Yang, H. W. & Craven, B. M. (1998). Acta Cryst. B54, 912–920. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809049496/hg2602sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536809049496/hg2602Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
