Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Nov 28;65(Pt 12):o3251. doi: 10.1107/S1600536809050144

(E)-3-[(4-Diethyl­amino-2-hydroxy­benzyl­idene)amino]benzonitrile

Jian-Cheng Zhou a,b,*, Zheng-Yun Zhang a, Nai-Xu Li a, Chuan-Ming Zhang a
PMCID: PMC2972081  PMID: 21578949

Abstract

The mol­ecule of the title compound, C18H19N3O, displays a trans configuration with respect to the C=N double bond. There is a strong intra­molecular O—H⋯N hydrogen-bonding inter­action between the hydr­oxy group and imine N atom. The dihedral angle between the aromatic rings is 30.35 (8)°. The crystal packing is stabilized by O—H⋯N links.

Related literature

For the properties of Schiff bases compounds, see: Zhou et al. (2000); Sriram et al. (2006). For bond-length data, see: Allen et al. (1987).graphic file with name e-65-o3251-scheme1.jpg

Experimental

Crystal data

  • C18H19N3O

  • M r = 293.36

  • Triclinic, Inline graphic

  • a = 8.411 (6) Å

  • b = 8.519 (6) Å

  • c = 12.906 (9) Å

  • α = 74.17 (4)°

  • β = 79.00 (4)°

  • γ = 64.65 (2)°

  • V = 801.1 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.10 mm

Data collection

  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) T min = 0.092, T max = 0.182

  • 8686 measured reflections

  • 3620 independent reflections

  • 2592 reflections with I > 2σ(I)

  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.056

  • wR(F 2) = 0.159

  • S = 1.09

  • 3620 reflections

  • 203 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809050144/bx2250sup1.cif

e-65-o3251-sup1.cif (17.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809050144/bx2250Isup2.hkl

e-65-o3251-Isup2.hkl (177.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N2 0.98 (3) 1.70 (3) 2.607 (3) 153 (2)
C16—H16A⋯O1i 0.93 2.60 3.504 (3) 164

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported financially by the Jiangsu Provincial Key Laboratory of Pulp and Paper Science and Technology Foundation (No. 200813).

supplementary crystallographic information

Comment

Schiff bases compounds attract great interest in many fields of chemistry and biochemistry, primarily due to significant pharmacological activities, e.g. anticancer (Zhou et al., 2000), anti-HIV (Sriram et al., 2006). In addition, Schiff base compounds play important role in the development of coordination chemistry related to magnetism and catalysis. As a continue of my works, we here report the synthesis and crystal structure of the title compound, (I).

The molecular structure of (I) of the title compound is shown in Fig. 1. All the bond lengths and angles in the molecules are in the range of normal values (Allen et al., 1987). The molecule displays a trans configuration about the central C11=N2 bond and adopts the phenol-imine tautomeric form, with a strong intramolecular O—H···N hydrogen bonding interaction (Table 1). The dihedral angle between the mean planes of the two aromatic rings is 30.35 (8) ° indicating that the Schiff-base ligand adopts a non-planar conformation. In addition, two methyl groups are positioned to the opposite direction respectively relative to the plane of the adjacent benzene ring. The crystal packing is stabilized by van der Waals interactions.

Experimental

(E)-3-(4-(diethylamino)-2-hydroxybenzylideneamino)benzonitrile was prepared by reflux of a solution mixture containing 4-(diethylamino)-2-hydroxybenzaldehyde (0.996 g, 5 mmol) in ethanol (20 ml) and a solution containing 3-aminobenzonitrile (0.590 g, 5 mmol) in methanol (20 ml). The reaction mixture was stirred for 6 h under reflux, and then cooled to room temperature slowly. The resulting yellow precipitate was filtered off and the crystals of the title compound suitable for X-ray analysis were obtained from acetonitrile solution by slow evaporation

Refinement

H atoms (for OH) were located in a difference Fourier map and refined isotropically. The remailing H atoms were located geometrically and treated as riding atoms with C—H = 0.93–0.97 Å, and with Uiso(H) = 1.2 Ueq(C) for aromatic H atoms or 1.5 Ueq (C) for methyl H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing the atomic numbering scheme. The displacement ellipsoids are drawn at the 30% probability level.

Crystal data

C18H19N3O Z = 2
Mr = 293.36 F(000) = 312
Triclinic, P1 Dx = 1.216 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.411 (6) Å Cell parameters from 2426 reflections
b = 8.519 (6) Å θ = 2.3–27.5°
c = 12.906 (9) Å µ = 0.08 mm1
α = 74.17 (4)° T = 293 K
β = 79.00 (4)° Block, yellow
γ = 64.65 (2)° 0.20 × 0.20 × 0.10 mm
V = 801.1 (9) Å3

Data collection

Rigaku SCXmini diffractometer 3620 independent reflections
Radiation source: fine-focus sealed tube 2592 reflections with I > 2σ(I)
graphite Rint = 0.030
Detector resolution: 13.6612 pixels mm-1 θmax = 27.5°, θmin = 3.0°
ω scans h = −10→10
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) k = −11→11
Tmin = 0.092, Tmax = 0.182 l = −16→16
8686 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159 H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0841P)2] where P = (Fo2 + 2Fc2)/3
3620 reflections (Δ/σ)max < 0.001
203 parameters Δρmax = 0.20 e Å3
1 restraint Δρmin = −0.16 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C3 0.2014 (2) 1.0630 (2) 0.37779 (12) 0.0428 (4)
H3A 0.0814 1.1144 0.3988 0.051*
O1 0.24337 (15) 0.87525 (17) 0.55059 (9) 0.0544 (3)
N2 0.56035 (17) 0.63888 (18) 0.59125 (10) 0.0456 (3)
C1 0.4976 (2) 0.8526 (2) 0.42381 (12) 0.0417 (4)
C4 0.2656 (2) 1.1212 (2) 0.27203 (12) 0.0415 (4)
C13 0.6447 (2) 0.4627 (2) 0.76732 (12) 0.0455 (4)
H13A 0.5454 0.5452 0.7974 0.055*
N1 0.15321 (18) 1.24256 (19) 0.19656 (10) 0.0503 (4)
C2 0.31405 (19) 0.9308 (2) 0.45073 (11) 0.0396 (4)
C11 0.6144 (2) 0.7100 (2) 0.49704 (12) 0.0458 (4)
H11A 0.7348 0.6662 0.4761 0.055*
C6 0.5599 (2) 0.9187 (2) 0.31953 (12) 0.0485 (4)
H6A 0.6808 0.8729 0.3003 0.058*
C12 0.6806 (2) 0.4883 (2) 0.65573 (12) 0.0424 (4)
C9 0.2167 (2) 1.3062 (2) 0.08716 (13) 0.0547 (4)
H9A 0.3286 1.3124 0.0891 0.066*
H9B 0.1333 1.4255 0.0594 0.066*
C17 0.8278 (2) 0.3586 (2) 0.61325 (13) 0.0493 (4)
H17A 0.8512 0.3716 0.5387 0.059*
C5 0.4508 (2) 1.0469 (2) 0.24531 (13) 0.0490 (4)
H5A 0.4979 1.0858 0.1769 0.059*
C18 0.7203 (2) 0.2892 (2) 0.95013 (14) 0.0548 (4)
C14 0.7571 (2) 0.3138 (2) 0.83397 (12) 0.0465 (4)
C15 0.9066 (2) 0.1876 (2) 0.79080 (14) 0.0511 (4)
H15A 0.9828 0.0895 0.8358 0.061*
C7 −0.0392 (2) 1.3053 (2) 0.21951 (13) 0.0533 (4)
H7A −0.0677 1.2098 0.2678 0.064*
H7B −0.0928 1.3357 0.1527 0.064*
C16 0.9387 (2) 0.2118 (2) 0.68022 (14) 0.0524 (4)
H16A 1.0366 0.1278 0.6502 0.063*
N3 0.6938 (2) 0.2678 (3) 1.04170 (13) 0.0772 (5)
C10 0.2415 (3) 1.1884 (3) 0.01095 (15) 0.0798 (7)
H10A 0.2833 1.2364 −0.0598 0.120*
H10B 0.1307 1.1837 0.0074 0.120*
H10C 0.3261 1.0707 0.0370 0.120*
C8 −0.1160 (3) 1.4645 (3) 0.27007 (17) 0.0716 (6)
H8A −0.2415 1.4999 0.2842 0.107*
H8B −0.0912 1.5606 0.2217 0.107*
H8C −0.0644 1.4348 0.3367 0.107*
H1A 0.342 (3) 0.773 (4) 0.5846 (19) 0.109 (8)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C3 0.0344 (8) 0.0488 (9) 0.0402 (8) −0.0142 (7) −0.0010 (6) −0.0073 (7)
O1 0.0396 (6) 0.0676 (8) 0.0374 (6) −0.0133 (6) 0.0027 (5) −0.0001 (5)
N2 0.0419 (8) 0.0490 (8) 0.0392 (7) −0.0114 (6) −0.0061 (6) −0.0083 (6)
C1 0.0373 (8) 0.0466 (9) 0.0390 (8) −0.0149 (7) −0.0021 (6) −0.0094 (7)
C4 0.0416 (9) 0.0429 (9) 0.0383 (8) −0.0158 (7) −0.0052 (6) −0.0064 (6)
C13 0.0448 (9) 0.0481 (9) 0.0412 (8) −0.0157 (7) −0.0031 (7) −0.0110 (7)
N1 0.0456 (7) 0.0564 (9) 0.0376 (7) −0.0148 (6) −0.0043 (6) −0.0010 (6)
C2 0.0368 (8) 0.0470 (9) 0.0343 (7) −0.0168 (7) 0.0004 (6) −0.0098 (6)
C11 0.0369 (8) 0.0526 (10) 0.0441 (9) −0.0137 (7) −0.0029 (6) −0.0117 (7)
C6 0.0345 (8) 0.0561 (10) 0.0461 (9) −0.0145 (7) 0.0030 (7) −0.0076 (7)
C12 0.0408 (8) 0.0466 (9) 0.0394 (8) −0.0157 (7) −0.0053 (6) −0.0099 (7)
C9 0.0568 (11) 0.0526 (10) 0.0429 (9) −0.0192 (8) −0.0063 (7) 0.0051 (7)
C17 0.0516 (10) 0.0518 (10) 0.0418 (9) −0.0161 (8) −0.0019 (7) −0.0146 (7)
C5 0.0442 (9) 0.0556 (10) 0.0408 (8) −0.0203 (8) 0.0046 (7) −0.0053 (7)
C18 0.0590 (11) 0.0590 (11) 0.0458 (10) −0.0276 (9) −0.0059 (8) −0.0023 (8)
C14 0.0513 (9) 0.0497 (9) 0.0415 (8) −0.0251 (8) −0.0050 (7) −0.0056 (7)
C15 0.0520 (10) 0.0435 (9) 0.0543 (10) −0.0166 (8) −0.0121 (8) −0.0039 (7)
C7 0.0477 (8) 0.0562 (11) 0.0507 (10) −0.0176 (8) −0.0121 (7) −0.0029 (8)
C16 0.0491 (10) 0.0446 (10) 0.0585 (11) −0.0124 (8) −0.0015 (8) −0.0159 (8)
N3 0.0913 (13) 0.0963 (14) 0.0452 (9) −0.0474 (11) −0.0026 (8) −0.0027 (8)
C10 0.0944 (17) 0.0927 (16) 0.0488 (11) −0.0326 (13) −0.0029 (10) −0.0197 (11)
C8 0.0696 (13) 0.0594 (12) 0.0721 (13) −0.0158 (10) −0.0011 (10) −0.0126 (10)

Geometric parameters (Å, °)

C3—C2 1.379 (2) C9—C10 1.516 (3)
C3—C4 1.407 (2) C9—H9A 0.9700
C3—H3A 0.9300 C9—H9B 0.9700
O1—C2 1.3616 (19) C17—C16 1.379 (2)
O1—H1A 0.98 (3) C17—H17A 0.9300
N2—C11 1.294 (2) C5—H5A 0.9300
N2—C12 1.410 (2) C18—N3 1.139 (2)
C1—C6 1.404 (2) C18—C14 1.447 (2)
C1—C2 1.410 (2) C14—C15 1.396 (2)
C1—C11 1.428 (2) C15—C16 1.376 (2)
C4—N1 1.370 (2) C15—H15A 0.9300
C4—C5 1.420 (2) C7—C8 1.502 (3)
C13—C14 1.390 (2) C7—H7A 0.9700
C13—C12 1.390 (2) C7—H7B 0.9700
C13—H13A 0.9300 C16—H16A 0.9300
N1—C9 1.454 (2) C10—H10A 0.9600
N1—C7 1.468 (2) C10—H10B 0.9600
C11—H11A 0.9300 C10—H10C 0.9600
C6—C5 1.363 (2) C8—H8A 0.9600
C6—H6A 0.9300 C8—H8B 0.9600
C12—C17 1.398 (2) C8—H8C 0.9600
C2—C3—C4 120.82 (15) C16—C17—C12 120.98 (15)
C2—C3—H3A 119.6 C16—C17—H17A 119.5
C4—C3—H3A 119.6 C12—C17—H17A 119.5
C2—O1—H1A 104.4 (14) C6—C5—C4 120.24 (15)
C11—N2—C12 120.13 (14) C6—C5—H5A 119.9
C6—C1—C2 116.50 (14) C4—C5—H5A 119.9
C6—C1—C11 121.36 (15) N3—C18—C14 179.0 (2)
C2—C1—C11 122.11 (14) C13—C14—C15 121.09 (15)
N1—C4—C3 121.23 (15) C13—C14—C18 119.75 (16)
N1—C4—C5 121.00 (14) C15—C14—C18 119.16 (16)
C3—C4—C5 117.75 (15) C16—C15—C14 118.49 (16)
C14—C13—C12 120.03 (15) C16—C15—H15A 120.8
C14—C13—H13A 120.0 C14—C15—H15A 120.8
C12—C13—H13A 120.0 N1—C7—C8 112.48 (16)
C4—N1—C9 122.17 (15) N1—C7—H7A 109.1
C4—N1—C7 121.48 (14) C8—C7—H7A 109.1
C9—N1—C7 116.19 (13) N1—C7—H7B 109.1
O1—C2—C3 118.17 (14) C8—C7—H7B 109.1
O1—C2—C1 120.13 (14) H7A—C7—H7B 107.8
C3—C2—C1 121.70 (14) C15—C16—C17 120.95 (16)
N2—C11—C1 123.02 (15) C15—C16—H16A 119.5
N2—C11—H11A 118.5 C17—C16—H16A 119.5
C1—C11—H11A 118.5 C9—C10—H10A 109.5
C5—C6—C1 122.87 (15) C9—C10—H10B 109.5
C5—C6—H6A 118.6 H10A—C10—H10B 109.5
C1—C6—H6A 118.6 C9—C10—H10C 109.5
C13—C12—C17 118.42 (15) H10A—C10—H10C 109.5
C13—C12—N2 118.03 (14) H10B—C10—H10C 109.5
C17—C12—N2 123.44 (14) C7—C8—H8A 109.5
N1—C9—C10 112.94 (17) C7—C8—H8B 109.5
N1—C9—H9A 109.0 H8A—C8—H8B 109.5
C10—C9—H9A 109.0 C7—C8—H8C 109.5
N1—C9—H9B 109.0 H8A—C8—H8C 109.5
C10—C9—H9B 109.0 H8B—C8—H8C 109.5
H9A—C9—H9B 107.8

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1A···N2 0.98 (3) 1.70 (3) 2.607 (3) 153 (2)
C16—H16A···O1i 0.93 2.60 3.504 (3) 164

Symmetry codes: (i) x+1, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2250).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.
  3. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  4. Sriram, D., Yogeeswari, P., Myneedu, N. S. & Saraswat, V. (2006). Bioorg. Med. Chem. Lett. 16, 2127–2129. [DOI] [PubMed]
  5. Zhou, Y.-S., Zhang, L.-J., Zeng, X.-R., Vittal, J. J. & You, X.-Z. (2000). J. Mol. Struct. 524, 241–250.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809050144/bx2250sup1.cif

e-65-o3251-sup1.cif (17.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809050144/bx2250Isup2.hkl

e-65-o3251-Isup2.hkl (177.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES