Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Nov 28;65(Pt 12):o3283. doi: 10.1107/S1600536809050703

2-Phenyl­imidazolium nitrate monohydrate

Dao-Cheng Xia a,*, Wan-Cheng Li b, Shuang Han a
PMCID: PMC2972149  PMID: 21578976

Abstract

In the title hydrated mol­ecular salt, C9H9N2 +·NO3 ·H2O, the dihedral angle between the aromatic rings in the cation is 11.09 (8)°. In the crystal, the components are linked into chains propagating in [101] by N—H⋯O and O—H⋯O hydrogen bonds.

Related literature

For related structures containing 2-phenyl­imidazole, see: Liu et al. (2008); Yang et al. (2008).graphic file with name e-65-o3283-scheme1.jpg

Experimental

Crystal data

  • C9H9N2 +·NO3 ·H2O

  • M r = 225.21

  • Monoclinic, Inline graphic

  • a = 8.026 (4) Å

  • b = 14.951 (7) Å

  • c = 8.895 (5) Å

  • β = 101.096 (5)°

  • V = 1047.4 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.33 × 0.28 × 0.22 mm

Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.56, T max = 0.81

  • 4388 measured reflections

  • 2407 independent reflections

  • 1430 reflections with I > 2σ(I)

  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.104

  • S = 0.88

  • 2407 reflections

  • 153 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809050703/hb5245sup1.cif

e-65-o3283-sup1.cif (14.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809050703/hb5245Isup2.hkl

e-65-o3283-Isup2.hkl (115.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1W 0.86 1.92 2.753 (2) 163
N3—H3⋯O1i 0.86 1.94 2.7809 (17) 166
O1W—HW11⋯O2ii 0.83 (2) 2.21 (2) 2.989 (2) 155.3 (19)
O1W—HW12⋯O2 0.87 (2) 2.07 (2) 2.905 (2) 162.3 (19)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We thank Yuncheng University and Jilin University for support.

supplementary crystallographic information

Comment

2-Phenylimidazole, as an important N-containing ligand with excellent coordinating abilities and fruitful aromatic systems, have been extensively used to build supramolecular architectures (Liu et al., 2008; Yang et al., 2008). We report here the synthesis and structure of the title compound, namely, C9H11N3O4 (I)

There are one 2-phenylimidazole cation, one nitrate anion and one water molecule in the asymmetric unit of the title compound, C9H11N3O4 (Fig. 1). In the crystal, molecules are linked into layer structures by N—H···O and O—H···O H-bonding interactions (Table 1).

Experimental

A mixture of Cu(NO3)2.2.5H2O (0.5 mmol), 2-phenylimidazole (0.5 mmol), and H2O (30 mmol) was heated in a sealed vessel at 413 K for 2 days. After the mixture was slowly cooled to room temperature, colorless blocks of (I) were obtained (23% yield).

Refinement

All H atoms on C and N atoms were positioned geometrically (C—H = 0.93 Å, N—H = 0.86Å) and refined as riding, with Uiso(H)=1.2Ueq(carrier). The water H-atoms were located in a difference map, and was refined freely.

Figures

Fig. 1.

Fig. 1.

The structure of (I), showing displacement ellipsoids drawn at the 30% probability level.

Crystal data

C9H9N2+·NO3·H2O F(000) = 472
Mr = 225.21 Dx = 1.428 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 2407 reflections
a = 8.026 (4) Å θ = 3.0–29.2°
b = 14.951 (7) Å µ = 0.11 mm1
c = 8.895 (5) Å T = 293 K
β = 101.096 (5)° Block, colourless
V = 1047.4 (9) Å3 0.33 × 0.28 × 0.22 mm
Z = 4

Data collection

Bruker SMART APEX CCD diffractometer 2407 independent reflections
Radiation source: fine-focus sealed tube 1430 reflections with I > 2σ(I)
graphite Rint = 0.018
φ and ω scans θmax = 29.2°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −10→10
Tmin = 0.56, Tmax = 0.81 k = −19→20
4388 measured reflections l = −7→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104 H atoms treated by a mixture of independent and constrained refinement
S = 0.88 w = 1/[σ2(Fo2) + (0.0625P)2] where P = (Fo2 + 2Fc2)/3
2407 reflections (Δ/σ)max < 0.001
153 parameters Δρmax = 0.15 e Å3
0 restraints Δρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.41911 (19) −0.16151 (10) 1.11954 (17) 0.0528 (4)
H1 0.4944 −0.1975 1.1858 0.063*
C2 0.31545 (19) −0.18758 (10) 0.99079 (18) 0.0532 (4)
H2A 0.3044 −0.2452 0.9508 0.064*
C3 0.27630 (15) −0.04284 (9) 1.01806 (14) 0.0382 (3)
C4 0.21609 (15) 0.04875 (9) 0.99206 (14) 0.0375 (3)
C5 0.11719 (17) 0.07305 (9) 0.85184 (15) 0.0475 (4)
H5 0.0869 0.0302 0.7756 0.057*
C6 0.0641 (2) 0.15982 (10) 0.82541 (19) 0.0591 (4)
H6 −0.0019 0.1753 0.7313 0.071*
C7 0.1073 (2) 0.22399 (10) 0.9361 (2) 0.0626 (5)
H7 0.0726 0.2829 0.9169 0.075*
C8 0.2026 (2) 0.20012 (10) 1.0760 (2) 0.0609 (4)
H8 0.2306 0.2432 1.1521 0.073*
C9 0.25738 (17) 0.11317 (9) 1.10495 (17) 0.0502 (4)
H9 0.3218 0.0979 1.1999 0.060*
N1 0.31081 (15) 0.01630 (11) 0.54668 (14) 0.0575 (4)
N2 0.22881 (14) −0.11327 (7) 0.92928 (13) 0.0452 (3)
H2 0.1546 −0.1123 0.8455 0.054*
N3 0.39323 (14) −0.07206 (7) 1.13512 (12) 0.0455 (3)
H3 0.4446 −0.0394 1.2093 0.055*
O1 0.39439 (12) −0.03171 (7) 0.64925 (11) 0.0619 (3)
O2 0.20267 (15) −0.01926 (11) 0.44597 (13) 0.0921 (5)
O1W 0.03846 (18) −0.13296 (8) 0.63882 (14) 0.0607 (3)
O3 0.33396 (17) 0.09768 (10) 0.54776 (15) 0.0860 (4)
HW11 −0.049 (3) −0.1037 (14) 0.606 (2) 0.090 (7)*
HW12 0.104 (2) −0.1081 (14) 0.584 (2) 0.097 (8)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0531 (9) 0.0454 (9) 0.0587 (10) 0.0079 (7) 0.0078 (7) 0.0124 (7)
C2 0.0587 (9) 0.0372 (8) 0.0638 (10) 0.0043 (7) 0.0121 (7) 0.0023 (7)
C3 0.0371 (7) 0.0404 (7) 0.0367 (7) −0.0022 (6) 0.0065 (5) 0.0017 (6)
C4 0.0352 (6) 0.0388 (7) 0.0394 (7) −0.0026 (6) 0.0094 (5) 0.0004 (6)
C5 0.0537 (8) 0.0446 (8) 0.0435 (8) 0.0045 (7) 0.0076 (6) 0.0002 (6)
C6 0.0647 (9) 0.0536 (10) 0.0584 (9) 0.0137 (8) 0.0103 (7) 0.0122 (8)
C7 0.0614 (10) 0.0393 (8) 0.0896 (13) 0.0091 (7) 0.0210 (9) 0.0066 (8)
C8 0.0573 (9) 0.0459 (9) 0.0798 (12) −0.0053 (8) 0.0140 (8) −0.0217 (8)
C9 0.0478 (8) 0.0504 (8) 0.0502 (9) −0.0019 (7) 0.0037 (6) −0.0079 (7)
N1 0.0460 (7) 0.0799 (11) 0.0466 (8) 0.0057 (7) 0.0090 (6) 0.0068 (7)
N2 0.0488 (7) 0.0375 (6) 0.0461 (7) −0.0002 (5) 0.0013 (5) 0.0004 (5)
N3 0.0459 (6) 0.0464 (7) 0.0418 (7) 0.0006 (5) 0.0020 (5) 0.0022 (5)
O1 0.0602 (7) 0.0620 (7) 0.0550 (7) 0.0060 (5) −0.0102 (5) 0.0027 (5)
O2 0.0663 (7) 0.1416 (14) 0.0571 (8) −0.0208 (8) −0.0163 (6) 0.0107 (8)
O1W 0.0608 (7) 0.0538 (7) 0.0612 (8) −0.0042 (6) −0.0041 (6) −0.0026 (5)
O3 0.1057 (11) 0.0655 (9) 0.0903 (10) 0.0136 (7) 0.0277 (8) 0.0200 (7)

Geometric parameters (Å, °)

C1—C2 1.337 (2) C6—H6 0.9300
C1—N3 1.3646 (19) C7—C8 1.376 (2)
C1—H1 0.9300 C7—H7 0.9300
C2—N2 1.3678 (18) C8—C9 1.380 (2)
C2—H2A 0.9300 C8—H8 0.9300
C3—N2 1.3274 (17) C9—H9 0.9300
C3—N3 1.3340 (17) N1—O3 1.2305 (19)
C3—C4 1.4556 (19) N1—O2 1.2406 (17)
C4—C9 1.3849 (19) N1—O1 1.2498 (16)
C4—C5 1.3917 (19) N2—H2 0.8600
C5—C6 1.372 (2) N3—H3 0.8600
C5—H5 0.9300 O1W—HW11 0.83 (2)
C6—C7 1.371 (2) O1W—HW12 0.87 (2)
C2—C1—N3 106.90 (12) C6—C7—H7 120.4
C2—C1—H1 126.5 C8—C7—H7 120.4
N3—C1—H1 126.5 C7—C8—C9 120.96 (14)
C1—C2—N2 106.88 (13) C7—C8—H8 119.5
C1—C2—H2A 126.6 C9—C8—H8 119.5
N2—C2—H2A 126.6 C8—C9—C4 119.77 (14)
N2—C3—N3 106.43 (12) C8—C9—H9 120.1
N2—C3—C4 127.10 (12) C4—C9—H9 120.1
N3—C3—C4 126.46 (12) O3—N1—O2 120.86 (15)
C9—C4—C5 118.94 (13) O3—N1—O1 120.21 (14)
C9—C4—C3 120.88 (12) O2—N1—O1 118.92 (17)
C5—C4—C3 120.18 (12) C3—N2—C2 109.92 (11)
C6—C5—C4 120.35 (13) C3—N2—H2 125.0
C6—C5—H5 119.8 C2—N2—H2 125.0
C4—C5—H5 119.8 C3—N3—C1 109.86 (12)
C7—C6—C5 120.78 (15) C3—N3—H3 125.1
C7—C6—H6 119.6 C1—N3—H3 125.1
C5—C6—H6 119.6 HW11—O1W—HW12 98.1 (18)
C6—C7—C8 119.18 (14)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2···O1W 0.86 1.92 2.753 (2) 163
N3—H3···O1i 0.86 1.94 2.7809 (17) 166
O1W—HW11···O2ii 0.83 (2) 2.21 (2) 2.989 (2) 155.3 (19)
O1W—HW12···O2 0.87 (2) 2.07 (2) 2.905 (2) 162.3 (19)

Symmetry codes: (i) −x+1, −y, −z+2; (ii) −x, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5245).

References

  1. Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Liu, Y.-Y., Ma, J.-F., Yang, J., Ma, J.-C. & Ping, G.-J. (2008). CrystEngComm, 10, 565–572.
  3. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Yang, J., Ma, J.-F., Batten, S. R. & Su, Z.-M. (2008). Chem. Commun. pp. 2233–2235. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809050703/hb5245sup1.cif

e-65-o3283-sup1.cif (14.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809050703/hb5245Isup2.hkl

e-65-o3283-Isup2.hkl (115.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES