Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Nov 7;65(Pt 12):o3004–o3005. doi: 10.1107/S1600536809045954

5,15-Bis(3,5-di-tert-butyl­phen­yl)-10,20-bis­(phenyl­ethyn­yl)porphyrin

Hee Jung Kim a, Atul P Singh a, Hee-Joon Kim a,*
PMCID: PMC2972159  PMID: 21578743

Abstract

In the centrosymmetric title compound, C64H62N4, the two phenyl­ethynyl groups lie at diagonal meso positions. The 24-membered porphyrin has in-plane distortion with respect to the mean plane of the macrocycle and two intra-ring bifurcated N—H⋯(N,N) hydrogen bonds occur. The dihedral angles between the phenyl rings in the phenyl­ethynyl group and the 3,5-bis­(tert-but­yl)phenyl group with respect to the mean plane of the porphyrin are 17.2 (2) and 59.2 (3)°. The tert-butyl groups are disordered over two sets of sites in a 0.661 (13):0.339 (13) ratio.

Related literature

For background to porphyrin structures and electronic properties, see: Anderson et al. (1994, 1998); Fujita et al. (1995); Henari et al. (1997); Huuskonen et al. (1998); LeCours et al. (1996); Screen et al. (2002); Seo et al. (2008); Silvers & Tulinsky (1967).graphic file with name e-65-o3004-scheme1.jpg

Experimental

Crystal data

  • C64H62N4

  • M r = 887.18

  • Triclinic, Inline graphic

  • a = 9.9598 (19) Å

  • b = 10.496 (2) Å

  • c = 13.925 (3) Å

  • α = 86.236 (4)°

  • β = 80.266 (4)°

  • γ = 82.765 (4)°

  • V = 1421.8 (5) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.06 mm−1

  • T = 213 K

  • 0.45 × 0.10 × 0.05 mm

Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003) T min = 0.974, T max = 0.997

  • 6144 measured reflections

  • 4136 independent reflections

  • 2068 reflections with I > 2σ(I)

  • R int = 0.101

  • θmax = 23.5°

Refinement

  • R[F 2 > 2σ(F 2)] = 0.107

  • wR(F 2) = 0.315

  • S = 0.99

  • 4136 reflections

  • 363 parameters

  • 193 restraints

  • H-atom parameters constrained

  • Δρmax = 1.13 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809045954/hb5134sup1.cif

e-65-o3004-sup1.cif (23.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809045954/hb5134Isup2.hkl

e-65-o3004-Isup2.hkl (202.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N2 0.87 2.44 2.972 (6) 120
N1—H1A⋯N2i 0.87 2.35 2.891 (5) 121

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported by the Ministry of Education, Science Technology (MEST) and the Korean Institute for the Advancement of Technology (KIAT) through the Human Resource Training Project for Regional Innovation. We also acknowledge the New University for Regional Innovation funded by the Ministry of Education, Science Technology (MEST) for support. We thank Dr Hyunuk Kim for the data collection.

supplementary crystallographic information

Comment

The electronic and steric tunnings through surrogating various substituents on the meso- and beta-carbons play crucial role in the synthesis of diverse porphyrin systems. In this respect, meso-ethynyl porphyrins have attracted the attention due to their wide utilization for the development of conjugated electronic (LeCours et al., 1996; Anderson et al., 1994; Henari et al., 1997; Screen et al., 2002) and light harvesting materials. As an extension of our research on the conjugated photoelectronic materials (Seo et al., 2008), the title compound (I) was prepared and its crystal structure determined.

The molecular structure of C64H62N4 (I) is shown in Figure 1. The structure shows symmetric molecular system due to presence of inversion center (Ci) in the core of porphyrin macrocycle. On assuming all four nitrogen atoms of all pyrolic groups in a plane, it was observed that the meso-carbons were deviated with ± 0.072 Å from the least-squares plane and find analogy with earlier reported compound 5,15-bis(3,5-di-tert-butylphenyl) -10,20-bis(trimethylsilylethynyl)porphyrin (Huuskonen et al., 1998). The structural analysis of the porphyrin macrocycle reveals that the plane of phenyl rings in the phenylethynyl groups is slightly twisted with the dihedral angle of 17.17° with respect to the least-squares plane of the porphyrin, in contrast the plane of aryl rings associated with 3,5-bis(tert-butyl)phenyl groups (59.19°) (Figure 2). The dihedral angle associated with phenylethynyl groups (17.17°) is also much smaller with respect to phenyl planes slanting (61–63°) in tetraphenylporphyrin (Silvers et al., 1967). The comparison of this result with the tetraphenylporphyrin, it was observed that on increasing the conjugation with phenyl groups leads to release of steric strain. The distances between the nitrogen atoms (N1—N2 = 2.972, N1—N2' = 2.891, N1—N1' = 4.167, N2—N2' = 4.126 Å) involve in the formation of basal parallelogram based core along with the C—C (triple bond) (1.165 Å) bond lengths and C(meso)-C(alpha)-C(beta) angles (178.07°) involving ethynyl groups show the analogy with previous reports (Fujita et al., 1995; Huuskonen et al., 1998). In addition, the distances involving the diagonal meso-carbon atoms (C5—C5' = 6.815, C10—C10' = 6.994 Å) also differ to each other and correlate with the previous work (Huuskonen et al., 1998). The shortest intermolecular distances for the pi-pi and pi-H interactions are not observed less than 6.085 and 3.84 Å, respectively and imply the steric strain between aryl groups of adjacent porphyrin prevent the strong interactions in between adjacent molecular system (Anderson et al., 1998).

Experimental

The title compound was prepared from the corresponding dipyrromethane and phenylpropargyl aldehyde as follows. BF3.OEt2 (25 ML, 0.2 mmol) was added to a solution of meso-(3,5-di-tert-butylphenyl) dipyrromethane (0.669 g, 2.0 mmol) and phenylpropargyl aldehyde (245 ML, 2.0 mmol) in dry CH2Cl2 (200 ml). The reaction mixture was stirred for 10 min at room temperature.

2,3-Dichloro-5,6-dicyano-p-benzoquinone (340 mg, 0.15 mmol) was added and further stirred for 30 min. After evaporation of solvent to dryness, the title compound was separated by column chromatography (SiO2, CH2Cl2:n-hexane = 1:4). Recrystallization from a CH2Cl2/CH3CN solution afforded purple crystalline solid. Yield: 124 mg (14%). 1H NMR (200 MHz, CDCl3): Δ 9.70 (d, 4H), 8.89 (d, 4H), 8.06 (s, 4H), 8.00 (t, 2H), 7.82 (s, 2H), 1.55 (s, 36H), -1.92 (br, 2H). UV-vis (CH2Cl2): Λmax (log E) 443 (6.04), 554 (4.38), 594(4.92), 623 (4.25), 681 (4.61) nm.

Purple needles of (I) were grown by slow diffusion of CH3CN to a CH2Cl2 solution of the title compound.

Refinement

The carbon atoms C26—C28 and C30—C32 and their attached H atoms are disordered over two sets of sites in a 66.1:33.1 ratio with total site occupancy of 1.00 for each one of them. The contributions of the mostly disordered solvent molecules were removed from the diffraction data using the SQUEEZE routine of PLATON software (Spek, 2009), and then final refinements were carried out. All the non-hydrogen atoms were refined anisotropically, and hydrogen atoms were placed in their geometrically ideal positions.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing 30% probability displacement ellipsoids. Hydrogen atoms (except to N—H) have been omitted for the clarity.

Fig. 2.

Fig. 2.

A view of molecular structure of (I) showing the tilted planes of the different aryl groups.

Crystal data

C64H62N4 Z = 1
Mr = 887.18 F(000) = 474
Triclinic, P1 Dx = 1.036 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.9598 (19) Å Cell parameters from 4136 reflections
b = 10.496 (2) Å θ = 2.0–23.5°
c = 13.925 (3) Å µ = 0.06 mm1
α = 86.236 (4)° T = 213 K
β = 80.266 (4)° Needle, purple
γ = 82.765 (4)° 0.45 × 0.10 × 0.05 mm
V = 1421.8 (5) Å3

Data collection

Bruker SMART CCD diffractometer 4136 independent reflections
Radiation source: fine-focus sealed tube 2068 reflections with I > 2σ(I)
graphite Rint = 0.101
ω scans θmax = 23.5°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2003) h = −8→11
Tmin = 0.974, Tmax = 0.997 k = −11→11
6144 measured reflections l = −11→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.107 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.315 H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.1906P)2] where P = (Fo2 + 2Fc2)/3
4136 reflections (Δ/σ)max < 0.001
363 parameters Δρmax = 1.13 e Å3
193 restraints Δρmin = −0.30 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
N1 0.4997 (4) 0.8413 (3) 0.5981 (3) 0.0445 (11)
H1A 0.4940 0.9116 0.5616 0.053*
N2 0.3805 (4) 0.9196 (3) 0.4184 (3) 0.0481 (11)
C1 0.5695 (5) 0.8204 (4) 0.6753 (3) 0.0429 (13)
C2 0.5537 (6) 0.6929 (5) 0.7151 (4) 0.0529 (14)
H2 0.5907 0.6530 0.7689 0.063*
C3 0.4771 (6) 0.6413 (5) 0.6622 (4) 0.0600 (16)
H3 0.4511 0.5578 0.6718 0.072*
C4 0.4409 (5) 0.7342 (4) 0.5880 (4) 0.0449 (13)
C5 0.3646 (5) 0.7155 (4) 0.5160 (4) 0.0482 (13)
C6 0.3377 (5) 0.8019 (5) 0.4380 (4) 0.0468 (13)
C7 0.2576 (6) 0.7764 (5) 0.3646 (4) 0.0577 (15)
H7 0.2154 0.7020 0.3608 0.069*
C8 0.2563 (6) 0.8818 (5) 0.3030 (4) 0.0564 (15)
H8 0.2137 0.8929 0.2472 0.068*
C9 0.3299 (5) 0.9725 (4) 0.3367 (3) 0.0409 (12)
C10 0.3527 (5) 1.0946 (5) 0.2919 (3) 0.0470 (13)
C11 0.3101 (6) 0.5928 (5) 0.5201 (4) 0.0557 (14)
C12 0.2674 (6) 0.4937 (5) 0.5260 (4) 0.0606 (16)
C13 0.2183 (6) 0.3674 (5) 0.5331 (4) 0.0584 (15)
C14 0.2721 (6) 0.2699 (5) 0.5915 (4) 0.0605 (15)
H14 0.3410 0.2849 0.6265 0.073*
C15 0.1152 (6) 0.3433 (5) 0.4811 (4) 0.0626 (16)
H15 0.0781 0.4072 0.4393 0.075*
C16 0.2265 (7) 0.1512 (5) 0.5990 (5) 0.0712 (18)
H16 0.2655 0.0850 0.6381 0.085*
C17 0.0704 (7) 0.2243 (6) 0.4930 (4) 0.0760 (19)
H17 −0.0007 0.2083 0.4605 0.091*
C18 0.1249 (8) 0.1287 (6) 0.5501 (5) 0.0757 (19)
H18 0.0929 0.0475 0.5558 0.091*
C19 0.2853 (6) 1.1365 (5) 0.2057 (4) 0.0511 (14)
C20 0.1439 (6) 1.1470 (5) 0.2137 (4) 0.0636 (16)
H20 0.0914 1.1283 0.2745 0.076*
C21 0.3627 (6) 1.1657 (4) 0.1160 (4) 0.0541 (14)
H21 0.4586 1.1596 0.1104 0.065*
C22 0.0761 (6) 1.1849 (6) 0.1337 (4) 0.0704 (17)
C23 0.3015 (6) 1.2037 (5) 0.0341 (4) 0.0612 (15)
C24 0.1597 (6) 1.2114 (6) 0.0466 (4) 0.0714 (18)
H24 0.1172 1.2366 −0.0081 0.086*
C25 −0.0782 (7) 1.2010 (8) 0.1463 (5) 0.090 (2)
C26A −0.1491 (10) 1.1396 (11) 0.2354 (9) 0.077 (3) 0.661 (13)
H26A −0.1029 1.0541 0.2459 0.115* 0.661 (13)
H26B −0.2433 1.1337 0.2283 0.115* 0.661 (13)
H26C −0.1479 1.1907 0.2908 0.115* 0.661 (13)
C27A −0.1397 (14) 1.3240 (12) 0.1232 (13) 0.118 (5) 0.661 (13)
H27A −0.2385 1.3240 0.1324 0.178* 0.661 (13)
H27B −0.1063 1.3481 0.0558 0.178* 0.661 (13)
H27C −0.1171 1.3852 0.1655 0.178* 0.661 (13)
C28A −0.1218 (15) 1.1113 (16) 0.0638 (12) 0.147 (6) 0.661 (13)
H28A −0.0845 1.0225 0.0739 0.221* 0.661 (13)
H28B −0.0852 1.1424 −0.0013 0.221* 0.661 (13)
H28C −0.2209 1.1172 0.0711 0.221* 0.661 (13)
C26B −0.125 (4) 1.110 (3) 0.176 (3) 0.156 (15) 0.339 (13)
H26D −0.2235 1.1246 0.1789 0.234* 0.339 (13)
H26E −0.1041 1.0889 0.2416 0.234* 0.339 (13)
H26F −0.0867 1.0400 0.1344 0.234* 0.339 (13)
C27B −0.121 (3) 1.3362 (18) 0.2041 (19) 0.109 (9) 0.339 (13)
H27D −0.0753 1.4043 0.1668 0.164* 0.339 (13)
H27E −0.0933 1.3249 0.2679 0.164* 0.339 (13)
H27F −0.2195 1.3590 0.2115 0.164* 0.339 (13)
C28B −0.117 (3) 1.263 (3) 0.048 (2) 0.153 (12) 0.339 (13)
H28D −0.0526 1.3227 0.0203 0.229* 0.339 (13)
H28E −0.2091 1.3088 0.0598 0.229* 0.339 (13)
H28F −0.1147 1.1962 0.0025 0.229* 0.339 (13)
C29 0.3836 (7) 1.2398 (6) −0.0623 (4) 0.0763 (18)
C30A 0.495 (6) 1.131 (5) −0.084 (4) 0.094 (9) 0.121 (8)
H30A 0.5050 1.0805 −0.0243 0.141* 0.121 (8)
H30B 0.5801 1.1652 −0.1102 0.141* 0.121 (8)
H30C 0.4709 1.0776 −0.1311 0.141* 0.121 (8)
C31A 0.294 (5) 1.274 (6) −0.138 (4) 0.089 (10) 0.121 (8)
H31A 0.3509 1.2927 −0.2001 0.134* 0.121 (8)
H31B 0.2299 1.3483 −0.1193 0.134* 0.121 (8)
H31C 0.2446 1.2018 −0.1446 0.134* 0.121 (8)
C32A 0.445 (7) 1.358 (5) −0.035 (5) 0.110 (10) 0.121 (8)
H32A 0.5169 1.3299 0.0039 0.165* 0.121 (8)
H32B 0.3740 1.4150 0.0026 0.165* 0.121 (8)
H32C 0.4841 1.4041 −0.0938 0.165* 0.121 (8)
C30B 0.3606 (9) 1.1477 (8) −0.1410 (5) 0.092 (3) 0.879 (8)
H30D 0.4134 1.1703 −0.2035 0.138* 0.879 (8)
H30E 0.2640 1.1563 −0.1463 0.138* 0.879 (8)
H30F 0.3903 1.0595 −0.1217 0.138* 0.879 (8)
C31B 0.3428 (10) 1.3783 (8) −0.0936 (6) 0.109 (3) 0.879 (8)
H31D 0.3979 1.3990 −0.1557 0.163* 0.879 (8)
H31E 0.3579 1.4346 −0.0449 0.163* 0.879 (8)
H31F 0.2466 1.3899 −0.1003 0.163* 0.879 (8)
C32B 0.5416 (8) 1.2160 (9) −0.0616 (5) 0.086 (2) 0.879 (8)
H32D 0.5902 1.2415 −0.1249 0.130* 0.879 (8)
H32E 0.5680 1.1255 −0.0475 0.130* 0.879 (8)
H32F 0.5645 1.2664 −0.0120 0.130* 0.879 (8)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.048 (3) 0.031 (2) 0.050 (3) −0.0016 (18) −0.004 (2) 0.0123 (18)
N2 0.053 (3) 0.039 (2) 0.050 (3) −0.0027 (19) −0.002 (2) 0.0033 (19)
C1 0.043 (3) 0.033 (3) 0.046 (3) 0.006 (2) −0.001 (2) 0.012 (2)
C2 0.057 (4) 0.043 (3) 0.059 (3) −0.008 (3) −0.014 (3) 0.014 (3)
C3 0.058 (4) 0.047 (3) 0.071 (4) −0.009 (3) −0.006 (3) 0.026 (3)
C4 0.050 (3) 0.032 (3) 0.048 (3) −0.005 (2) 0.005 (3) 0.006 (2)
C5 0.049 (3) 0.041 (3) 0.051 (3) −0.007 (2) −0.002 (3) 0.006 (2)
C6 0.035 (3) 0.050 (3) 0.051 (3) −0.001 (2) 0.001 (2) −0.002 (2)
C7 0.061 (4) 0.055 (3) 0.059 (4) −0.021 (3) −0.006 (3) 0.004 (3)
C8 0.061 (4) 0.066 (4) 0.043 (3) −0.014 (3) −0.006 (3) 0.000 (3)
C9 0.035 (3) 0.039 (3) 0.046 (3) 0.000 (2) −0.004 (2) 0.001 (2)
C10 0.043 (3) 0.050 (3) 0.043 (3) 0.003 (2) 0.000 (2) −0.001 (2)
C11 0.059 (4) 0.046 (3) 0.060 (4) −0.014 (3) −0.004 (3) 0.011 (3)
C12 0.071 (4) 0.046 (3) 0.062 (4) −0.012 (3) −0.001 (3) 0.008 (3)
C13 0.056 (4) 0.043 (3) 0.071 (4) −0.009 (3) 0.007 (3) −0.008 (3)
C14 0.055 (4) 0.049 (3) 0.075 (4) −0.007 (3) −0.004 (3) −0.001 (3)
C15 0.071 (4) 0.054 (3) 0.059 (4) −0.006 (3) −0.004 (3) 0.000 (3)
C16 0.065 (4) 0.044 (3) 0.093 (5) 0.001 (3) 0.009 (4) 0.011 (3)
C17 0.090 (5) 0.084 (5) 0.058 (4) −0.038 (4) 0.000 (3) −0.014 (3)
C18 0.080 (5) 0.055 (4) 0.085 (5) −0.020 (3) 0.016 (4) −0.008 (4)
C19 0.053 (4) 0.052 (3) 0.046 (3) 0.003 (3) −0.008 (3) −0.005 (2)
C20 0.049 (4) 0.076 (4) 0.057 (4) 0.011 (3) 0.004 (3) −0.001 (3)
C21 0.054 (4) 0.053 (3) 0.049 (3) 0.007 (3) −0.002 (3) −0.003 (2)
C22 0.057 (4) 0.086 (4) 0.061 (4) 0.020 (3) −0.010 (3) 0.000 (3)
C23 0.062 (4) 0.062 (3) 0.057 (4) 0.011 (3) −0.018 (3) 0.004 (3)
C24 0.063 (5) 0.095 (4) 0.050 (4) 0.024 (3) −0.015 (3) 0.000 (3)
C25 0.054 (5) 0.121 (6) 0.086 (5) 0.029 (4) −0.020 (4) 0.009 (4)
C26A 0.038 (5) 0.093 (6) 0.096 (7) −0.002 (4) −0.014 (5) 0.018 (5)
C27A 0.097 (8) 0.117 (8) 0.135 (9) 0.002 (6) −0.020 (7) 0.011 (7)
C28A 0.109 (9) 0.171 (10) 0.167 (10) −0.024 (7) −0.031 (7) −0.014 (8)
C26B 0.149 (17) 0.162 (17) 0.157 (17) −0.013 (10) −0.031 (10) 0.002 (10)
C27B 0.099 (11) 0.111 (11) 0.114 (12) −0.006 (8) −0.015 (9) 0.000 (9)
C28B 0.147 (15) 0.165 (15) 0.148 (14) −0.006 (9) −0.037 (9) −0.006 (9)
C29 0.081 (4) 0.089 (4) 0.048 (3) 0.016 (3) −0.002 (3) 0.004 (3)
C30A 0.089 (12) 0.096 (11) 0.092 (13) 0.003 (8) −0.010 (9) 0.002 (9)
C31A 0.087 (12) 0.095 (14) 0.085 (12) −0.007 (8) −0.015 (9) 0.005 (9)
C32A 0.112 (15) 0.112 (12) 0.106 (15) −0.011 (9) −0.021 (10) −0.012 (10)
C30B 0.083 (5) 0.133 (6) 0.052 (4) 0.007 (4) 0.000 (3) −0.010 (4)
C31B 0.114 (6) 0.108 (5) 0.089 (5) −0.002 (4) 0.002 (5) 0.039 (4)
C32B 0.083 (5) 0.122 (6) 0.045 (4) 0.001 (4) 0.003 (3) 0.009 (4)

Geometric parameters (Å, °)

N1—C4 1.357 (6) C29—C30A 1.49 (4)
N1—C1 1.367 (6) C29—C31A 1.49 (4)
N2—C6 1.354 (6) C29—C31B 1.515 (9)
N2—C9 1.378 (6) C29—C30B 1.570 (10)
C1—C10i 1.397 (7) C29—C32B 1.563 (10)
C1—C2 1.431 (6) C29—C32A 1.55 (5)
C2—C3 1.329 (7) N1—H1A 0.869 (3)
C3—C4 1.433 (7) C2—H2 0.941 (6)
C4—C5 1.393 (7) C3—H3 0.940 (5)
C5—C6 1.407 (7) C8—H8 0.940 (6)
C5—C11 1.454 (7) C14—H14 0.940 (6)
C6—C7 1.455 (7) C15—H15 0.940 (5)
C7—C8 1.355 (7) C16—H16 0.940 (6)
C8—C9 1.420 (7) C17—H17 0.940 (7)
C9—C10 1.415 (6) C18—H18 0.941 (7)
C10—C1i 1.397 (7) C20—H20 0.940 (5)
C10—C19 1.488 (7) C21—H21 0.939 (6)
C11—C12 1.164 (7) C24—H24 0.940 (6)
C12—C13 1.462 (7) C26A—H26A 0.97 (1)
C13—C14 1.377 (8) C26A—H26B 0.97 (1)
C13—C15 1.409 (8) C26A—H26C 0.97 (1)
C14—C16 1.371 (7) C27A—H27A 0.97 (1)
C15—C17 1.369 (8) C27A—H27B 0.97 (2)
C16—C18 1.364 (9) C27A—H27C 0.97 (2)
C17—C18 1.355 (9) C28A—H28A 0.97 (2)
C19—C20 1.385 (7) C28A—H28B 0.97 (2)
C19—C21 1.390 (7) C28A—H28C 0.97 (1)
C20—C22 1.408 (8) C30A—H30A 0.97 (5)
C21—C23 1.395 (7) C30A—H30B 0.97 (6)
C22—C24 1.383 (8) C30A—H30C 0.97 (6)
C22—C25 1.506 (9) C31A—H31A 0.97 (5)
C23—C24 1.386 (8) C31A—H31B 0.96 (5)
C23—C29 1.502 (8) C31A—H31C 0.97 (6)
C25—C26B 1.14 (3) C32A—H32A 0.97 (7)
C25—C27A 1.400 (13) C32A—H32B 0.97 (6)
C25—C26A 1.473 (12) C32A—H32C 0.97 (6)
C25—C28B 1.57 (3) N1—H1A 0.869 (3)
C25—C27B 1.651 (16) C2—H2 0.941 (6)
C25—C28A 1.676 (16)
C4—N1—C1 108.7 (4) C28B—C25—C28A 59.0 (12)
C6—N2—C9 107.9 (4) C27B—C25—C28A 143.9 (12)
N1—C1—C10i 126.7 (4) C30A—C29—C31A 116 (3)
N1—C1—C2 107.9 (5) C30A—C29—C23 106 (2)
C10i—C1—C2 125.4 (5) C31A—C29—C23 112 (2)
C3—C2—C1 107.4 (5) C30A—C29—C31B 142 (2)
C2—C3—C4 108.6 (5) C31A—C29—C31B 58 (2)
N1—C4—C5 126.4 (4) C23—C29—C31B 111.3 (5)
N1—C4—C3 107.4 (5) C30A—C29—C30B 65 (2)
C5—C4—C3 126.1 (5) C31A—C29—C30B 54 (2)
C4—C5—C6 126.8 (4) C23—C29—C30B 109.0 (6)
C4—C5—C11 116.8 (4) C31B—C29—C30B 110.0 (6)
C6—C5—C11 116.4 (5) C30A—C29—C32B 44 (2)
N2—C6—C5 126.7 (5) C31A—C29—C32B 136 (2)
N2—C6—C7 109.1 (4) C23—C29—C32B 112.4 (5)
C5—C6—C7 124.2 (5) C31B—C29—C32B 110.1 (7)
C8—C7—C6 105.9 (5) C30B—C29—C32B 103.9 (6)
C7—C8—C9 108.7 (5) C30A—C29—C32A 110 (3)
N2—C9—C8 108.4 (4) C31A—C29—C32A 112 (3)
N2—C9—C10 125.5 (5) C23—C29—C32A 101 (2)
C8—C9—C10 126.0 (5) C31B—C29—C32A 54 (2)
C1i—C10—C9 124.6 (5) C30B—C29—C32A 150 (2)
C1i—C10—C19 117.9 (4) C32B—C29—C32A 66 (2)
C9—C10—C19 117.4 (5) C25—C26A—H26A 110 (1)
C12—C11—C5 178.0 (6) C25—C26A—H26B 109 (1)
C11—C12—C13 178.2 (6) C25—C26A—H26C 109 (1)
C14—C13—C15 118.9 (5) H26A—C26A—H26B 109 (1)
C14—C13—C12 120.2 (6) H26A—C26A—H26C 109 (1)
C15—C13—C12 120.9 (5) H26B—C26A—H26C 109 (1)
C16—C14—C13 120.7 (6) C25—C27A—H27A 109 (1)
C17—C15—C13 118.2 (6) C25—C27A—H27B 110 (1)
C18—C16—C14 120.3 (6) C25—C27A—H27C 109 (1)
C18—C17—C15 122.4 (7) H27A—C27A—H27B 109 (1)
C17—C18—C16 119.4 (6) H27A—C27A—H27C 109 (1)
C20—C19—C21 118.9 (5) H27B—C27A—H27C 109 (1)
C20—C19—C10 120.3 (5) C25—C28A—H28A 109 (1)
C21—C19—C10 120.8 (5) C25—C28A—H28B 109 (1)
C19—C20—C22 122.2 (5) C25—C28A—H28C 109 (1)
C23—C21—C19 121.6 (5) H28A—C28A—H28B 109 (2)
C24—C22—C20 115.8 (6) H28A—C28A—H28C 110 (2)
C24—C22—C25 123.6 (6) H28B—C28A—H28C 109 (2)
C20—C22—C25 120.6 (5) C23—C29—C30A 106 (2)
C24—C23—C21 116.7 (5) C23—C29—C31A 111 (2)
C24—C23—C29 121.1 (5) C23—C29—C32A 101 (2)
C21—C23—C29 122.1 (6) C30A—C29—C31A 116 (3)
C22—C24—C23 124.8 (6) C30A—C29—C32A 110 (3)
C26B—C25—C27A 131 (2) C31A—C29—C32A 112 (3)
C26B—C25—C26A 36.7 (19) C29—C30A—H30A 109 (5)
C27A—C25—C26A 113.9 (9) C29—C30A—H30B 109 (5)
C26B—C25—C22 113 (2) C29—C30A—H30C 109 (5)
C27A—C25—C22 115.8 (9) H30A—C30A—H30B 110 (5)
C26A—C25—C22 115.9 (6) H30A—C30A—H30C 110 (5)
C26B—C25—C28B 117 (2) H30B—C30A—H30C 110 (5)
C27A—C25—C28B 48.9 (12) C29—C31A—H31A 109 (5)
C26A—C25—C28B 136.7 (14) C29—C31A—H31B 110 (5)
C22—C25—C28B 106.5 (13) C29—C31A—H31C 109 (5)
C26B—C25—C27B 120 (2) H31A—C31A—H31B 110 (5)
C27A—C25—C27B 45.0 (9) H31A—C31A—H31C 109 (5)
C26A—C25—C27B 85.5 (11) H31B—C31A—H31C 110 (5)
C22—C25—C27B 102.9 (11) C29—C32A—H32A 110 (5)
C28B—C25—C27B 93.6 (14) C29—C32A—H32B 110 (5)
C26B—C25—C28A 64 (2) C29—C32A—H32C 110 (5)
C27A—C25—C28A 102.6 (10) H32A—C32A—H32B 109 (6)
C26A—C25—C28A 98.7 (9) H32A—C32A—H32C 109 (6)
C22—C25—C28A 107.1 (7) H32B—C32A—H32C 109 (6)

Symmetry codes: (i) −x+1, −y+2, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1A···N2 0.87 2.44 2.972 (6) 120
N1—H1A···N2i 0.87 2.35 2.891 (5) 121

Symmetry codes: (i) −x+1, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5134).

References

  1. Anderson, H. L., Martin, S. J. & Bradley, D. D. C. (1994). Angew. Chem. Int. Ed. Engl. 33, 655–657.
  2. Anderson, H. L., Wylie, A. P. & Prout, K. (1998). J. Chem. Soc. Perkin Trans. 1, pp. 1607–1611.
  3. Bruker (2003). SMART, SAINT,and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Fujita, T., Uekusa, H., Ohkubo, A., Shimura, T., Aramaki, K., Nishihara, H. & Ohba, S. (1995). Acta Cryst. C51, 2265–2269.
  5. Henari, F. Z., Blau, W. J., Milgrom, L. R., Yahioglu, G., Phillips, D. & Lacey, J. A. (1997). Chem. Phys. Lett. 267, 229–233.
  6. Huuskonen, S.-P. J., Wilson, G. S. & Anderson, H. L. (1998). Acta Cryst. C54, 662–664.
  7. LeCours, S. M., DiMagno, S. G. & Therien, M. J. (1996). J. Am. Chem. Soc. 118, 11854–11864.
  8. Screen, T. E. O., Thorne, J. R. G., Denning, R. G., Bucknall, D. G. & Anderson, H. L. (2002). J. Am. Chem. Soc. 124, 9712–9713. [DOI] [PubMed]
  9. Seo, J.-W., Jang, S. Y., Kim, D. & Kim, H.-J. (2008). Tetrahedron, 64, 2733–2739.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Silvers, S. J. & Tulinsky, A. (1967). J. Am. Chem. Soc. 89, 3331–3337. [DOI] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809045954/hb5134sup1.cif

e-65-o3004-sup1.cif (23.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809045954/hb5134Isup2.hkl

e-65-o3004-Isup2.hkl (202.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES