Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Nov 25;65(Pt 12):o3208. doi: 10.1107/S1600536809049332

4-Methyl-N-(3-methyl­phen­yl)benzene­sulfonamide

P G Nirmala a, B Thimme Gowda a,*, Sabine Foro b, Hartmut Fuess b
PMCID: PMC2972154  PMID: 21578916

Abstract

In the title compound, C14H15NO2S, the conformation of the N—C bond in the C—SO2—NH—C segment has gauche torsion angles with respect to the S=O bonds. Further, the conformation of the N—H bond is anti to the 3-methyl group in the aniline benzene ring. The mol­ecule is bent at the N atom with a C—SO2—NH—C torsion angle of 56.7 (3)°. The dihedral angle between the benzene rings is 83.9 (1)°. In the crystal, inter­molecular N—H⋯O hydrogen bonds pack the mol­ecules into a supra­molecular structure.

Related literature

For the preparation of the title compound, see: Gowda et al. (2005). For a study of the effect of substituents on the crystal structures of N-(ar­yl)-aryl­sulfonamides, see: Gowda et al. (2009a,b ); Nirmala et al.(2009). For bond lengths in other aryl sulfonamides, see: Gelbrich et al. (2007); Perlovich et al. (2006).graphic file with name e-65-o3208-scheme1.jpg

Experimental

Crystal data

  • C14H15NO2S

  • M r = 261.33

  • Monoclinic, Inline graphic

  • a = 14.076 (3) Å

  • b = 14.519 (3) Å

  • c = 13.482 (2) Å

  • β = 98.10 (2)°

  • V = 2727.8 (9) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 2.06 mm−1

  • T = 299 K

  • 0.50 × 0.45 × 0.35 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.426, T max = 0.533

  • 5405 measured reflections

  • 2436 independent reflections

  • 2285 reflections with I > 2σ(I)

  • R int = 0.148

  • 3 standard reflections frequency: 120 min intensity decay: 1.5%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.061

  • wR(F 2) = 0.163

  • S = 1.05

  • 2436 reflections

  • 169 parameters

  • 13 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.42 e Å−3

Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809049332/lx2127sup1.cif

e-65-o3208-sup1.cif (17.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809049332/lx2127Isup2.hkl

e-65-o3208-Isup2.hkl (119.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.839 (18) 2.10 (2) 2.914 (3) 163 (3)

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

As part of a study of the effect of substituents on the crystal structures of N–(aryl)–arylsulfonamides (Gowda et al., 2009a,b; Nirmala et al., 2009), in the present work, the structure of 4–methyl–N–(3–methylphenyl)benzenesulfonamide (I) has been determined.

The conformation of the N—C bond in the C1—SO2—NH—C7 segment of the structure has gauche torsions with respect to the SO bonds (Fig. 1). Further, the conformation of the N—H bond is anti to the 3–methyl group in the aniline benzene ring. The molecule is bent at the N atom with the C1—SO2—NH—C7 torsion angle of 56.7 (3)°, compared to the values of -51.6 (3)° in 4–methyl–N–(phenyl)–benzenesulfonamide (II)(Gowda et al., 2009b), 60.0 (2)° in 4–methyl–N–(2–methylphenyl)benzenesulfonamide (III) (Nirmala et al., 2009) and -61.8 (2)° in 4–methyl–N–(3,4–dimethylphenyl)benzenesulfonamide (IV) (Gowda et al., 2009a). The two benzene rings in (I) are tilted relative to each other by 83.9 (1)°, compared to the values of 68.4 (1)° in (II), 49.7 (1)° in (III) and 47.8 (1)° in (IV). The other bond parameters are similar to those observed in (II), (III), (IV) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007). The crystal packing stabilized by intermolecular N—H···O hydrogen bonds (Table 1) is shown in Fig.2.

Experimental

The solution of toluene (10 ml) in chloroform (40 ml) was treated dropwise with chlorosulfonic acid (25 ml) at 0 ° C. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual benzenesulfonylchloride was treated with m–toluidine in the stoichiometric ratio and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 ml). The resultant solid 4–methyl–N–(3–methylphenyl)benzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by recording its infrared and NMR spectra (Gowda et al., 2005). The single crystals used in X-ray diffraction studies were grown in ethanolic solution by a slow evaporation at room temperature.

Refinement

The H atom of the NH group was located in a difference map and later restrained to the distance N—H = 0.84 (2) Å. The other H atoms were positioned with idealized geometry using a riding model [C—H = 0.93–0.96 Å]. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom). The Uij components of C3 and C4 were restrained to approximate isotropic behavoir.

Figures

Fig. 1.

Fig. 1.

Molecular structure of (I), showing the atom labelling scheme and displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Molecular packing of (I) with hydrogen bonding shown as dashed lines.

Crystal data

C14H15NO2S F(000) = 1104
Mr = 261.33 Dx = 1.273 Mg m3
Monoclinic, C2/c Cu Kα radiation, λ = 1.54180 Å
Hall symbol: -C 2yc Cell parameters from 25 reflections
a = 14.076 (3) Å θ = 5.2–23.5°
b = 14.519 (3) Å µ = 2.06 mm1
c = 13.482 (2) Å T = 299 K
β = 98.10 (2)° Prism, colourless
V = 2727.8 (9) Å3 0.50 × 0.45 × 0.35 mm
Z = 8

Data collection

Enraf–Nonius CAD-4 diffractometer 2285 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.148
graphite θmax = 67.0°, θmin = 4.4°
ω/2θ scans h = −16→12
Absorption correction: ψ scan (North et al., 1968) k = −12→17
Tmin = 0.426, Tmax = 0.533 l = −16→16
5405 measured reflections 3 standard reflections every 120 min
2436 independent reflections intensity decay: 1.5%

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.061 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.163 w = 1/[σ2(Fo2) + (0.0638P)2 + 2.2735P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
2436 reflections Δρmax = 0.42 e Å3
169 parameters Δρmin = −0.42 e Å3
13 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0092 (7)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.03543 (17) 0.26890 (18) 0.04684 (16) 0.0478 (6)
C2 −0.0487 (2) 0.2802 (3) 0.0874 (3) 0.0769 (9)
H2 −0.0754 0.3384 0.0915 0.092*
C3 −0.0921 (2) 0.2041 (4) 0.1217 (3) 0.0927 (13)
H3 −0.1487 0.2117 0.1490 0.111*
C4 −0.0551 (3) 0.1180 (3) 0.1169 (2) 0.0767 (10)
C5 0.0301 (2) 0.1079 (3) 0.0788 (2) 0.0706 (8)
H5 0.0576 0.0499 0.0768 0.085*
C6 0.0746 (2) 0.1826 (2) 0.0439 (2) 0.0576 (7)
H6 0.1319 0.1748 0.0180 0.069*
C7 0.17516 (16) 0.41609 (16) 0.18078 (17) 0.0450 (5)
C8 0.24019 (18) 0.34436 (19) 0.19055 (18) 0.0509 (6)
H8 0.2450 0.3058 0.1364 0.061*
C9 0.2985 (2) 0.3297 (2) 0.2811 (2) 0.0584 (7)
C10 0.2903 (2) 0.3882 (3) 0.3600 (2) 0.0690 (8)
H10 0.3293 0.3793 0.4208 0.083*
C11 0.2259 (2) 0.4588 (2) 0.3501 (2) 0.0695 (8)
H11 0.2217 0.4975 0.4043 0.083*
C12 0.1671 (2) 0.47364 (19) 0.2610 (2) 0.0561 (6)
H12 0.1227 0.5215 0.2548 0.067*
C13 −0.1073 (4) 0.0352 (4) 0.1498 (3) 0.1229 (19)
H13A −0.1598 0.0199 0.0990 0.148*
H13B −0.1314 0.0491 0.2112 0.148*
H13C −0.0639 −0.0160 0.1601 0.148*
C14 0.3672 (3) 0.2506 (3) 0.2921 (3) 0.0958 (13)
H14A 0.3922 0.2412 0.2302 0.115*
H14B 0.3346 0.1959 0.3088 0.115*
H14C 0.4191 0.2638 0.3444 0.115*
N1 0.11662 (17) 0.43561 (15) 0.08911 (16) 0.0578 (6)
H1N 0.0746 (19) 0.475 (2) 0.096 (3) 0.069*
O1 0.17370 (14) 0.33270 (13) −0.03761 (13) 0.0573 (5)
O2 0.01925 (16) 0.41182 (14) −0.07129 (14) 0.0680 (6)
S1 0.08931 (4) 0.36406 (4) −0.00253 (4) 0.0483 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0524 (12) 0.0520 (14) 0.0383 (11) 0.0040 (11) 0.0037 (9) −0.0048 (10)
C2 0.0713 (18) 0.087 (2) 0.0776 (19) 0.0045 (18) 0.0286 (15) −0.0209 (18)
C3 0.0718 (19) 0.137 (4) 0.076 (2) −0.022 (2) 0.0362 (16) −0.023 (2)
C4 0.088 (2) 0.095 (2) 0.0472 (14) −0.033 (2) 0.0092 (14) −0.0032 (15)
C5 0.0826 (19) 0.0594 (17) 0.0694 (18) −0.0097 (17) 0.0089 (15) 0.0091 (15)
C6 0.0628 (14) 0.0497 (14) 0.0613 (15) 0.0025 (13) 0.0125 (11) 0.0044 (12)
C7 0.0516 (12) 0.0368 (11) 0.0452 (12) −0.0016 (10) 0.0020 (9) 0.0014 (9)
C8 0.0592 (14) 0.0476 (13) 0.0442 (12) 0.0045 (12) 0.0014 (10) −0.0033 (10)
C9 0.0624 (14) 0.0568 (16) 0.0521 (14) 0.0069 (13) −0.0054 (11) 0.0012 (12)
C10 0.0826 (19) 0.0710 (19) 0.0478 (14) 0.0012 (17) −0.0098 (13) −0.0047 (14)
C11 0.0908 (19) 0.0649 (18) 0.0508 (14) 0.0009 (17) 0.0033 (13) −0.0156 (13)
C12 0.0669 (14) 0.0449 (14) 0.0563 (14) 0.0021 (12) 0.0078 (11) −0.0050 (11)
C13 0.141 (4) 0.152 (5) 0.078 (2) −0.078 (4) 0.023 (2) 0.011 (3)
C14 0.102 (3) 0.100 (3) 0.076 (2) 0.042 (2) −0.0205 (19) −0.007 (2)
N1 0.0746 (14) 0.0409 (11) 0.0528 (12) 0.0174 (11) −0.0088 (10) −0.0052 (9)
O1 0.0713 (11) 0.0513 (10) 0.0504 (9) 0.0047 (9) 0.0127 (8) 0.0068 (8)
O2 0.0909 (14) 0.0553 (11) 0.0502 (10) 0.0221 (11) −0.0162 (9) 0.0009 (8)
S1 0.0622 (5) 0.0406 (4) 0.0400 (4) 0.0101 (2) 0.0004 (3) 0.0017 (2)

Geometric parameters (Å, °)

C1—C6 1.372 (4) C9—C10 1.378 (4)
C1—C2 1.382 (4) C9—C14 1.496 (5)
C1—S1 1.752 (3) C10—C11 1.362 (5)
C2—C3 1.375 (6) C10—H10 0.9300
C2—H2 0.9300 C11—C12 1.377 (4)
C3—C4 1.358 (7) C11—H11 0.9300
C3—H3 0.9300 C12—H12 0.9300
C4—C5 1.378 (5) C13—H13A 0.9600
C4—C13 1.508 (5) C13—H13B 0.9600
C5—C6 1.369 (4) C13—H13C 0.9600
C5—H5 0.9300 C14—H14A 0.9600
C6—H6 0.9300 C14—H14B 0.9600
C7—C8 1.380 (4) C14—H14C 0.9600
C7—C12 1.384 (4) N1—S1 1.619 (2)
C7—N1 1.414 (3) N1—H1N 0.839 (18)
C8—C9 1.388 (3) O1—S1 1.414 (2)
C8—H8 0.9300 O2—S1 1.4335 (18)
C6—C1—C2 119.4 (3) C9—C10—H10 119.5
C6—C1—S1 120.79 (19) C10—C11—C12 120.8 (3)
C2—C1—S1 119.8 (2) C10—C11—H11 119.6
C3—C2—C1 119.0 (3) C12—C11—H11 119.6
C3—C2—H2 120.5 C11—C12—C7 118.8 (3)
C1—C2—H2 120.5 C11—C12—H12 120.6
C4—C3—C2 122.1 (3) C7—C12—H12 120.6
C4—C3—H3 118.9 C4—C13—H13A 109.5
C2—C3—H3 118.9 C4—C13—H13B 109.5
C3—C4—C5 118.4 (4) H13A—C13—H13B 109.5
C3—C4—C13 120.9 (4) C4—C13—H13C 109.5
C5—C4—C13 120.7 (4) H13A—C13—H13C 109.5
C6—C5—C4 120.6 (4) H13B—C13—H13C 109.5
C6—C5—H5 119.7 C9—C14—H14A 109.5
C4—C5—H5 119.7 C9—C14—H14B 109.5
C5—C6—C1 120.5 (3) H14A—C14—H14B 109.5
C5—C6—H6 119.7 C9—C14—H14C 109.5
C1—C6—H6 119.7 H14A—C14—H14C 109.5
C8—C7—C12 120.5 (2) H14B—C14—H14C 109.5
C8—C7—N1 122.1 (2) C7—N1—S1 125.80 (17)
C12—C7—N1 117.4 (2) C7—N1—H1N 112 (2)
C7—C8—C9 120.1 (2) S1—N1—H1N 115 (2)
C7—C8—H8 119.9 O1—S1—O2 118.24 (12)
C9—C8—H8 119.9 O1—S1—N1 109.97 (12)
C10—C9—C8 118.7 (3) O2—S1—N1 104.53 (12)
C10—C9—C14 121.4 (3) O1—S1—C1 107.58 (11)
C8—C9—C14 119.9 (3) O2—S1—C1 109.39 (13)
C11—C10—C9 121.1 (3) N1—S1—C1 106.57 (12)
C11—C10—H10 119.5
C6—C1—C2—C3 −1.5 (4) C9—C10—C11—C12 0.1 (5)
S1—C1—C2—C3 177.1 (2) C10—C11—C12—C7 −0.8 (5)
C1—C2—C3—C4 0.0 (5) C8—C7—C12—C11 0.9 (4)
C2—C3—C4—C5 1.8 (5) N1—C7—C12—C11 −177.3 (3)
C2—C3—C4—C13 −176.6 (4) C8—C7—N1—S1 21.5 (4)
C3—C4—C5—C6 −1.9 (5) C12—C7—N1—S1 −160.3 (2)
C13—C4—C5—C6 176.4 (3) C7—N1—S1—O1 −59.6 (3)
C4—C5—C6—C1 0.4 (5) C7—N1—S1—O2 172.5 (2)
C2—C1—C6—C5 1.4 (4) C7—N1—S1—C1 56.7 (3)
S1—C1—C6—C5 −177.3 (2) C6—C1—S1—O1 −1.9 (2)
C12—C7—C8—C9 −0.3 (4) C2—C1—S1—O1 179.5 (2)
N1—C7—C8—C9 177.8 (3) C6—C1—S1—O2 127.7 (2)
C7—C8—C9—C10 −0.4 (4) C2—C1—S1—O2 −50.9 (3)
C7—C8—C9—C14 178.6 (3) C6—C1—S1—N1 −119.8 (2)
C8—C9—C10—C11 0.5 (5) C2—C1—S1—N1 61.6 (2)
C14—C9—C10—C11 −178.4 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O2i 0.84 (2) 2.10 (2) 2.914 (3) 163 (3)

Symmetry codes: (i) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2127).

References

  1. Enraf–Nonius (1996). CAD-4-PC. Enraf–Nonius, Delft, The Netherlands.
  2. Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632. [DOI] [PubMed]
  3. Gowda, B. T., Foro, S., Nirmala, P. G., Terao, H. & Fuess, H. (2009a). Acta Cryst. E65, o877. [DOI] [PMC free article] [PubMed]
  4. Gowda, B. T., Foro, S., Nirmala, P. G., Terao, H. & Fuess, H. (2009b). Acta Cryst. E65, o1219. [DOI] [PMC free article] [PubMed]
  5. Gowda, B. T., Shetty, M. & Jayalakshmi, K. L. (2005). Z. Naturforsch. Teil A, 60, 106–112.
  6. Nirmala, P. G., Gowda, B. T., Foro, S. & Fuess, H. (2009). Acta Cryst. E65, o3184. [DOI] [PMC free article] [PubMed]
  7. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  8. Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Stoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809049332/lx2127sup1.cif

e-65-o3208-sup1.cif (17.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809049332/lx2127Isup2.hkl

e-65-o3208-Isup2.hkl (119.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES