Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Nov 18;65(Pt 12):o3103. doi: 10.1107/S1600536809047928

1-Methyl-2,4-bis­(2-methoxy­phen­yl)-3-aza­bicyclo­[3.3.1]nonan-9-one

P Parthiban a, V Ramkumar b, Yeon Tae Jeong a,*
PMCID: PMC2972093  PMID: 21578830

Abstract

The crystal structure of the title compound, C23H27NO3, shows that the compound exists in a chair–chair conformation with an equatorial disposition of 2-methoxy­phenyl groups at an angle of 39.94 (3)° with respect to each other. An inter­molecular N—H⋯π inter­action is observed in the crystal packing.

Related literature

For the biological activity of 3-aza­bicyclo­nona­nes, see: Barker et al. (2005); Hardick et al. (1996); Jeyaraman & Avila (1981). For related structures with similar conformations, see: Parthiban et al. (2008); Parthiban, Ramkumar & Jeong (2009); Parthiban, Ramkumar, Kim et al. (2009). For a related structure with a chair–boat conformation, see: Smith-Verdier et al. (1983). For a related structure with a boat–boat conformation, see: Padegimas & Kovacic (1972). For ring puckering parameters, see: Cremer & Pople (1975); Nardelli (1983).graphic file with name e-65-o3103-scheme1.jpg

Experimental

Crystal data

  • C23H27NO3

  • M r = 365.46

  • Monoclinic, Inline graphic

  • a = 7.9569 (3) Å

  • b = 20.8291 (9) Å

  • c = 11.6708 (6) Å

  • β = 96.297 (2)°

  • V = 1922.59 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.41 × 0.24 × 0.20 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999) T min = 0.288, T max = 0.980

  • 14049 measured reflections

  • 4608 independent reflections

  • 3166 reflections with I > 2σ(I)

  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.127

  • S = 1.02

  • 4608 reflections

  • 251 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809047928/ez2190sup1.cif

e-65-o3103-sup1.cif (22.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809047928/ez2190Isup2.hkl

e-65-o3103-Isup2.hkl (225.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1ACg1i 0.862 (15) 2.852 (3) 3.6276 (14) 150.6 (12)

Symmetry code: (i) Inline graphic. Cg1 is the centroid of the C16–C21 ring.

Acknowledgments

This research was supported by the Industrial Technology Devlopment Program, which was conducted by the Ministry of Knowledge Economy of the Korean Government. The authors acknowledge the Department of Chemistry, IIT Madras, for the X-ray data collection.

supplementary crystallographic information

Comment

3-Azabicyclononanes are an important class of heterocycles due to their broad spectrum biological activities (Jeyaraman & Avila, 1981; Hardick et al., 1996; Barker et al., 2005). Owing to the diverse possibilities in conformations, viz., chair-chair (Parthiban et al., 2008; Parthiban, Ramkumar & Jeong, 2009; Parthiban, Ramkumar, Kim et al., 2009), chair-boat (Smith-Verdier et al., 1983) and boat-boat (Padegimas & Kovacic, 1972) for the azabicycle, the present crystal study was undertaken to explore the conformation, stereochemistry and bonding of the title compound.

The analysis of torsion angles, asymmetry parameters and least-squares planes calculated for the title compound shows that the piperidine ring adopts a near ideal chair conformation with deviations of the ring atoms C8 and N1 from the C1/C2/C6/C7 plane by 0.655 (3) Å and -0.708 (3) Å, respectively. The smallest displacement asymmetry parameters are q2 = 0.0341 (15) Å and q3 =0.6123 (15) Å (Nardelli, 1983). The total puckering amplitude, QT = 0.6132 (15) Å and θ = 3.14 (14) ° (Cremer & Pople, 1975). The cyclohexane ring deviates from the ideal chair conformation by the deviation of ring atoms C4 and C8 from the C2/C3/C5/C6 plane by -0.697 (4) Å and 0.535 (3) Å, respectively. The smallest displacement asymmetry parameters are q2 = 0.1216 (17) Å and q3 = 0.5322 (17) Å (Nardelli, 1983); total puckering amplitude, QT = 0.5460 (16) Å, and θ =12.87 (18)° (Cremer & Pople, 1975). Hence, the title compound C23H27NO3, exists in a chair-chair conformation with an equatorial orientation of the ortho-methoxyphenyl groups on the heterocycle, which are orientated at an angle of 39.94 (3)° with respect to each other. The crystal structure is stabilized by an intermolecular N-H···π interaction between N1-H1A and the C16/C17/C18/C19/C20/C21 ring in a neighbouring molecule [N···centroid distance of 2.852 (3)Å; symmetry operator: 1-x,-y,1-z].

Experimental

A mixture of 2-methylcyclohexanone (0.05 mol, 5.61 g) and ortho-methoxybenzaldehyde (0.1 mol, 13.62 g) was added to a warm solution of ammonium acetate (0.075 mol, 5.78 g) in 50 ml of absolute ethanol. The mixture was gently warmed with stirring until a yellow color was obtained during the mixing of the reactants and then allowed to stir at 303–308° K until formation of the product. At the end, the crude azabicyclic ketone was separated by filtration and washed with a 1:5 ethanol-ether mixture until the solid became colorless. Recrystallization of the compound from ethanol gave X-ray diffraction quality crystals of 1-methyl-2,4-bis(2-methoxyphenyl)-3- azabicyclo[3.3.1]nonan-9-one.

Refinement

Nitrogen H atoms were located in a difference Fourier map and refined isotropically. Other hydrogen atoms were fixed geometrically and allowed to ride on the parent carbon atoms,with aromatic C—H =0.93 Å, aliphatic C—H = 0.98Å and methylene C—H = 0.97 Å. The displacement parameters were set for phenyl, methylene and aliphatic H atoms at Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

ORTEP diagram of the molecule, showing the atom numbering scheme, with atoms represented as 30% probability ellipsoids.

Crystal data

C23H27NO3 F(000) = 784
Mr = 365.46 Dx = 1.263 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 4178 reflections
a = 7.9569 (3) Å θ = 2.6–28.0°
b = 20.8291 (9) Å µ = 0.08 mm1
c = 11.6708 (6) Å T = 298 K
β = 96.297 (2)° Block, colourless
V = 1922.59 (15) Å3 0.41 × 0.24 × 0.20 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer 4608 independent reflections
Radiation source: fine-focus sealed tube 3166 reflections with I > 2σ(I)
graphite Rint = 0.026
φ and ω scans θmax = 28.3°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Bruker, 1999) h = −8→10
Tmin = 0.288, Tmax = 0.980 k = −27→27
14049 measured reflections l = −15→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127 H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0542P)2 + 0.4061P] where P = (Fo2 + 2Fc2)/3
4608 reflections (Δ/σ)max < 0.001
251 parameters Δρmax = 0.22 e Å3
0 restraints Δρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)are estimated using the full covariance matrix. The cell e.s.d.'s are takeninto account individually in the estimation of e.s.d.'s in distances, anglesand torsion angles; correlations between e.s.d.'s in cell parameters are onlyused when they are defined by crystal symmetry. An approximate (isotropic)treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR andgoodness of fit S are based on F2, conventional R-factors R are basedon F, with F set to zero for negative F2. The threshold expression ofF2 > σ(F2) is used only for calculating R-factors(gt) etc. and isnot relevant to the choice of reflections for refinement. R-factors basedon F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.23693 (17) 0.12454 (6) 0.28186 (12) 0.0323 (3)
H1 0.1669 0.1269 0.3458 0.039*
C2 0.11755 (18) 0.10977 (7) 0.16904 (12) 0.0363 (3)
C3 0.2099 (2) 0.10169 (8) 0.06003 (13) 0.0431 (4)
H3A 0.1254 0.0972 −0.0060 0.052*
H3B 0.2725 0.1408 0.0492 0.052*
C4 0.3315 (2) 0.04531 (8) 0.06032 (14) 0.0473 (4)
H4A 0.4347 0.0557 0.1089 0.057*
H4B 0.3604 0.0385 −0.0174 0.057*
C5 0.2575 (2) −0.01655 (8) 0.10382 (14) 0.0465 (4)
H5A 0.3483 −0.0473 0.1211 0.056*
H5B 0.1790 −0.0345 0.0427 0.056*
C6 0.16498 (18) −0.00768 (7) 0.21184 (13) 0.0372 (3)
H6 0.1050 −0.0475 0.2256 0.045*
C7 0.27979 (17) 0.01007 (6) 0.32297 (12) 0.0321 (3)
H7 0.2089 0.0140 0.3862 0.039*
C8 0.03777 (19) 0.04528 (7) 0.19078 (12) 0.0383 (3)
C9 0.33357 (18) 0.18729 (6) 0.27865 (12) 0.0334 (3)
C10 0.49093 (19) 0.18943 (7) 0.23764 (14) 0.0407 (4)
H10 0.5344 0.1522 0.2082 0.049*
C11 0.5850 (2) 0.24549 (8) 0.23944 (15) 0.0479 (4)
H11 0.6903 0.2457 0.2119 0.058*
C12 0.5214 (2) 0.30076 (8) 0.28224 (16) 0.0505 (4)
H12 0.5839 0.3385 0.2836 0.061*
C13 0.3655 (2) 0.30062 (7) 0.32316 (14) 0.0452 (4)
H13 0.3230 0.3383 0.3516 0.054*
C14 0.27187 (19) 0.24449 (7) 0.32211 (12) 0.0370 (3)
C15 −0.0179 (2) 0.16144 (8) 0.14796 (16) 0.0530 (4)
H15A −0.0981 0.1490 0.0843 0.079*
H15B 0.0340 0.2014 0.1305 0.079*
H15C −0.0748 0.1665 0.2158 0.079*
C16 0.41183 (18) −0.04090 (6) 0.35486 (12) 0.0325 (3)
C17 0.36550 (18) −0.09743 (7) 0.40848 (12) 0.0355 (3)
C18 0.4828 (2) −0.14549 (7) 0.43706 (13) 0.0432 (4)
H18 0.4506 −0.1831 0.4717 0.052*
C19 0.6482 (2) −0.13728 (8) 0.41378 (14) 0.0487 (4)
H19 0.7271 −0.1695 0.4330 0.058*
C20 0.6970 (2) −0.08216 (8) 0.36268 (15) 0.0497 (4)
H20 0.8087 −0.0767 0.3481 0.060*
C21 0.57849 (19) −0.03438 (7) 0.33286 (14) 0.0421 (4)
H21 0.6118 0.0028 0.2974 0.050*
C22 0.0402 (2) 0.29848 (8) 0.39536 (17) 0.0566 (5)
H22A 0.1056 0.3174 0.4608 0.085*
H22B −0.0717 0.2894 0.4143 0.085*
H22C 0.0339 0.3278 0.3316 0.085*
C23 0.1527 (3) −0.15186 (11) 0.49954 (19) 0.0793 (7)
H23A 0.1658 −0.1920 0.4610 0.119*
H23B 0.0368 −0.1466 0.5134 0.119*
H23C 0.2235 −0.1515 0.5717 0.119*
N1 0.35903 (15) 0.07229 (5) 0.30669 (11) 0.0324 (3)
O1 −0.11245 (14) 0.03744 (6) 0.19326 (12) 0.0606 (4)
O2 0.11835 (14) 0.24067 (5) 0.36491 (10) 0.0498 (3)
O3 0.19994 (13) −0.10095 (5) 0.42960 (10) 0.0484 (3)
H1A 0.4203 (18) 0.0824 (7) 0.3696 (13) 0.032 (4)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0345 (7) 0.0274 (7) 0.0357 (7) 0.0025 (5) 0.0074 (6) 0.0021 (6)
C2 0.0341 (8) 0.0356 (8) 0.0387 (8) 0.0037 (6) 0.0025 (6) 0.0037 (6)
C3 0.0492 (9) 0.0446 (9) 0.0360 (8) −0.0024 (7) 0.0065 (7) 0.0062 (7)
C4 0.0524 (10) 0.0531 (10) 0.0386 (8) 0.0012 (8) 0.0149 (7) −0.0044 (7)
C5 0.0556 (10) 0.0417 (9) 0.0415 (9) 0.0027 (7) 0.0019 (7) −0.0094 (7)
C6 0.0371 (8) 0.0303 (7) 0.0437 (8) −0.0074 (6) 0.0027 (6) −0.0005 (6)
C7 0.0336 (7) 0.0281 (7) 0.0356 (7) −0.0004 (6) 0.0079 (6) 0.0008 (6)
C8 0.0346 (8) 0.0454 (9) 0.0344 (7) −0.0040 (7) 0.0021 (6) 0.0012 (6)
C9 0.0375 (8) 0.0278 (7) 0.0352 (7) 0.0011 (6) 0.0047 (6) 0.0033 (6)
C10 0.0406 (8) 0.0338 (8) 0.0490 (9) 0.0025 (6) 0.0104 (7) 0.0025 (7)
C11 0.0397 (9) 0.0431 (9) 0.0625 (11) −0.0038 (7) 0.0124 (8) 0.0071 (8)
C12 0.0538 (10) 0.0348 (9) 0.0637 (11) −0.0107 (7) 0.0096 (8) 0.0045 (8)
C13 0.0571 (10) 0.0285 (8) 0.0511 (9) 0.0001 (7) 0.0099 (8) −0.0009 (7)
C14 0.0426 (8) 0.0314 (7) 0.0379 (8) 0.0021 (6) 0.0085 (6) 0.0037 (6)
C15 0.0466 (10) 0.0492 (10) 0.0613 (11) 0.0119 (8) −0.0018 (8) 0.0049 (8)
C16 0.0365 (8) 0.0272 (7) 0.0340 (7) 0.0002 (6) 0.0053 (6) −0.0024 (6)
C17 0.0404 (8) 0.0320 (7) 0.0337 (7) −0.0031 (6) 0.0025 (6) −0.0014 (6)
C18 0.0578 (10) 0.0298 (7) 0.0408 (8) 0.0021 (7) 0.0006 (7) 0.0024 (6)
C19 0.0536 (10) 0.0414 (9) 0.0498 (9) 0.0186 (8) −0.0003 (8) −0.0031 (7)
C20 0.0395 (9) 0.0502 (10) 0.0608 (10) 0.0094 (7) 0.0116 (8) −0.0031 (8)
C21 0.0401 (8) 0.0365 (8) 0.0510 (9) 0.0002 (7) 0.0117 (7) 0.0023 (7)
C22 0.0599 (11) 0.0430 (10) 0.0702 (12) 0.0106 (8) 0.0220 (9) −0.0069 (8)
C23 0.0611 (13) 0.0974 (16) 0.0793 (14) −0.0177 (11) 0.0073 (11) 0.0504 (13)
N1 0.0324 (6) 0.0256 (6) 0.0383 (7) −0.0002 (5) −0.0004 (5) −0.0006 (5)
O1 0.0336 (6) 0.0681 (8) 0.0795 (9) −0.0079 (6) 0.0039 (6) 0.0119 (7)
O2 0.0552 (7) 0.0316 (6) 0.0678 (8) 0.0036 (5) 0.0292 (6) −0.0024 (5)
O3 0.0429 (6) 0.0469 (7) 0.0564 (7) −0.0067 (5) 0.0093 (5) 0.0167 (5)

Geometric parameters (Å, °)

C1—N1 1.4663 (17) C12—C13 1.377 (2)
C1—C9 1.5191 (19) C12—H12 0.9300
C1—C2 1.5672 (19) C13—C14 1.386 (2)
C1—H1 0.9800 C13—H13 0.9300
C2—C8 1.519 (2) C14—O2 1.3719 (17)
C2—C15 1.524 (2) C15—H15A 0.9600
C2—C3 1.547 (2) C15—H15B 0.9600
C3—C4 1.521 (2) C15—H15C 0.9600
C3—H3A 0.9700 C16—C21 1.385 (2)
C3—H3B 0.9700 C16—C17 1.4016 (19)
C4—C5 1.526 (2) C17—O3 1.3685 (17)
C4—H4A 0.9700 C17—C18 1.384 (2)
C4—H4B 0.9700 C18—C19 1.384 (2)
C5—C6 1.539 (2) C18—H18 0.9300
C5—H5A 0.9700 C19—C20 1.369 (2)
C5—H5B 0.9700 C19—H19 0.9300
C6—C8 1.499 (2) C20—C21 1.389 (2)
C6—C7 1.547 (2) C20—H20 0.9300
C6—H6 0.9800 C21—H21 0.9300
C7—N1 1.4628 (17) C22—O2 1.4181 (18)
C7—C16 1.5111 (19) C22—H22A 0.9600
C7—H7 0.9800 C22—H22B 0.9600
C8—O1 1.2099 (18) C22—H22C 0.9600
C9—C10 1.389 (2) C23—O3 1.414 (2)
C9—C14 1.4044 (19) C23—H23A 0.9600
C10—C11 1.386 (2) C23—H23B 0.9600
C10—H10 0.9300 C23—H23C 0.9600
C11—C12 1.373 (2) N1—H1A 0.862 (15)
C11—H11 0.9300
N1—C1—C9 108.50 (11) C12—C11—H11 120.3
N1—C1—C2 110.35 (11) C10—C11—H11 120.3
C9—C1—C2 114.20 (11) C11—C12—C13 120.41 (15)
N1—C1—H1 107.9 C11—C12—H12 119.8
C9—C1—H1 107.9 C13—C12—H12 119.8
C2—C1—H1 107.9 C12—C13—C14 120.17 (15)
C8—C2—C15 110.51 (13) C12—C13—H13 119.9
C8—C2—C3 106.63 (12) C14—C13—H13 119.9
C15—C2—C3 109.61 (13) O2—C14—C13 123.04 (13)
C8—C2—C1 105.02 (11) O2—C14—C9 116.28 (12)
C15—C2—C1 110.47 (12) C13—C14—C9 120.67 (14)
C3—C2—C1 114.42 (12) C2—C15—H15A 109.5
C4—C3—C2 116.20 (12) C2—C15—H15B 109.5
C4—C3—H3A 108.2 H15A—C15—H15B 109.5
C2—C3—H3A 108.2 C2—C15—H15C 109.5
C4—C3—H3B 108.2 H15A—C15—H15C 109.5
C2—C3—H3B 108.2 H15B—C15—H15C 109.5
H3A—C3—H3B 107.4 C21—C16—C17 117.99 (13)
C3—C4—C5 112.60 (14) C21—C16—C7 122.65 (12)
C3—C4—H4A 109.1 C17—C16—C7 119.37 (13)
C5—C4—H4A 109.1 O3—C17—C18 123.70 (13)
C3—C4—H4B 109.1 O3—C17—C16 115.52 (12)
C5—C4—H4B 109.1 C18—C17—C16 120.78 (14)
H4A—C4—H4B 107.8 C19—C18—C17 119.62 (14)
C4—C5—C6 114.05 (12) C19—C18—H18 120.2
C4—C5—H5A 108.7 C17—C18—H18 120.2
C6—C5—H5A 108.7 C20—C19—C18 120.67 (14)
C4—C5—H5B 108.7 C20—C19—H19 119.7
C6—C5—H5B 108.7 C18—C19—H19 119.7
H5A—C5—H5B 107.6 C19—C20—C21 119.53 (16)
C8—C6—C5 109.21 (12) C19—C20—H20 120.2
C8—C6—C7 106.72 (11) C21—C20—H20 120.2
C5—C6—C7 115.07 (12) C16—C21—C20 121.40 (14)
C8—C6—H6 108.6 C16—C21—H21 119.3
C5—C6—H6 108.6 C20—C21—H21 119.3
C7—C6—H6 108.6 O2—C22—H22A 109.5
N1—C7—C16 110.89 (11) O2—C22—H22B 109.5
N1—C7—C6 109.03 (11) H22A—C22—H22B 109.5
C16—C7—C6 111.68 (11) O2—C22—H22C 109.5
N1—C7—H7 108.4 H22A—C22—H22C 109.5
C16—C7—H7 108.4 H22B—C22—H22C 109.5
C6—C7—H7 108.4 O3—C23—H23A 109.5
O1—C8—C6 123.22 (14) O3—C23—H23B 109.5
O1—C8—C2 123.74 (14) H23A—C23—H23B 109.5
C6—C8—C2 113.02 (12) O3—C23—H23C 109.5
C10—C9—C14 117.47 (13) H23A—C23—H23C 109.5
C10—C9—C1 120.91 (12) H23B—C23—H23C 109.5
C14—C9—C1 121.54 (13) C7—N1—C1 113.43 (11)
C11—C10—C9 121.82 (14) C7—N1—H1A 108.5 (10)
C11—C10—H10 119.1 C1—N1—H1A 106.7 (10)
C9—C10—H10 119.1 C14—O2—C22 118.30 (12)
C12—C11—C10 119.47 (15) C17—O3—C23 117.79 (13)
N1—C1—C2—C8 56.53 (14) C9—C10—C11—C12 −0.4 (3)
C9—C1—C2—C8 179.06 (12) C10—C11—C12—C13 0.0 (3)
N1—C1—C2—C15 175.70 (12) C11—C12—C13—C14 0.4 (3)
C9—C1—C2—C15 −61.77 (16) C12—C13—C14—O2 177.88 (14)
N1—C1—C2—C3 −60.04 (15) C12—C13—C14—C9 −0.5 (2)
C9—C1—C2—C3 62.49 (16) C10—C9—C14—O2 −178.29 (13)
C8—C2—C3—C4 −51.75 (17) C1—C9—C14—O2 −1.4 (2)
C15—C2—C3—C4 −171.39 (14) C10—C9—C14—C13 0.2 (2)
C1—C2—C3—C4 63.89 (17) C1—C9—C14—C13 177.06 (13)
C2—C3—C4—C5 44.90 (19) N1—C7—C16—C21 −20.15 (19)
C3—C4—C5—C6 −43.79 (19) C6—C7—C16—C21 101.66 (15)
C4—C5—C6—C8 51.92 (17) N1—C7—C16—C17 160.12 (12)
C4—C5—C6—C7 −68.05 (17) C6—C7—C16—C17 −78.06 (16)
C8—C6—C7—N1 −58.41 (14) C21—C16—C17—O3 179.13 (12)
C5—C6—C7—N1 62.92 (15) C7—C16—C17—O3 −1.14 (19)
C8—C6—C7—C16 178.70 (11) C21—C16—C17—C18 −0.8 (2)
C5—C6—C7—C16 −59.97 (16) C7—C16—C17—C18 178.93 (13)
C5—C6—C8—O1 119.23 (16) O3—C17—C18—C19 −179.09 (14)
C7—C6—C8—O1 −115.79 (16) C16—C17—C18—C19 0.8 (2)
C5—C6—C8—C2 −62.18 (15) C17—C18—C19—C20 −0.1 (2)
C7—C6—C8—C2 62.80 (15) C18—C19—C20—C21 −0.7 (3)
C15—C2—C8—O1 −1.6 (2) C17—C16—C21—C20 0.0 (2)
C3—C2—C8—O1 −120.63 (16) C7—C16—C21—C20 −179.71 (14)
C1—C2—C8—O1 117.57 (16) C19—C20—C21—C16 0.7 (3)
C15—C2—C8—C6 179.84 (13) C16—C7—N1—C1 −176.79 (11)
C3—C2—C8—C6 60.79 (15) C6—C7—N1—C1 59.86 (15)
C1—C2—C8—C6 −61.01 (15) C9—C1—N1—C7 174.42 (11)
N1—C1—C9—C10 34.09 (17) C2—C1—N1—C7 −59.77 (15)
C2—C1—C9—C10 −89.44 (16) C13—C14—O2—C22 9.9 (2)
N1—C1—C9—C14 −142.65 (13) C9—C14—O2—C22 −171.66 (14)
C2—C1—C9—C14 93.82 (16) C18—C17—O3—C23 9.8 (2)
C14—C9—C10—C11 0.2 (2) C16—C17—O3—C23 −170.10 (16)
C1—C9—C10—C11 −176.64 (14)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1A···Cg1i 0.862 (15) 2.852 (3) 3.6276 (14) 150.6 (12)

Symmetry codes: (i) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2190).

References

  1. Barker, D., Lin, D. H. S., Carland, J. E., Chu, C. P. Y., Chebib, M., Brimble, M. A., Savage, G. P. & McLeod, M. D. (2005). Bioorg. Med. Chem. 13, 4565–4575. [DOI] [PubMed]
  2. Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2004). APEX2, SAINT-Plus and XPREP, Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  5. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  6. Hardick, D. J., Blagbrough, I. S., Cooper, G., Potter, B. V. L., Critchley, T. & Wonnacott, S. (1996). J. Med. Chem. 39, 4860–4866. [DOI] [PubMed]
  7. Jeyaraman, R. & Avila, S. (1981). Chem. Rev. 81, 149–174.
  8. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  9. Nardelli, M. (1983). Acta Cryst. C39, 1141–1142.
  10. Padegimas, S. J. & Kovacic, P. (1972). J. Org. Chem. 37, 2672–2676.
  11. Parthiban, P., Ramkumar, V. & Jeong, Y. T. (2009). Acta Cryst. E65, o1596. [DOI] [PMC free article] [PubMed]
  12. Parthiban, P., Ramkumar, V., Kim, M. S., Son, S. M. & Jeong, Y. T. (2008). Acta Cryst. E64, o2385. [DOI] [PMC free article] [PubMed]
  13. Parthiban, P., Ramkumar, V., Kim, M. S., Son, S. M. & Jeong, Y. T. (2009). Acta Cryst. E65, o1383. [DOI] [PMC free article] [PubMed]
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Smith-Verdier, P., Florencio, F. & García-Blanco, S. (1983). Acta Cryst. C39, 101–103.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809047928/ez2190sup1.cif

e-65-o3103-sup1.cif (22.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809047928/ez2190Isup2.hkl

e-65-o3103-Isup2.hkl (225.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES