Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Nov 14;65(Pt 12):o3088–o3089. doi: 10.1107/S1600536809047217

(4-Methyl­phen­yl)[3-(5-nitro-2-fur­yl)-1-phenyl-1H-pyrazol-4-yl]methanone

Jia Hao Goh a,, Hoong-Kun Fun a,*,§, Nithinchandra b, B Kalluraya b
PMCID: PMC2972143  PMID: 21578818

Abstract

In the title pyrazole compound, C21H15N3O4, an intra­molecular C—H⋯O hydrogen bond generates an S(7) ring motif. The essentially planar furan and pyrazole rings [maximum atomic deviations of 0.011 (2) and 0.006 (2) Å, respectively] make a dihedral angle of 9.21 (11)°. The nitro group is approximately coplanar with the attached furan ring, as indicated by the dihedral angle of 4.5 (2)°. In the crystal structure, inter­molecular C—H⋯O inter­actions form bifurcated hydrogen bonds, generating R 1 2(7) ring motifs. These hydrogen bonds link the mol­ecules into infinite chains along the a axis. The crystal structure is further stabilized by weak inter­molecular π–π inter­actions [centroid–centroid distance = 3.4118 (10) Å].

Related literature

For general background to and applications of the title compound, see: Hegde et al. (2006); Kalluraya et al. (1994); Rai & Kalluraya (2006); Rai et al. (2008). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).graphic file with name e-65-o3088-scheme1.jpg

Experimental

Crystal data

  • C21H15N3O4

  • M r = 373.36

  • Monoclinic, Inline graphic

  • a = 11.3859 (2) Å

  • b = 7.5746 (2) Å

  • c = 21.0008 (4) Å

  • β = 107.202 (1)°

  • V = 1730.17 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.19 × 0.18 × 0.10 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.981, T max = 0.990

  • 22336 measured reflections

  • 5085 independent reflections

  • 2678 reflections with I > 2σ(I)

  • R int = 0.085

Refinement

  • R[F 2 > 2σ(F 2)] = 0.067

  • wR(F 2) = 0.135

  • S = 1.02

  • 5085 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809047217/fj2257sup1.cif

e-65-o3088-sup1.cif (21.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809047217/fj2257Isup2.hkl

e-65-o3088-Isup2.hkl (249.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11A⋯O2 0.93 2.24 2.902 (2) 128
C14—H14A⋯O3i 0.93 2.55 3.467 (2) 168
C20—H20A⋯O3i 0.93 2.46 3.373 (3) 166

Symmetry code: (i) Inline graphic.

Acknowledgments

HKF and JHG thank Universiti Sains Malaysia (USM) for the Research University Golden Goose grant (No. 1001/PFIZIK/811012). JHG also thanks USM for the award of a USM fellowship.

supplementary crystallographic information

Comment

The pyrazole nucleus constitutes an interesting class of organic compound with diverse chemical applications. They possess anti-pyretic, anti-tumor, tranquilizing and herbicidal activities. Sydnones are easily accessible aromatic compounds and versatile synthetic intermediates with a masked azomethine imine unit. The 1,3-dipolar cycloaddition reaction with various dipolarophiles offers a convenient synthetic route for the preparation of pyrazole derivatives and has been studied extensively (Rai & Kalluraya, 2006; Rai et al., 2008).

The incorporation of 5-nitrofuran moiety into various heterocyclic systems has found to increase their biological activities. We have reported a few heterocyclic systems carrying 5-nitrofuran moiety as potent anti-microbial agents (Hegde et al., 2006). In continuation of our studies on 1,3-dipolar cycloaddition reactions of sydnones with dipolarophiles carrying nitrofuran moiety (Kalluraya et al., 1994), we herein report the synthesis of this new pyrazole.

In the title pyrazole compound, an intramolecular C11—H11A···O2 hydrogen bond (Table 1) generates a seven-membered ring, producing an S(7) ring motif (Fig. 1, Bernstein et al., 1995). The furan (C10-C13/O1) and pyrazole (C8/C9/N2/N1/C14) rings are essentially planar, with maximum deviations of 0.011 (2) and 0.006 (2) Å, respectively, for atoms C10 and N2. These two rings are slightly twisted to one another, making a dihedral angle of 9.21 (11)° between them. The nitro group is approximately coplanar with the attached furan ring, as shown by the dihedral angle formed between the mean plane through N3/O3/O4 and the C10-C13/O1 furan ring of 4.5 (2)°. The bond lengths (Allen et al., 1987) and angles observed are within normal ranges.

In the crystal structure (Fig. 2), intermolecular C14—H14A···O3 and C20—H20A···O3 interactions (Table 1) form bifurcated acceptor hydrogen bonds which generate R12(7) ring motifs. These hydrogen bonds link the molecules into one-dimensional infinite chains along the a axis. The crystal structure is further stabillized by weak intermolecular π–π interactions [Cg1···Cg1 = 3.4118 (10) Å; Cg1 is the centroid of the C8/C9/N2/N1/C14 pyrazole ring].

Experimental

3-Phenyl sydnone (0.01 mol) and 1-(p-methylphenyl)-3-(5-nitro-2-furyl)-2-propyn-1-one (0.01 mol) were dissolved in 10 ml dry xylene and refluxed for 4 h. After completion of the reaction, the solvent was removed by distillation under reduced pressure. The crude product obtained was purified by recrystallization from ethanol and DMF mixture. The solid obtained was collected by filtration, washed with ethanol and dried. Single crystals suitable for X-ray analysis were obtained from a 1:2 mixture of DMF and ethanol by slow evaporation.

Refinement

All the hydrogen atoms were placed in their calculated positions, with C—H = 0.93 – 0.96 Å, and refined using a riding model, with Uiso = 1.2 or 1.5 Ueq(C). A rotating group model was used for the methyl group.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme. An intramolecular hydrogen bond is shown as dashed line.

Fig. 2.

Fig. 2.

The crystal structure of the title compound, viewed along the b axis, showing one dimensional infinite chains along the a axis. Intermolecular hydrogen bonds are shown as dashed lines.

Crystal data

C21H15N3O4 F(000) = 776
Mr = 373.36 Dx = 1.433 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2474 reflections
a = 11.3859 (2) Å θ = 3.3–30.1°
b = 7.5746 (2) Å µ = 0.10 mm1
c = 21.0008 (4) Å T = 100 K
β = 107.202 (1)° Block, brown
V = 1730.17 (6) Å3 0.19 × 0.18 × 0.10 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 5085 independent reflections
Radiation source: fine-focus sealed tube 2678 reflections with I > 2σ(I)
graphite Rint = 0.085
φ and ω scans θmax = 30.1°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −15→16
Tmin = 0.981, Tmax = 0.990 k = −10→9
22336 measured reflections l = −29→29

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0519P)2 + 0.0761P] where P = (Fo2 + 2Fc2)/3
5085 reflections (Δ/σ)max < 0.001
254 parameters Δρmax = 0.27 e Å3
0 restraints Δρmin = −0.28 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 −0.26961 (11) 0.68826 (17) −0.02101 (6) 0.0275 (3)
O2 0.05600 (11) 0.98467 (18) 0.11675 (6) 0.0286 (3)
O3 −0.56846 (12) 0.7483 (2) −0.01746 (8) 0.0464 (4)
O4 −0.49541 (13) 0.5852 (2) −0.08230 (8) 0.0473 (4)
N1 0.04825 (13) 0.6498 (2) −0.06270 (7) 0.0219 (4)
N2 −0.06690 (14) 0.6518 (2) −0.05573 (8) 0.0245 (4)
N3 −0.48241 (15) 0.6877 (2) −0.03543 (9) 0.0340 (4)
C1 0.33869 (18) 0.7702 (3) 0.12408 (9) 0.0284 (5)
H1A 0.3085 0.6624 0.1049 0.034*
C2 0.46370 (18) 0.7905 (3) 0.15579 (10) 0.0320 (5)
H2A 0.5160 0.6946 0.1585 0.038*
C3 0.51237 (18) 0.9510 (3) 0.18361 (10) 0.0310 (5)
C4 0.43195 (18) 1.0917 (3) 0.17911 (9) 0.0294 (5)
H4A 0.4628 1.2009 0.1965 0.035*
C5 0.30696 (18) 1.0725 (3) 0.14930 (9) 0.0269 (5)
H5A 0.2546 1.1675 0.1480 0.032*
C6 0.25869 (17) 0.9108 (3) 0.12104 (9) 0.0248 (4)
C7 0.12233 (17) 0.8988 (2) 0.09159 (9) 0.0222 (4)
C8 0.06949 (16) 0.7914 (2) 0.03174 (9) 0.0222 (4)
C9 −0.05508 (16) 0.7393 (2) 0.00105 (9) 0.0220 (4)
C10 −0.16698 (17) 0.7701 (2) 0.01993 (9) 0.0236 (4)
C11 −0.19765 (17) 0.8688 (3) 0.06673 (10) 0.0281 (5)
H11A −0.1443 0.9338 0.1007 0.034*
C12 −0.32650 (18) 0.8533 (3) 0.05368 (10) 0.0327 (5)
H12A −0.3752 0.9068 0.0767 0.039*
C13 −0.36327 (17) 0.7451 (3) 0.00098 (10) 0.0274 (5)
C14 0.13067 (17) 0.7302 (2) −0.01160 (9) 0.0220 (4)
H14A 0.2143 0.7425 −0.0064 0.026*
C15 0.06792 (17) 0.5688 (2) −0.12035 (9) 0.0232 (4)
C16 −0.02628 (18) 0.4746 (3) −0.16354 (9) 0.0273 (5)
H16A −0.1025 0.4664 −0.1559 0.033*
C17 −0.00643 (19) 0.3924 (3) −0.21841 (10) 0.0331 (5)
H17A −0.0693 0.3275 −0.2473 0.040*
C18 0.10610 (19) 0.4062 (3) −0.23042 (10) 0.0345 (5)
H18A 0.1190 0.3516 −0.2674 0.041*
C19 0.19937 (19) 0.5017 (3) −0.18716 (10) 0.0328 (5)
H19A 0.2751 0.5111 −0.1953 0.039*
C20 0.18140 (18) 0.5839 (3) −0.13170 (10) 0.0278 (5)
H20A 0.2445 0.6481 −0.1026 0.033*
C21 0.64761 (18) 0.9736 (3) 0.21836 (11) 0.0425 (6)
H21A 0.6768 1.0784 0.2022 0.064*
H21B 0.6916 0.8729 0.2095 0.064*
H21C 0.6607 0.9838 0.2655 0.064*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0179 (7) 0.0278 (8) 0.0350 (8) −0.0026 (6) 0.0053 (6) 0.0027 (6)
O2 0.0245 (8) 0.0303 (8) 0.0307 (7) −0.0007 (6) 0.0078 (6) −0.0007 (6)
O3 0.0191 (8) 0.0648 (12) 0.0557 (10) −0.0010 (8) 0.0118 (8) −0.0040 (9)
O4 0.0270 (9) 0.0471 (10) 0.0633 (11) −0.0079 (8) 0.0062 (8) −0.0162 (9)
N1 0.0163 (8) 0.0217 (9) 0.0264 (8) −0.0011 (7) 0.0045 (7) 0.0028 (7)
N2 0.0185 (9) 0.0234 (9) 0.0315 (9) 0.0000 (7) 0.0073 (7) 0.0040 (7)
N3 0.0214 (10) 0.0361 (11) 0.0429 (11) −0.0028 (8) 0.0069 (9) 0.0053 (9)
C1 0.0259 (11) 0.0278 (12) 0.0283 (11) −0.0008 (10) 0.0031 (9) 0.0010 (9)
C2 0.0228 (11) 0.0345 (13) 0.0354 (12) 0.0051 (10) 0.0035 (10) 0.0009 (10)
C3 0.0213 (11) 0.0412 (14) 0.0279 (11) −0.0021 (10) 0.0036 (9) −0.0005 (10)
C4 0.0262 (11) 0.0302 (12) 0.0292 (11) −0.0049 (10) 0.0040 (9) −0.0017 (9)
C5 0.0244 (11) 0.0279 (12) 0.0279 (10) 0.0009 (9) 0.0070 (9) 0.0018 (9)
C6 0.0205 (10) 0.0289 (11) 0.0242 (10) −0.0020 (9) 0.0052 (9) 0.0042 (9)
C7 0.0202 (10) 0.0216 (11) 0.0237 (10) −0.0023 (8) 0.0046 (8) 0.0055 (8)
C8 0.0180 (10) 0.0207 (10) 0.0259 (10) −0.0008 (8) 0.0033 (8) 0.0051 (8)
C9 0.0192 (10) 0.0184 (10) 0.0260 (10) 0.0010 (8) 0.0031 (8) 0.0058 (8)
C10 0.0187 (10) 0.0206 (11) 0.0283 (10) −0.0031 (8) 0.0021 (9) 0.0059 (8)
C11 0.0205 (11) 0.0307 (12) 0.0321 (11) −0.0018 (9) 0.0062 (9) 0.0013 (9)
C12 0.0242 (11) 0.0372 (13) 0.0386 (12) −0.0002 (10) 0.0124 (10) 0.0007 (10)
C13 0.0149 (10) 0.0299 (12) 0.0363 (11) −0.0010 (9) 0.0059 (9) 0.0066 (10)
C14 0.0164 (10) 0.0212 (11) 0.0251 (10) −0.0016 (8) 0.0013 (8) 0.0052 (8)
C15 0.0229 (10) 0.0205 (10) 0.0240 (10) 0.0020 (9) 0.0034 (9) 0.0060 (8)
C16 0.0209 (11) 0.0295 (12) 0.0281 (10) −0.0006 (9) 0.0020 (9) 0.0042 (9)
C17 0.0316 (13) 0.0349 (13) 0.0267 (11) −0.0021 (10) −0.0006 (10) 0.0000 (10)
C18 0.0383 (13) 0.0374 (13) 0.0269 (11) 0.0072 (11) 0.0083 (10) 0.0007 (10)
C19 0.0296 (12) 0.0347 (13) 0.0365 (12) 0.0051 (10) 0.0136 (10) 0.0067 (10)
C20 0.0217 (11) 0.0275 (11) 0.0319 (11) −0.0009 (9) 0.0042 (9) 0.0030 (9)
C21 0.0238 (12) 0.0503 (16) 0.0482 (14) −0.0021 (11) 0.0024 (11) −0.0084 (12)

Geometric parameters (Å, °)

O1—C13 1.352 (2) C8—C14 1.380 (2)
O1—C10 1.377 (2) C8—C9 1.429 (2)
O2—C7 1.229 (2) C9—C10 1.461 (2)
O3—N3 1.2377 (19) C10—C11 1.360 (3)
O4—N3 1.228 (2) C11—C12 1.415 (3)
N1—C14 1.345 (2) C11—H11A 0.9300
N1—N2 1.3617 (19) C12—C13 1.341 (3)
N1—C15 1.433 (2) C12—H12A 0.9300
N2—C9 1.336 (2) C14—H14A 0.9300
N3—C13 1.414 (2) C15—C16 1.381 (3)
C1—C2 1.390 (3) C15—C20 1.386 (2)
C1—C6 1.391 (3) C16—C17 1.386 (3)
C1—H1A 0.9300 C16—H16A 0.9300
C2—C3 1.391 (3) C17—C18 1.381 (3)
C2—H2A 0.9300 C17—H17A 0.9300
C3—C4 1.390 (3) C18—C19 1.380 (3)
C3—C21 1.506 (3) C18—H18A 0.9300
C4—C5 1.383 (3) C19—C20 1.388 (3)
C4—H4A 0.9300 C19—H19A 0.9300
C5—C6 1.400 (3) C20—H20A 0.9300
C5—H5A 0.9300 C21—H21A 0.9600
C6—C7 1.494 (3) C21—H21B 0.9600
C7—C8 1.468 (3) C21—H21C 0.9600
C13—O1—C10 104.64 (15) O1—C10—C9 113.95 (16)
C14—N1—N2 112.07 (14) C10—C11—C12 106.71 (18)
C14—N1—C15 128.45 (15) C10—C11—H11A 126.6
N2—N1—C15 119.47 (15) C12—C11—H11A 126.6
C9—N2—N1 104.81 (15) C13—C12—C11 105.26 (17)
O4—N3—O3 124.09 (18) C13—C12—H12A 127.4
O4—N3—C13 119.78 (17) C11—C12—H12A 127.4
O3—N3—C13 116.12 (18) C12—C13—O1 113.05 (17)
C2—C1—C6 120.08 (19) C12—C13—N3 130.51 (18)
C2—C1—H1A 120.0 O1—C13—N3 116.41 (18)
C6—C1—H1A 120.0 N1—C14—C8 108.03 (16)
C1—C2—C3 121.47 (19) N1—C14—H14A 126.0
C1—C2—H2A 119.3 C8—C14—H14A 126.0
C3—C2—H2A 119.3 C16—C15—C20 120.81 (18)
C4—C3—C2 117.98 (19) C16—C15—N1 119.41 (16)
C4—C3—C21 120.30 (19) C20—C15—N1 119.78 (17)
C2—C3—C21 121.72 (19) C15—C16—C17 119.49 (17)
C5—C4—C3 121.27 (19) C15—C16—H16A 120.3
C5—C4—H4A 119.4 C17—C16—H16A 120.3
C3—C4—H4A 119.4 C18—C17—C16 120.4 (2)
C4—C5—C6 120.43 (18) C18—C17—H17A 119.8
C4—C5—H5A 119.8 C16—C17—H17A 119.8
C6—C5—H5A 119.8 C19—C18—C17 119.62 (19)
C1—C6—C5 118.74 (18) C19—C18—H18A 120.2
C1—C6—C7 123.94 (18) C17—C18—H18A 120.2
C5—C6—C7 117.27 (17) C18—C19—C20 120.77 (18)
O2—C7—C8 120.88 (17) C18—C19—H19A 119.6
O2—C7—C6 119.03 (17) C20—C19—H19A 119.6
C8—C7—C6 120.04 (16) C15—C20—C19 118.91 (19)
C14—C8—C9 103.72 (16) C15—C20—H20A 120.5
C14—C8—C7 126.29 (17) C19—C20—H20A 120.5
C9—C8—C7 129.78 (16) C3—C21—H21A 109.5
N2—C9—C8 111.36 (15) C3—C21—H21B 109.5
N2—C9—C10 117.12 (17) H21A—C21—H21B 109.5
C8—C9—C10 131.49 (18) C3—C21—H21C 109.5
C11—C10—O1 110.30 (15) H21A—C21—H21C 109.5
C11—C10—C9 135.64 (18) H21B—C21—H21C 109.5
C14—N1—N2—C9 1.1 (2) N2—C9—C10—O1 6.0 (2)
C15—N1—N2—C9 −178.35 (15) C8—C9—C10—O1 −176.27 (17)
C6—C1—C2—C3 −1.6 (3) O1—C10—C11—C12 −1.9 (2)
C1—C2—C3—C4 0.3 (3) C9—C10—C11—C12 174.0 (2)
C1—C2—C3—C21 179.66 (18) C10—C11—C12—C13 0.9 (2)
C2—C3—C4—C5 1.4 (3) C11—C12—C13—O1 0.4 (2)
C21—C3—C4—C5 −177.92 (17) C11—C12—C13—N3 −177.31 (19)
C3—C4—C5—C6 −1.9 (3) C10—O1—C13—C12 −1.5 (2)
C2—C1—C6—C5 1.2 (3) C10—O1—C13—N3 176.56 (16)
C2—C1—C6—C7 −176.31 (17) O4—N3—C13—C12 −179.2 (2)
C4—C5—C6—C1 0.5 (3) O3—N3—C13—C12 1.7 (3)
C4—C5—C6—C7 178.19 (16) O4—N3—C13—O1 3.2 (3)
C1—C6—C7—O2 144.79 (18) O3—N3—C13—O1 −175.94 (16)
C5—C6—C7—O2 −32.7 (2) N2—N1—C14—C8 −0.6 (2)
C1—C6—C7—C8 −37.8 (3) C15—N1—C14—C8 178.73 (16)
C5—C6—C7—C8 144.68 (17) C9—C8—C14—N1 −0.1 (2)
O2—C7—C8—C14 160.61 (18) C7—C8—C14—N1 −175.08 (17)
C6—C7—C8—C14 −16.7 (3) C14—N1—C15—C16 172.41 (18)
O2—C7—C8—C9 −13.1 (3) N2—N1—C15—C16 −8.3 (3)
C6—C7—C8—C9 169.56 (18) C14—N1—C15—C20 −6.8 (3)
N1—N2—C9—C8 −1.1 (2) N2—N1—C15—C20 172.55 (16)
N1—N2—C9—C10 177.03 (15) C20—C15—C16—C17 0.8 (3)
C14—C8—C9—N2 0.8 (2) N1—C15—C16—C17 −178.34 (17)
C7—C8—C9—N2 175.53 (17) C15—C16—C17—C18 −0.9 (3)
C14—C8—C9—C10 −177.03 (19) C16—C17—C18—C19 0.4 (3)
C7—C8—C9—C10 −2.3 (3) C17—C18—C19—C20 0.0 (3)
C13—O1—C10—C11 2.0 (2) C16—C15—C20—C19 −0.4 (3)
C13—O1—C10—C9 −174.79 (15) N1—C15—C20—C19 178.79 (17)
N2—C9—C10—C11 −169.7 (2) C18—C19—C20—C15 −0.1 (3)
C8—C9—C10—C11 8.0 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C11—H11A···O2 0.93 2.24 2.902 (2) 128
C14—H14A···O3i 0.93 2.55 3.467 (2) 168
C20—H20A···O3i 0.93 2.46 3.373 (3) 166

Symmetry codes: (i) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2257).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  5. Hegde, J. C., Rai, G., Puranic, V. G. & Kalluraya, B. (2006). Synth. Commun. 36, 1285–1290.
  6. Kalluraya, B., D’Souza, A. & Holla, B. S. (1994). Indian J. Chem. Sect. B, 33, 1017–1022.
  7. Rai, N. S. & Kalluraya, B. (2006). Indian J. Chem. Sect. B, 46, 375–378.
  8. Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715–1720. [DOI] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809047217/fj2257sup1.cif

e-65-o3088-sup1.cif (21.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809047217/fj2257Isup2.hkl

e-65-o3088-Isup2.hkl (249.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES