Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Nov 14;65(Pt 12):o3075. doi: 10.1107/S1600536809046984

7-Fluoro-6-nitro­quinazolin-4(3H)-one

Yundeng Wu a,b, Ancheng Ji b, Aihua Zhang b,*, Yipeng Shen b
PMCID: PMC2972082  PMID: 21578805

Abstract

The quinazolinone unit of the title compound, C8H4FN3O3, is essentially planar, with a maximum deviation of 0.0538 (14) Å for the O atom. The nitro group is twisted by 12.0 (3)° from the mean plane of the quinazolinone ring system. The crystal structure is stabilized by inter­molecular N—H⋯O, C—H⋯N and C—H⋯O hydrogen bonds.

Related literature

The title compound is used as an inter­mediate for the production of several multi-targeted Raf kinase inhibitors, such as 4(3H)-quinazolinone and its derivatives, see: Bridges et al. (1996); Kim et al. (2008). For the anti­tumor activities of quinolines, see: Labuda et al. (2009). For synthetic aspects, see: Rewcastle et al. (1996). For bond-length data, see: Allen et al. (1987).graphic file with name e-65-o3075-scheme1.jpg

Experimental

Crystal data

  • C8H4FN3O3

  • M r = 209.14

  • Triclinic, Inline graphic

  • a = 5.6360 (11) Å

  • b = 8.409 (2) Å

  • c = 8.674 (2) Å

  • α = 79.38 (3)°

  • β = 89.23 (3)°

  • γ = 83.83 (3)°

  • V = 401.70 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.956, T max = 0.971

  • 1623 measured reflections

  • 1461 independent reflections

  • 1131 reflections with I > 2σ(I)

  • R int = 0.018

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.160

  • S = 1.00

  • 1461 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809046984/pv2231sup1.cif

e-65-o3075-sup1.cif (15.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809046984/pv2231Isup2.hkl

e-65-o3075-Isup2.hkl (72KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.86 1.98 2.815 (2) 165
C1—H1B⋯O2ii 0.93 2.47 3.396 (3) 179
C7—H7A⋯N2iii 0.93 2.50 3.422 (3) 171

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This research work was supported financially by the Research Funds of Jiangsu Provincial Institute of Materia Medica (No. SX200801).

supplementary crystallographic information

Comment

4(3H)-Quinazolinone and its derivatives have been investigated extensively, owning to their important role in the synthesis of several multi-kinase inhibitors and to their potentially beneficial antitumor activities in many types of malignancies (Labuda et al., 2009).

As part of our studies on the synthesis of 4(3H)-quinazolinone and its derivatives, the title compound, (I), which is used as the key intermediate (Rewcastle et al., 1996), has been synthesized in our laboratory. We report herein the crystal structure of the title compound.

The molecule of the title compound is planar (Fig. 1). The quinazolinone moiety is essentially planar with maximum deviation for for any atoms being 0.0538 (14) for O1. The nitro group is twisted from the mean-plane of the quinazolinone ring by 12.0 (3)°. The bond lengths and angles in (I) are within normal ranges (Allen et al., 1987). The crtstal structure of (I) is stabilized by classical and non-classical intermolecular hydrogen bonds of the types N—H···O, C—H···N and C—H···O; details have been provided in Table 1 and presented as a packing diagram in Fig. 2.

Experimental

The title compound, was prepared by following a reported procedure (Rewcastle et al., 1996). 7-Fluoroquinazolin-4(3H)-one (47.4 g, 0.29 mmol) was added to a mixture of concentrated H2SO4 (100 ml) and fuming HNO3 (100 ml), and heated at 373 K for 1 h. The crude product, 7-fluoro-6-nitroquinazolin-4(3H)-one, was obtained by pouring the reacting mixture onto ice-water (1500 ml). The crystals of (I) suitable for X-ray diffraction studies were obtained by recrystallization from acetic acid.

Refinement

H atoms were positioned geometrically at distances N—H = 0.86 Å and C—H = 0.93 Å and constrained to ride on their parent atoms, with Uiso(H) = 1.2 times Ueq(parent atoms).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the titlecompound with the atom numbering scheme. Displacement ellipsoids are drawn at 30% probability levels.

Fig. 2.

Fig. 2.

A packing diagram of the title compound. Hydron bonds are shown as dashed lines.

Crystal data

C8H4FN3O3 Z = 2
Mr = 209.14 F(000) = 212
Triclinic, P1 Dx = 1.729 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 5.6360 (11) Å Cell parameters from 25 reflections
b = 8.409 (2) Å θ = 9–13°
c = 8.674 (2) Å µ = 0.15 mm1
α = 79.38 (3)° T = 293 K
β = 89.23 (3)° Block, colorless
γ = 83.83 (3)° 0.30 × 0.20 × 0.20 mm
V = 401.70 (16) Å3

Data collection

Enraf–Nonius CAD-4 diffractometer 1131 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.018
graphite θmax = 25.3°, θmin = 2.4°
ω/2θ scans h = 0→6
Absorption correction: ψ scan (North et al., 1968) k = −10→10
Tmin = 0.956, Tmax = 0.971 l = −10→10
1623 measured reflections 3 standard reflections every 200 reflections
1461 independent reflections intensity decay: 1%

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050 H-atom parameters constrained
wR(F2) = 0.160 w = 1/[σ2(Fo2) + (0.1P)2 + 0.12P] where P = (Fo2 + 2Fc2)/3
S = 1.00 (Δ/σ)max < 0.001
1461 reflections Δρmax = 0.23 e Å3
137 parameters Δρmin = −0.25 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.062 (16)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
F 0.1138 (3) 0.4301 (2) −0.33786 (16) 0.0639 (5)
N1 0.1677 (3) 0.1637 (2) 0.3773 (2) 0.0413 (5)
H1A 0.1629 0.1209 0.4752 0.050*
O1 −0.1399 (3) 0.0293 (2) 0.32253 (18) 0.0527 (6)
C1 0.3360 (4) 0.2651 (3) 0.3291 (3) 0.0419 (6)
H1B 0.4402 0.2828 0.4049 0.050*
N2 0.3644 (3) 0.3390 (2) 0.1878 (2) 0.0406 (5)
C2 0.0044 (4) 0.1261 (3) 0.2775 (2) 0.0380 (6)
O2 −0.2795 (5) 0.3272 (3) −0.3951 (2) 0.0932 (9)
C3 0.0261 (4) 0.2086 (2) 0.1159 (2) 0.0331 (5)
N3 −0.2740 (4) 0.2376 (3) −0.2685 (2) 0.0486 (6)
O3 −0.4036 (3) 0.1313 (2) −0.2327 (2) 0.0630 (6)
C4 −0.1305 (4) 0.1862 (3) 0.0011 (3) 0.0376 (6)
H4A −0.2523 0.1200 0.0276 0.045*
C5 −0.1046 (4) 0.2618 (3) −0.1509 (3) 0.0380 (5)
C6 0.0818 (4) 0.3590 (3) −0.1903 (2) 0.0396 (6)
C7 0.2349 (4) 0.3832 (3) −0.0789 (3) 0.0387 (6)
H7A 0.3567 0.4491 −0.1068 0.046*
C8 0.2091 (4) 0.3091 (2) 0.0771 (2) 0.0334 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F 0.0696 (10) 0.0883 (11) 0.0293 (8) −0.0238 (8) −0.0026 (6) 0.0104 (7)
N1 0.0493 (11) 0.0479 (11) 0.0260 (9) −0.0160 (9) −0.0022 (8) 0.0010 (8)
O1 0.0562 (11) 0.0618 (11) 0.0393 (9) −0.0333 (8) −0.0015 (7) 0.0086 (8)
C1 0.0434 (13) 0.0495 (13) 0.0342 (12) −0.0154 (10) −0.0056 (9) −0.0051 (10)
N2 0.0413 (10) 0.0474 (11) 0.0338 (10) −0.0172 (8) −0.0030 (8) −0.0019 (8)
C2 0.0401 (12) 0.0390 (12) 0.0338 (12) −0.0107 (9) −0.0005 (9) −0.0001 (9)
O2 0.1106 (19) 0.123 (2) 0.0446 (12) −0.0476 (15) −0.0370 (12) 0.0113 (12)
C3 0.0356 (11) 0.0321 (11) 0.0306 (11) −0.0060 (9) −0.0001 (8) −0.0019 (8)
N3 0.0487 (12) 0.0573 (13) 0.0421 (12) −0.0065 (10) −0.0087 (9) −0.0138 (10)
O3 0.0533 (11) 0.0733 (13) 0.0676 (13) −0.0208 (10) −0.0126 (9) −0.0172 (10)
C4 0.0372 (12) 0.0385 (12) 0.0385 (12) −0.0115 (9) −0.0015 (9) −0.0063 (9)
C5 0.0404 (12) 0.0403 (12) 0.0333 (11) −0.0028 (10) −0.0060 (9) −0.0069 (9)
C6 0.0450 (13) 0.0434 (12) 0.0273 (11) −0.0041 (10) 0.0026 (9) 0.0009 (9)
C7 0.0374 (12) 0.0412 (12) 0.0360 (12) −0.0111 (9) 0.0028 (9) 0.0003 (9)
C8 0.0316 (11) 0.0358 (11) 0.0322 (11) −0.0067 (8) −0.0004 (8) −0.0032 (8)

Geometric parameters (Å, °)

F—C6 1.328 (2) C3—C4 1.391 (3)
N1—C1 1.354 (3) C3—C8 1.401 (3)
N1—C2 1.371 (3) N3—O3 1.208 (3)
N1—H1A 0.8600 N3—C5 1.462 (3)
O1—C2 1.222 (3) C4—C5 1.367 (3)
C1—N2 1.284 (3) C4—H4A 0.9300
C1—H1B 0.9300 C5—C6 1.401 (3)
N2—C8 1.381 (3) C6—C7 1.361 (3)
C2—C3 1.455 (3) C7—C8 1.394 (3)
O2—N3 1.211 (3) C7—H7A 0.9300
C1—N1—C2 123.10 (18) C5—C4—C3 119.7 (2)
C1—N1—H1A 118.4 C5—C4—H4A 120.1
C2—N1—H1A 118.4 C3—C4—H4A 120.1
N2—C1—N1 125.7 (2) C4—C5—C6 119.8 (2)
N2—C1—H1B 117.2 C4—C5—N3 118.4 (2)
N1—C1—H1B 117.2 C6—C5—N3 121.8 (2)
C1—N2—C8 115.98 (18) F—C6—C7 118.2 (2)
O1—C2—N1 121.96 (19) F—C6—C5 120.7 (2)
O1—C2—C3 124.5 (2) C7—C6—C5 121.1 (2)
N1—C2—C3 113.51 (19) C6—C7—C8 120.0 (2)
C4—C3—C8 120.5 (2) C6—C7—H7A 120.0
C4—C3—C2 120.43 (19) C8—C7—H7A 120.0
C8—C3—C2 119.07 (19) N2—C8—C7 118.51 (19)
O3—N3—O2 123.8 (2) N2—C8—C3 122.58 (19)
O3—N3—C5 118.1 (2) C7—C8—C3 118.91 (19)
O2—N3—C5 118.1 (2)
C2—N1—C1—N2 0.6 (4) O2—N3—C5—C6 −14.0 (4)
N1—C1—N2—C8 −0.8 (4) C4—C5—C6—F 178.24 (19)
C1—N1—C2—O1 177.0 (2) N3—C5—C6—F −1.5 (4)
C1—N1—C2—C3 −1.4 (3) C4—C5—C6—C7 −1.7 (4)
O1—C2—C3—C4 3.2 (4) N3—C5—C6—C7 178.6 (2)
N1—C2—C3—C4 −178.5 (2) F—C6—C7—C8 −179.23 (19)
O1—C2—C3—C8 −175.9 (2) C5—C6—C7—C8 0.7 (4)
N1—C2—C3—C8 2.5 (3) C1—N2—C8—C7 −178.6 (2)
C8—C3—C4—C5 0.5 (3) C1—N2—C8—C3 2.0 (3)
C2—C3—C4—C5 −178.60 (19) C6—C7—C8—N2 −178.6 (2)
C3—C4—C5—C6 1.1 (3) C6—C7—C8—C3 0.8 (3)
C3—C4—C5—N3 −179.19 (19) C4—C3—C8—N2 178.01 (19)
O3—N3—C5—C4 −12.3 (3) C2—C3—C8—N2 −2.9 (3)
O2—N3—C5—C4 166.3 (2) C4—C3—C8—C7 −1.4 (3)
O3—N3—C5—C6 167.4 (2) C2—C3—C8—C7 177.65 (19)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O1i 0.86 1.98 2.815 (2) 165
C1—H1B···O2ii 0.93 2.47 3.396 (3) 179
C7—H7A···N2iii 0.93 2.50 3.422 (3) 171

Symmetry codes: (i) −x, −y, −z+1; (ii) x+1, y, z+1; (iii) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2231).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bridges, A. J., Zhou, H., Cody, D. R., Rewcastle, G. W., McMichael, A., Showalter, H. D. H., Fry, D. W., Kraker, A. J. & Denny, W. A. (1996). J. Med. Chem. 39, 267–276. [DOI] [PubMed]
  3. Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.
  4. Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
  5. Kim, Y. H., Choi, H., Lee, J., Hwang, I.-C., Moon, S. K., Kim, S. J., Lee, H. W., Im, D. S., Lee, S. S., Ahn, S. K., Kim, S. W., Han, Cheol K., Yoon, J. H., Lee, K. J. & Choi, N. S. (2008). Bioorg. Med. Chem. Lett. 18, 6279–6282. [DOI] [PubMed]
  6. Labuda, J., Ovadekova, R. & Galandova, J. (2009). Mikrochim. Acta, 164, 371–377.
  7. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  8. Rewcastle, G. W., Palmer, B. D., Bridges, A. J., Showalter, H. D. H., Sun, L., Nelson, J., McMichael, A., Kraker, A. J., Fry, D. W. & Denny, W. A. (1996). J. Med. Chem. 39, 918–928. [DOI] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809046984/pv2231sup1.cif

e-65-o3075-sup1.cif (15.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809046984/pv2231Isup2.hkl

e-65-o3075-Isup2.hkl (72KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES