Abstract
In the title compound, C10H9NOS2, the 1,3-thiazolidine and 2-methylphenyl rings are oriented at a dihedral angle of 84.44 (9)°. In the crystal, an unusual bifurcated C—H⋯(O,π) interaction leads to zigzag chains of molecules.
Related literature
For background to rhodanine derivatives, see: Cutshall et al. (2005 ▶). For related structures, see: Shahwar et al. (2009a
▶,b
▶,c
▶).
Experimental
Crystal data
C10H9NOS2
M r = 223.30
Monoclinic,
a = 23.690 (5) Å
b = 7.1401 (17) Å
c = 14.628 (3) Å
β = 122.215 (6)°
V = 2093.5 (8) Å3
Z = 8
Mo Kα radiation
μ = 0.47 mm−1
T = 296 K
0.34 × 0.16 × 0.14 mm
Data collection
Bruker Kappa APEXII CCD diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2005 ▶) T min = 0.914, T max = 0.934
10878 measured reflections
2661 independent reflections
1436 reflections with I > 2σ(I)
R int = 0.061
Refinement
R[F 2 > 2σ(F 2)] = 0.057
wR(F 2) = 0.189
S = 1.02
2661 reflections
128 parameters
H-atom parameters constrained
Δρmax = 0.63 e Å−3
Δρmin = −0.31 e Å−3
Data collection: APEX2 (Bruker, 2007 ▶); cell refinement: SAINT (Bruker, 2007 ▶); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: ORTEP-3 (Farrugia, 1997 ▶) and PLATON (Spek, 2009 ▶); software used to prepare material for publication: WinGX (Farrugia, 1999 ▶) and PLATON.
Supplementary Material
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809045814/hb5205sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536809045814/hb5205Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| C8—H8A⋯O1i | 0.97 | 2.58 | 3.214 (5) | 123 |
| C8—H8A⋯Cg2i | 0.97 | 2.65 | 3.420 (4) | 137 |
Symmetry code: (i)
. Cg2 is the centroid of the C1–C6 ring.
Acknowledgments
Durre Shahwar is grateful to Government College University, Lahore, for providing funds under the GCU funded Research Projects Programme.
supplementary crystallographic information
Comment
Rhodanine-based molecules have been popular as small molecule inhibitors of numerous targets such as HCV NS3 protease, aldose reductase, beta-lactamase, UDP-N-acetylmuramate/L-alanine ligase, antidiabetic agents, cathepsin D, and histidine decarboxylase (Cutshall et al., 2005). We herein, report the crystal structure and preparation of the title compound (I, Fig. 1) which is one of the rhodanine derivatives from the series of compounds prepared by our group for beta-lactamase and xanthine oxidase enzyme inhibition studies.
The crystal structures of (II) (5Z)-5-(2-Hydroxybenzylidene)-3-phenyl- 2-thioxo-1,3-thiazolidin-4-one (Shahwar et al., 2009a), (III) (5E)-5-(4-Hydroxy-3-methoxybenzylidene)-2-thioxo-1, 3-thiazolidin-4-one methanol monosolvate (Shahwar et al., 2009b) and (IV) (5Z)-5-(2-Hydroxybenzylidene)-2-thioxo-1,3-thiazolidin-4-one methanol hemisolvate (Shahwar et al., 2009c) have been reported which are the rhodanine derivatives. The crystal stucture of (II) contains (I) as a group.
In (I), the 2-methylphenyl A (C1–C6/C10) and the rhodanine group B (N1/C7/C8/S1/C9/O1/S2) are planar with maximum r. m. s. deviations of 0.0051 and 0.0387 Å respectively, from their mean square planes. The dihedral angle between A/B is 84.44 (9)°. The molecules are stabilized in the form of zig–zag infinte one dimensional polymeric chains due to intermolecular H-bondings (Table 1, Fig. 2). The C–H···π interaction (Table 1) also play a role in stabilizing the molecules.
Experimental
The title compound was prepared by a three step reaction procedure. In the first step ortho toluidine aniline (10.7 g, 0.1 mol) and triethylamine (50.5 g, 0.5 mol) were stirred in ethanol (20 ml) followed by dropwise addition of CS2 (15.2 g, 0.2 mol) while keeping the flask in an ice bath. The precipitate obtained were filtered off and washed with diethyl ether.
In second step, a solution of sodium chloroacetate (11.6 g, 0.1 mol) and chloroacetic acid (18.9 g, 0.2 mol) was prepared in 50 ml distilled water. To this solution the precipitates obtained in first step were added gradually and stirred at 273 K. This mixture was stirred untill it turned dark yellow.
In third step the yellow mixture was mixed in 140 ml hot (363–368 K) hydrochloric acid (6 N) and stirred for five minutes to obtain colorless crystalline precipitates. These precipitates were recrystalized in chloroform to get the dark yellow needles of (I).
Refinement
The coordinates of H2 were refined. The H-atoms were positioned geometrically (C–H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C)..
Figures
Fig. 1.
View of (I) with displacement ellipsoids drawn at the 50% probability level.
Crystal data
| C10H9NOS2 | F(000) = 928 |
| Mr = 223.30 | Dx = 1.417 Mg m−3 |
| Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: -C 2yc | Cell parameters from 2661 reflections |
| a = 23.690 (5) Å | θ = 2.8–28.7° |
| b = 7.1401 (17) Å | µ = 0.47 mm−1 |
| c = 14.628 (3) Å | T = 296 K |
| β = 122.215 (6)° | Cut needle, dark yellow |
| V = 2093.5 (8) Å3 | 0.34 × 0.16 × 0.14 mm |
| Z = 8 |
Data collection
| Bruker Kappa APEXII CCD diffractometer | 2661 independent reflections |
| Radiation source: fine-focus sealed tube | 1436 reflections with I > 2σ(I) |
| graphite | Rint = 0.061 |
| Detector resolution: 7.40 pixels mm-1 | θmax = 28.7°, θmin = 2.8° |
| ω scans | h = −31→30 |
| Absorption correction: multi-scan (SADABS; Bruker, 2005) | k = −9→5 |
| Tmin = 0.914, Tmax = 0.934 | l = −17→19 |
| 10878 measured reflections |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.057 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.189 | H-atom parameters constrained |
| S = 1.02 | w = 1/[σ2(Fo2) + (0.0949P)2 + 0.6816P] where P = (Fo2 + 2Fc2)/3 |
| 2661 reflections | (Δ/σ)max < 0.001 |
| 128 parameters | Δρmax = 0.63 e Å−3 |
| 0 restraints | Δρmin = −0.31 e Å−3 |
Special details
| Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| S1 | 0.21396 (5) | −0.00494 (13) | −0.00417 (7) | 0.0612 (3) | |
| S2 | 0.07182 (5) | 0.09169 (18) | −0.10373 (8) | 0.0903 (4) | |
| O1 | 0.26644 (11) | 0.2834 (4) | 0.24779 (19) | 0.0733 (9) | |
| N1 | 0.17183 (11) | 0.1968 (3) | 0.09176 (18) | 0.0475 (8) | |
| C1 | 0.12842 (14) | 0.2941 (4) | 0.1167 (2) | 0.0499 (10) | |
| C2 | 0.11018 (15) | 0.4752 (5) | 0.0824 (2) | 0.0527 (10) | |
| C3 | 0.06977 (17) | 0.5655 (6) | 0.1131 (3) | 0.0672 (12) | |
| C4 | 0.05067 (19) | 0.4719 (7) | 0.1737 (3) | 0.0768 (16) | |
| C5 | 0.0691 (2) | 0.2946 (7) | 0.2068 (3) | 0.0779 (16) | |
| C6 | 0.10811 (17) | 0.2011 (6) | 0.1777 (3) | 0.0660 (14) | |
| C7 | 0.23984 (15) | 0.1956 (5) | 0.1655 (2) | 0.0509 (11) | |
| C8 | 0.27516 (16) | 0.0721 (5) | 0.1295 (3) | 0.0555 (11) | |
| C9 | 0.14858 (16) | 0.1022 (4) | −0.0033 (3) | 0.0537 (11) | |
| C10 | 0.1303 (2) | 0.5694 (6) | 0.0175 (3) | 0.0726 (14) | |
| H3 | 0.05615 | 0.68853 | 0.09201 | 0.0808* | |
| H4 | 0.02385 | 0.53341 | 0.19283 | 0.0918* | |
| H5 | 0.05568 | 0.23555 | 0.24881 | 0.0933* | |
| H6 | 0.12066 | 0.07745 | 0.19869 | 0.0793* | |
| H8A | 0.29480 | −0.03430 | 0.17767 | 0.0668* | |
| H8B | 0.31039 | 0.14084 | 0.12918 | 0.0668* | |
| H10A | 0.11483 | 0.50009 | −0.04790 | 0.1090* | |
| H10B | 0.17806 | 0.57808 | 0.05699 | 0.1090* | |
| H10C | 0.11140 | 0.69291 | 0.00017 | 0.1090* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| S1 | 0.0782 (6) | 0.0598 (6) | 0.0604 (5) | 0.0158 (4) | 0.0468 (5) | 0.0023 (4) |
| S2 | 0.0723 (7) | 0.0974 (9) | 0.0678 (7) | 0.0173 (6) | 0.0150 (5) | −0.0333 (6) |
| O1 | 0.0542 (14) | 0.097 (2) | 0.0562 (14) | 0.0095 (13) | 0.0211 (12) | −0.0126 (14) |
| N1 | 0.0499 (14) | 0.0541 (16) | 0.0422 (13) | 0.0081 (11) | 0.0271 (12) | −0.0011 (11) |
| C1 | 0.0464 (16) | 0.0565 (19) | 0.0440 (16) | 0.0030 (13) | 0.0222 (14) | −0.0077 (14) |
| C2 | 0.0533 (18) | 0.064 (2) | 0.0423 (16) | 0.0056 (14) | 0.0265 (15) | −0.0023 (14) |
| C3 | 0.060 (2) | 0.075 (2) | 0.057 (2) | 0.0178 (17) | 0.0247 (17) | −0.0056 (18) |
| C4 | 0.057 (2) | 0.121 (4) | 0.061 (2) | 0.002 (2) | 0.0373 (19) | −0.013 (2) |
| C5 | 0.076 (3) | 0.103 (3) | 0.074 (2) | −0.016 (2) | 0.053 (2) | −0.012 (2) |
| C6 | 0.066 (2) | 0.086 (3) | 0.0577 (19) | −0.0094 (18) | 0.0409 (18) | −0.0094 (18) |
| C7 | 0.0538 (18) | 0.059 (2) | 0.0442 (17) | 0.0084 (15) | 0.0291 (15) | 0.0084 (15) |
| C8 | 0.0607 (19) | 0.063 (2) | 0.0565 (18) | 0.0147 (15) | 0.0404 (17) | 0.0164 (16) |
| C9 | 0.069 (2) | 0.0464 (18) | 0.0475 (17) | 0.0080 (14) | 0.0323 (16) | −0.0041 (14) |
| C10 | 0.089 (3) | 0.062 (2) | 0.079 (2) | 0.0073 (19) | 0.053 (2) | 0.008 (2) |
Geometric parameters (Å, °)
| S1—C8 | 1.790 (4) | C4—C5 | 1.343 (7) |
| S1—C9 | 1.734 (4) | C5—C6 | 1.379 (7) |
| S2—C9 | 1.619 (4) | C7—C8 | 1.492 (6) |
| O1—C7 | 1.196 (4) | C3—H3 | 0.9300 |
| N1—C1 | 1.440 (4) | C4—H4 | 0.9300 |
| N1—C7 | 1.381 (4) | C5—H5 | 0.9300 |
| N1—C9 | 1.370 (4) | C6—H6 | 0.9300 |
| C1—C2 | 1.371 (5) | C8—H8A | 0.9700 |
| C1—C6 | 1.388 (5) | C8—H8B | 0.9700 |
| C2—C3 | 1.412 (6) | C10—H10A | 0.9600 |
| C2—C10 | 1.436 (6) | C10—H10B | 0.9600 |
| C3—C4 | 1.366 (6) | C10—H10C | 0.9600 |
| C8—S1—C9 | 93.61 (19) | S2—C9—N1 | 126.4 (3) |
| C1—N1—C7 | 119.9 (2) | C2—C3—H3 | 120.00 |
| C1—N1—C9 | 122.7 (3) | C4—C3—H3 | 120.00 |
| C7—N1—C9 | 117.4 (3) | C3—C4—H4 | 119.00 |
| N1—C1—C2 | 119.4 (3) | C5—C4—H4 | 119.00 |
| N1—C1—C6 | 118.1 (3) | C4—C5—H5 | 120.00 |
| C2—C1—C6 | 122.5 (3) | C6—C5—H5 | 120.00 |
| C1—C2—C3 | 116.7 (3) | C1—C6—H6 | 120.00 |
| C1—C2—C10 | 122.2 (4) | C5—C6—H6 | 120.00 |
| C3—C2—C10 | 121.1 (4) | S1—C8—H8A | 110.00 |
| C2—C3—C4 | 119.9 (4) | S1—C8—H8B | 110.00 |
| C3—C4—C5 | 122.6 (5) | C7—C8—H8A | 110.00 |
| C4—C5—C6 | 119.2 (4) | C7—C8—H8B | 110.00 |
| C1—C6—C5 | 119.1 (4) | H8A—C8—H8B | 109.00 |
| O1—C7—N1 | 123.5 (3) | C2—C10—H10A | 109.00 |
| O1—C7—C8 | 124.9 (3) | C2—C10—H10B | 109.00 |
| N1—C7—C8 | 111.6 (3) | C2—C10—H10C | 109.00 |
| S1—C8—C7 | 106.7 (3) | H10A—C10—H10B | 110.00 |
| S1—C9—S2 | 123.3 (2) | H10A—C10—H10C | 110.00 |
| S1—C9—N1 | 110.4 (3) | H10B—C10—H10C | 110.00 |
| C9—S1—C8—C7 | −4.5 (3) | C7—N1—C9—S2 | −177.0 (3) |
| C8—S1—C9—S2 | −179.4 (2) | N1—C1—C2—C3 | −177.5 (3) |
| C8—S1—C9—N1 | 1.8 (3) | N1—C1—C2—C10 | 3.1 (4) |
| C7—N1—C1—C2 | 94.3 (3) | C6—C1—C2—C3 | 0.6 (5) |
| C7—N1—C1—C6 | −84.0 (4) | C6—C1—C2—C10 | −178.8 (3) |
| C9—N1—C1—C2 | −86.2 (4) | N1—C1—C6—C5 | 177.0 (3) |
| C9—N1—C1—C6 | 95.6 (4) | C2—C1—C6—C5 | −1.2 (5) |
| C1—N1—C7—O1 | −5.7 (5) | C1—C2—C3—C4 | −0.2 (5) |
| C1—N1—C7—C8 | 174.3 (3) | C10—C2—C3—C4 | 179.2 (4) |
| C9—N1—C7—O1 | 174.7 (3) | C2—C3—C4—C5 | 0.4 (6) |
| C9—N1—C7—C8 | −5.4 (4) | C3—C4—C5—C6 | −0.9 (7) |
| C1—N1—C9—S1 | −177.9 (2) | C4—C5—C6—C1 | 1.3 (6) |
| C1—N1—C9—S2 | 3.4 (4) | O1—C7—C8—S1 | −173.9 (3) |
| C7—N1—C9—S1 | 1.8 (3) | N1—C7—C8—S1 | 6.1 (4) |
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| C8—H8A···O1i | 0.97 | 2.58 | 3.214 (5) | 123 |
| C8—H8A···Cg2i | 0.97 | 2.65 | 3.420 (4) | 137 |
Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5205).
References
- Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cutshall, N. S., O’Day, C. & Prezhdo, M. (2005). Bioorg. Med. Chem. Lett. 15, 3374–3379. [DOI] [PubMed]
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
- Shahwar, D., Tahir, M. N., Raza, M. A. & Iqbal, B. (2009a). Acta Cryst. E65, o2903. [DOI] [PMC free article] [PubMed]
- Shahwar, D., Tahir, M. N., Raza, M. A., Iqbal, B. & Naz, S. (2009b). Acta Cryst. E65, o2637. [DOI] [PMC free article] [PubMed]
- Shahwar, D., Tahir, M. N., Raza, M. A., Saddaf, M. & Majeed, S. (2009c). Acta Cryst. E65, o2638. [DOI] [PMC free article] [PubMed]
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809045814/hb5205sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536809045814/hb5205Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report

