Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Nov 14;65(Pt 12):o3093. doi: 10.1107/S1600536809047527

(E,E)-N,N′-Bis[4-(methyl­sulfon­yl)benzyl­idene]ethane-1,2-diamine

Shao-Song Qian a,*, Hong-You Cui b
PMCID: PMC2972155  PMID: 21578822

Abstract

In the crystal structure of the title Schiff base compound, C18H20N2O4S2, the mol­ecule lies across a crystallographic inversion centre. The torsion angle of the N—C—C—N fragment is 180°, as the inversion centre bis­ects the central C—C bond. The crystal packing is stabilized by C—H⋯O hydrogen bonds and aromatic π–π stacking inter­actions with a centroid–centroid distance of 3.913 (2) Å.

Related literature

For bond-length data, see: Allen et al. (1987); For the crystal structure of a similar Schiff base compound, see: Sun et al. (2004). For the crystal structure of a precursor mol­ecule used in the synthesis of the title compound, see: Qian & Cui (2009).graphic file with name e-65-o3093-scheme1.jpg

Experimental

Crystal data

  • C18H20N2O4S2

  • M r = 392.48

  • Triclinic, Inline graphic

  • a = 7.0100 (14) Å

  • b = 8.0530 (16) Å

  • c = 8.8740 (18) Å

  • α = 88.06 (3)°

  • β = 67.56 (3)°

  • γ = 87.60 (3)°

  • V = 462.53 (19) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 293 K

  • 0.20 × 0.10 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: multi-scan (SHELXTL; Sheldrick, 2008) T min = 0.940, T max = 0.969

  • 1830 measured reflections

  • 1683 independent reflections

  • 1374 reflections with I > 2σ(I)

  • R int = 0.017

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.153

  • S = 1.00

  • 1683 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.33 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809047527/wm2281sup1.cif

e-65-o3093-sup1.cif (15KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809047527/wm2281Isup2.hkl

e-65-o3093-Isup2.hkl (82.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯O1i 0.93 2.52 3.241 (4) 135

Symmetry code: (i) Inline graphic.

Acknowledgments

This project was sponsored by ShanDong Province Science & Technology Innovation Foundation.

supplementary crystallographic information

Comment

The title compound, (I), acts as an important precursor for the synthesis of Schiff base complexes. As an extension of our work on the structural characterization of Schiff base compounds, the crystal structure is reported here.

The asymmetric unit contains one-half of the molecule of (I), the other half being inversion-related by symmetry operation (-x, -y, 2-z) (Fig.1). All the bond lengths are within normal ranges (Allen et al., 1987) and comparable to the values observed in other similar compounds (Qian & Cui, 2009; Sun et al., 2004). The crystal packing is stabilized by C—H···O hydrogen bonds and aromatic π-π stacking interactions with a centroid-centroid distance of 3.913 (2) Å (Figure 2, Table 1). The torsion angle of the N—C—C—N fragment is 180 °, as the inversion centre bisects the central C—C bond.

Experimental

4-(methylsulfonyl)benzaldehyde (0.184 g, 1 mmol) (Qian & Cui, 2009) and ethylene diamine (0.03 g, 0.5 mmol) were dissolved in acetonitrile (20 ml). The mixture was stirred at room temperature for 10 min to give a clear yellow solution. After keeping the solution in air for 10 d, yellow block-shaped crystals of (I) were formed at the bottom of the vessel on slow evaporation of the solvent.

Refinement

All H atoms were placed in geometrical positions and constrained to ride on their parent atoms with C—H distances in the range 0.93–0.96 Å, They were treated as riding atoms, with Uiso(H) = kUeq(C), where k = 1.5 for methyl and 1.2 for all other H atoms.

Figures

Fig. 1.

Fig. 1.

The structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 35% probability level. The molecule is completed by symmetry operation (-x, -y, 2-z) across the central C—C bond.

Fig. 2.

Fig. 2.

Plot of the crystal packing of compound (I). C—H···O hydrogen bonds are indicated with dotted lines.

Crystal data

C18H20N2O4S2 Z = 1
Mr = 392.48 F(000) = 206
Triclinic, P1 Dx = 1.409 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.0100 (14) Å Cell parameters from 25 reflections
b = 8.0530 (16) Å θ = 9–13°
c = 8.8740 (18) Å µ = 0.31 mm1
α = 88.06 (3)° T = 293 K
β = 67.56 (3)° Block, yellow
γ = 87.60 (3)° 0.20 × 0.10 × 0.10 mm
V = 462.53 (19) Å3

Data collection

Enraf–Nonius CAD-4 diffractometer 1374 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.017
graphite θmax = 25.3°, θmin = 2.5°
ω/2θ scans h = 0→8
Absorption correction: multi-scan (SHELXTL; Sheldrick, 2008) k = −9→9
Tmin = 0.940, Tmax = 0.969 l = −9→10
1830 measured reflections 3 standard reflections every 200 reflections
1683 independent reflections intensity decay: 1%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.1P)2 + 0.140P] where P = (Fo2 + 2Fc2)/3
1683 reflections (Δ/σ)max < 0.001
118 parameters Δρmax = 0.20 e Å3
0 restraints Δρmin = −0.33 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S 0.75133 (11) 0.83172 (8) 0.57111 (9) 0.0414 (3)
N 0.1391 (4) 0.1964 (3) 0.9738 (3) 0.0443 (6)
O1 0.9506 (3) 0.7668 (3) 0.5545 (4) 0.0715 (8)
C1 −0.0335 (5) 0.0843 (4) 1.0382 (4) 0.0479 (8)
H1B −0.1492 0.1292 1.0136 0.057*
H1C −0.0774 0.0735 1.1557 0.057*
O2 0.7244 (4) 0.8981 (3) 0.4285 (3) 0.0532 (6)
C2 0.1219 (4) 0.3116 (3) 0.8807 (3) 0.0410 (7)
H2B 0.0013 0.3200 0.8601 0.049*
C3 0.2822 (4) 0.4346 (3) 0.8017 (3) 0.0366 (6)
C4 0.2457 (4) 0.5596 (4) 0.7043 (4) 0.0422 (7)
H4A 0.1227 0.5624 0.6871 0.051*
C5 0.3882 (4) 0.6802 (3) 0.6324 (3) 0.0405 (7)
H5A 0.3619 0.7641 0.5677 0.049*
C6 0.5702 (4) 0.6742 (3) 0.6579 (3) 0.0362 (6)
C7 0.6120 (5) 0.5482 (4) 0.7525 (4) 0.0503 (8)
H7A 0.7364 0.5441 0.7675 0.060*
C8 0.4670 (5) 0.4292 (4) 0.8242 (4) 0.0472 (8)
H8A 0.4937 0.3447 0.8881 0.057*
C9 0.6747 (6) 0.9854 (4) 0.7201 (4) 0.0578 (9)
H9A 0.7652 1.0772 0.6829 0.087*
H9B 0.6811 0.9399 0.8195 0.087*
H9C 0.5357 1.0231 0.7393 0.087*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S 0.0377 (4) 0.0343 (4) 0.0478 (5) −0.0113 (3) −0.0116 (3) 0.0135 (3)
N 0.0499 (15) 0.0369 (13) 0.0412 (14) −0.0182 (11) −0.0110 (11) 0.0078 (11)
O1 0.0380 (13) 0.0554 (14) 0.111 (2) −0.0117 (10) −0.0194 (13) 0.0313 (14)
C1 0.0466 (17) 0.0404 (16) 0.0470 (17) −0.0190 (13) −0.0059 (13) 0.0091 (13)
O2 0.0648 (15) 0.0483 (12) 0.0440 (12) −0.0185 (10) −0.0178 (10) 0.0166 (10)
C2 0.0378 (15) 0.0369 (15) 0.0445 (16) −0.0103 (12) −0.0106 (13) 0.0008 (12)
C3 0.0399 (15) 0.0289 (13) 0.0362 (14) −0.0081 (11) −0.0086 (12) 0.0024 (11)
C4 0.0345 (15) 0.0385 (15) 0.0533 (18) −0.0040 (12) −0.0167 (13) 0.0079 (13)
C5 0.0419 (16) 0.0330 (14) 0.0455 (16) −0.0032 (12) −0.0160 (13) 0.0109 (12)
C6 0.0372 (15) 0.0300 (13) 0.0387 (14) −0.0081 (11) −0.0116 (12) 0.0078 (11)
C7 0.0437 (17) 0.0461 (17) 0.067 (2) −0.0149 (13) −0.0280 (15) 0.0225 (15)
C8 0.0528 (18) 0.0381 (15) 0.0572 (18) −0.0143 (13) −0.0287 (15) 0.0213 (13)
C9 0.068 (2) 0.0509 (19) 0.055 (2) −0.0248 (16) −0.0214 (17) 0.0071 (15)

Geometric parameters (Å, °)

S—O1 1.426 (2) C3—C4 1.384 (4)
S—O2 1.433 (2) C4—C5 1.379 (4)
S—C9 1.755 (4) C4—H4A 0.9300
S—C6 1.771 (3) C5—C6 1.377 (4)
N—C2 1.254 (4) C5—H5A 0.9300
N—C1 1.461 (3) C6—C7 1.388 (4)
C1—C1i 1.513 (6) C7—C8 1.380 (4)
C1—H1B 0.9700 C7—H7A 0.9300
C1—H1C 0.9700 C8—H8A 0.9300
C2—C3 1.476 (4) C9—H9A 0.9600
C2—H2B 0.9300 C9—H9B 0.9600
C3—C8 1.382 (4) C9—H9C 0.9600
O1—S—O2 118.21 (16) C5—C4—H4A 119.4
O1—S—C9 108.72 (19) C3—C4—H4A 119.4
O2—S—C9 108.48 (16) C6—C5—C4 118.9 (3)
O1—S—C6 108.36 (14) C6—C5—H5A 120.6
O2—S—C6 108.51 (14) C4—C5—H5A 120.6
C9—S—C6 103.57 (15) C5—C6—C7 121.0 (3)
C2—N—C1 116.2 (3) C5—C6—S 119.4 (2)
N—C1—C1i 109.3 (3) C7—C6—S 119.6 (2)
N—C1—H1B 109.8 C8—C7—C6 119.2 (3)
C1i—C1—H1B 109.8 C8—C7—H7A 120.4
N—C1—H1C 109.8 C6—C7—H7A 120.4
C1i—C1—H1C 109.8 C7—C8—C3 120.6 (3)
H1B—C1—H1C 108.3 C7—C8—H8A 119.7
N—C2—C3 123.8 (3) C3—C8—H8A 119.7
N—C2—H2B 118.1 S—C9—H9A 109.5
C3—C2—H2B 118.1 S—C9—H9B 109.5
C8—C3—C4 119.1 (2) H9A—C9—H9B 109.5
C8—C3—C2 121.7 (3) S—C9—H9C 109.5
C4—C3—C2 119.2 (3) H9A—C9—H9C 109.5
C5—C4—C3 121.2 (3) H9B—C9—H9C 109.5
C2—N—C1—C1i 110.1 (4) O2—S—C6—C5 −26.6 (3)
C1—N—C2—C3 −178.8 (3) C9—S—C6—C5 88.5 (3)
N—C2—C3—C8 0.9 (5) O1—S—C6—C7 24.9 (3)
N—C2—C3—C4 −178.3 (3) O2—S—C6—C7 154.4 (3)
C8—C3—C4—C5 −1.3 (5) C9—S—C6—C7 −90.4 (3)
C2—C3—C4—C5 177.9 (3) C5—C6—C7—C8 −1.2 (5)
C3—C4—C5—C6 0.4 (4) S—C6—C7—C8 177.8 (3)
C4—C5—C6—C7 0.8 (5) C6—C7—C8—C3 0.3 (5)
C4—C5—C6—S −178.2 (2) C4—C3—C8—C7 0.9 (5)
O1—S—C6—C5 −156.1 (3) C2—C3—C8—C7 −178.2 (3)

Symmetry codes: (i) −x, −y, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C4—H4A···O1ii 0.93 2.52 3.241 (4) 135

Symmetry codes: (ii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2281).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Enraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.
  3. Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
  4. Qian, S.-S. & Cui, H.-Y. (2009). Acta Cryst. E65, o3029. [DOI] [PMC free article] [PubMed]
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Sun, Y.-X., You, Z.-L. & Zhu, H.-L. (2004). Acta Cryst. E60, o1707–o1708.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809047527/wm2281sup1.cif

e-65-o3093-sup1.cif (15KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809047527/wm2281Isup2.hkl

e-65-o3093-Isup2.hkl (82.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES