Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Nov 7;65(Pt 12):o3014. doi: 10.1107/S1600536809045814

3-(2-Methyl­phen­yl)-2-thioxo-1,3-thia­zolidin-4-one

Durre Shahwar a, M Nawaz Tahir b,*, Asma Yasmeen a, Naeem Ahmad a, Muhammad Akmal Khan a
PMCID: PMC2972146  PMID: 21578751

Abstract

In the title compound, C10H9NOS2, the 1,3-thia­zolidine and 2-methyl­phenyl rings are oriented at a dihedral angle of 84.44 (9)°. In the crystal, an unusual bifurcated C—H⋯(O,π) inter­action leads to zigzag chains of mol­ecules.

Related literature

For background to rhodanine derivatives, see: Cutshall et al. (2005). For related structures, see: Shahwar et al. (2009a ,b ,c ).graphic file with name e-65-o3014-scheme1.jpg

Experimental

Crystal data

  • C10H9NOS2

  • M r = 223.30

  • Monoclinic, Inline graphic

  • a = 23.690 (5) Å

  • b = 7.1401 (17) Å

  • c = 14.628 (3) Å

  • β = 122.215 (6)°

  • V = 2093.5 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.47 mm−1

  • T = 296 K

  • 0.34 × 0.16 × 0.14 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.914, T max = 0.934

  • 10878 measured reflections

  • 2661 independent reflections

  • 1436 reflections with I > 2σ(I)

  • R int = 0.061

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057

  • wR(F 2) = 0.189

  • S = 1.02

  • 2661 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809045814/hb5205sup1.cif

e-65-o3014-sup1.cif (15.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809045814/hb5205Isup2.hkl

e-65-o3014-Isup2.hkl (128.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯O1i 0.97 2.58 3.214 (5) 123
C8—H8ACg2i 0.97 2.65 3.420 (4) 137

Symmetry code: (i) Inline graphic. Cg2 is the centroid of the C1–C6 ring.

Acknowledgments

Durre Shahwar is grateful to Government College University, Lahore, for providing funds under the GCU funded Research Projects Programme.

supplementary crystallographic information

Comment

Rhodanine-based molecules have been popular as small molecule inhibitors of numerous targets such as HCV NS3 protease, aldose reductase, beta-lactamase, UDP-N-acetylmuramate/L-alanine ligase, antidiabetic agents, cathepsin D, and histidine decarboxylase (Cutshall et al., 2005). We herein, report the crystal structure and preparation of the title compound (I, Fig. 1) which is one of the rhodanine derivatives from the series of compounds prepared by our group for beta-lactamase and xanthine oxidase enzyme inhibition studies.

The crystal structures of (II) (5Z)-5-(2-Hydroxybenzylidene)-3-phenyl- 2-thioxo-1,3-thiazolidin-4-one (Shahwar et al., 2009a), (III) (5E)-5-(4-Hydroxy-3-methoxybenzylidene)-2-thioxo-1, 3-thiazolidin-4-one methanol monosolvate (Shahwar et al., 2009b) and (IV) (5Z)-5-(2-Hydroxybenzylidene)-2-thioxo-1,3-thiazolidin-4-one methanol hemisolvate (Shahwar et al., 2009c) have been reported which are the rhodanine derivatives. The crystal stucture of (II) contains (I) as a group.

In (I), the 2-methylphenyl A (C1–C6/C10) and the rhodanine group B (N1/C7/C8/S1/C9/O1/S2) are planar with maximum r. m. s. deviations of 0.0051 and 0.0387 Å respectively, from their mean square planes. The dihedral angle between A/B is 84.44 (9)°. The molecules are stabilized in the form of zig–zag infinte one dimensional polymeric chains due to intermolecular H-bondings (Table 1, Fig. 2). The C–H···π interaction (Table 1) also play a role in stabilizing the molecules.

Experimental

The title compound was prepared by a three step reaction procedure. In the first step ortho toluidine aniline (10.7 g, 0.1 mol) and triethylamine (50.5 g, 0.5 mol) were stirred in ethanol (20 ml) followed by dropwise addition of CS2 (15.2 g, 0.2 mol) while keeping the flask in an ice bath. The precipitate obtained were filtered off and washed with diethyl ether.

In second step, a solution of sodium chloroacetate (11.6 g, 0.1 mol) and chloroacetic acid (18.9 g, 0.2 mol) was prepared in 50 ml distilled water. To this solution the precipitates obtained in first step were added gradually and stirred at 273 K. This mixture was stirred untill it turned dark yellow.

In third step the yellow mixture was mixed in 140 ml hot (363–368 K) hydrochloric acid (6 N) and stirred for five minutes to obtain colorless crystalline precipitates. These precipitates were recrystalized in chloroform to get the dark yellow needles of (I).

Refinement

The coordinates of H2 were refined. The H-atoms were positioned geometrically (C–H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C)..

Figures

Fig. 1.

Fig. 1.

View of (I) with displacement ellipsoids drawn at the 50% probability level.

Crystal data

C10H9NOS2 F(000) = 928
Mr = 223.30 Dx = 1.417 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 2661 reflections
a = 23.690 (5) Å θ = 2.8–28.7°
b = 7.1401 (17) Å µ = 0.47 mm1
c = 14.628 (3) Å T = 296 K
β = 122.215 (6)° Cut needle, dark yellow
V = 2093.5 (8) Å3 0.34 × 0.16 × 0.14 mm
Z = 8

Data collection

Bruker Kappa APEXII CCD diffractometer 2661 independent reflections
Radiation source: fine-focus sealed tube 1436 reflections with I > 2σ(I)
graphite Rint = 0.061
Detector resolution: 7.40 pixels mm-1 θmax = 28.7°, θmin = 2.8°
ω scans h = −31→30
Absorption correction: multi-scan (SADABS; Bruker, 2005) k = −9→5
Tmin = 0.914, Tmax = 0.934 l = −17→19
10878 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.189 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0949P)2 + 0.6816P] where P = (Fo2 + 2Fc2)/3
2661 reflections (Δ/σ)max < 0.001
128 parameters Δρmax = 0.63 e Å3
0 restraints Δρmin = −0.31 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.21396 (5) −0.00494 (13) −0.00417 (7) 0.0612 (3)
S2 0.07182 (5) 0.09169 (18) −0.10373 (8) 0.0903 (4)
O1 0.26644 (11) 0.2834 (4) 0.24779 (19) 0.0733 (9)
N1 0.17183 (11) 0.1968 (3) 0.09176 (18) 0.0475 (8)
C1 0.12842 (14) 0.2941 (4) 0.1167 (2) 0.0499 (10)
C2 0.11018 (15) 0.4752 (5) 0.0824 (2) 0.0527 (10)
C3 0.06977 (17) 0.5655 (6) 0.1131 (3) 0.0672 (12)
C4 0.05067 (19) 0.4719 (7) 0.1737 (3) 0.0768 (16)
C5 0.0691 (2) 0.2946 (7) 0.2068 (3) 0.0779 (16)
C6 0.10811 (17) 0.2011 (6) 0.1777 (3) 0.0660 (14)
C7 0.23984 (15) 0.1956 (5) 0.1655 (2) 0.0509 (11)
C8 0.27516 (16) 0.0721 (5) 0.1295 (3) 0.0555 (11)
C9 0.14858 (16) 0.1022 (4) −0.0033 (3) 0.0537 (11)
C10 0.1303 (2) 0.5694 (6) 0.0175 (3) 0.0726 (14)
H3 0.05615 0.68853 0.09201 0.0808*
H4 0.02385 0.53341 0.19283 0.0918*
H5 0.05568 0.23555 0.24881 0.0933*
H6 0.12066 0.07745 0.19869 0.0793*
H8A 0.29480 −0.03430 0.17767 0.0668*
H8B 0.31039 0.14084 0.12918 0.0668*
H10A 0.11483 0.50009 −0.04790 0.1090*
H10B 0.17806 0.57808 0.05699 0.1090*
H10C 0.11140 0.69291 0.00017 0.1090*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0782 (6) 0.0598 (6) 0.0604 (5) 0.0158 (4) 0.0468 (5) 0.0023 (4)
S2 0.0723 (7) 0.0974 (9) 0.0678 (7) 0.0173 (6) 0.0150 (5) −0.0333 (6)
O1 0.0542 (14) 0.097 (2) 0.0562 (14) 0.0095 (13) 0.0211 (12) −0.0126 (14)
N1 0.0499 (14) 0.0541 (16) 0.0422 (13) 0.0081 (11) 0.0271 (12) −0.0011 (11)
C1 0.0464 (16) 0.0565 (19) 0.0440 (16) 0.0030 (13) 0.0222 (14) −0.0077 (14)
C2 0.0533 (18) 0.064 (2) 0.0423 (16) 0.0056 (14) 0.0265 (15) −0.0023 (14)
C3 0.060 (2) 0.075 (2) 0.057 (2) 0.0178 (17) 0.0247 (17) −0.0056 (18)
C4 0.057 (2) 0.121 (4) 0.061 (2) 0.002 (2) 0.0373 (19) −0.013 (2)
C5 0.076 (3) 0.103 (3) 0.074 (2) −0.016 (2) 0.053 (2) −0.012 (2)
C6 0.066 (2) 0.086 (3) 0.0577 (19) −0.0094 (18) 0.0409 (18) −0.0094 (18)
C7 0.0538 (18) 0.059 (2) 0.0442 (17) 0.0084 (15) 0.0291 (15) 0.0084 (15)
C8 0.0607 (19) 0.063 (2) 0.0565 (18) 0.0147 (15) 0.0404 (17) 0.0164 (16)
C9 0.069 (2) 0.0464 (18) 0.0475 (17) 0.0080 (14) 0.0323 (16) −0.0041 (14)
C10 0.089 (3) 0.062 (2) 0.079 (2) 0.0073 (19) 0.053 (2) 0.008 (2)

Geometric parameters (Å, °)

S1—C8 1.790 (4) C4—C5 1.343 (7)
S1—C9 1.734 (4) C5—C6 1.379 (7)
S2—C9 1.619 (4) C7—C8 1.492 (6)
O1—C7 1.196 (4) C3—H3 0.9300
N1—C1 1.440 (4) C4—H4 0.9300
N1—C7 1.381 (4) C5—H5 0.9300
N1—C9 1.370 (4) C6—H6 0.9300
C1—C2 1.371 (5) C8—H8A 0.9700
C1—C6 1.388 (5) C8—H8B 0.9700
C2—C3 1.412 (6) C10—H10A 0.9600
C2—C10 1.436 (6) C10—H10B 0.9600
C3—C4 1.366 (6) C10—H10C 0.9600
C8—S1—C9 93.61 (19) S2—C9—N1 126.4 (3)
C1—N1—C7 119.9 (2) C2—C3—H3 120.00
C1—N1—C9 122.7 (3) C4—C3—H3 120.00
C7—N1—C9 117.4 (3) C3—C4—H4 119.00
N1—C1—C2 119.4 (3) C5—C4—H4 119.00
N1—C1—C6 118.1 (3) C4—C5—H5 120.00
C2—C1—C6 122.5 (3) C6—C5—H5 120.00
C1—C2—C3 116.7 (3) C1—C6—H6 120.00
C1—C2—C10 122.2 (4) C5—C6—H6 120.00
C3—C2—C10 121.1 (4) S1—C8—H8A 110.00
C2—C3—C4 119.9 (4) S1—C8—H8B 110.00
C3—C4—C5 122.6 (5) C7—C8—H8A 110.00
C4—C5—C6 119.2 (4) C7—C8—H8B 110.00
C1—C6—C5 119.1 (4) H8A—C8—H8B 109.00
O1—C7—N1 123.5 (3) C2—C10—H10A 109.00
O1—C7—C8 124.9 (3) C2—C10—H10B 109.00
N1—C7—C8 111.6 (3) C2—C10—H10C 109.00
S1—C8—C7 106.7 (3) H10A—C10—H10B 110.00
S1—C9—S2 123.3 (2) H10A—C10—H10C 110.00
S1—C9—N1 110.4 (3) H10B—C10—H10C 110.00
C9—S1—C8—C7 −4.5 (3) C7—N1—C9—S2 −177.0 (3)
C8—S1—C9—S2 −179.4 (2) N1—C1—C2—C3 −177.5 (3)
C8—S1—C9—N1 1.8 (3) N1—C1—C2—C10 3.1 (4)
C7—N1—C1—C2 94.3 (3) C6—C1—C2—C3 0.6 (5)
C7—N1—C1—C6 −84.0 (4) C6—C1—C2—C10 −178.8 (3)
C9—N1—C1—C2 −86.2 (4) N1—C1—C6—C5 177.0 (3)
C9—N1—C1—C6 95.6 (4) C2—C1—C6—C5 −1.2 (5)
C1—N1—C7—O1 −5.7 (5) C1—C2—C3—C4 −0.2 (5)
C1—N1—C7—C8 174.3 (3) C10—C2—C3—C4 179.2 (4)
C9—N1—C7—O1 174.7 (3) C2—C3—C4—C5 0.4 (6)
C9—N1—C7—C8 −5.4 (4) C3—C4—C5—C6 −0.9 (7)
C1—N1—C9—S1 −177.9 (2) C4—C5—C6—C1 1.3 (6)
C1—N1—C9—S2 3.4 (4) O1—C7—C8—S1 −173.9 (3)
C7—N1—C9—S1 1.8 (3) N1—C7—C8—S1 6.1 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C8—H8A···O1i 0.97 2.58 3.214 (5) 123
C8—H8A···Cg2i 0.97 2.65 3.420 (4) 137

Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5205).

References

  1. Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cutshall, N. S., O’Day, C. & Prezhdo, M. (2005). Bioorg. Med. Chem. Lett. 15, 3374–3379. [DOI] [PubMed]
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  6. Shahwar, D., Tahir, M. N., Raza, M. A. & Iqbal, B. (2009a). Acta Cryst. E65, o2903. [DOI] [PMC free article] [PubMed]
  7. Shahwar, D., Tahir, M. N., Raza, M. A., Iqbal, B. & Naz, S. (2009b). Acta Cryst. E65, o2637. [DOI] [PMC free article] [PubMed]
  8. Shahwar, D., Tahir, M. N., Raza, M. A., Saddaf, M. & Majeed, S. (2009c). Acta Cryst. E65, o2638. [DOI] [PMC free article] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809045814/hb5205sup1.cif

e-65-o3014-sup1.cif (15.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809045814/hb5205Isup2.hkl

e-65-o3014-Isup2.hkl (128.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES