Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Nov 18;65(Pt 12):m1606–m1607. doi: 10.1107/S160053680904817X

Carbonyl[4-(2,6-dimethyl­phenyl­amino)pent-3-en-2-onato-κ2 N,O](triphenyl­phosphine-κP)rhodium(I) acetone hemi­solvate

Gertruida J S Venter a,*, Gideon Steyl a, Andreas Roodt a
PMCID: PMC2972166  PMID: 21578632

Abstract

In the title compound, [Rh(C13H16NO)(C18H15P)(CO)]·0.5C3H6O, the Rh atom exhibits a square-planar coordination geometry, being coordinated by the N and O atoms of the bidentate β-diketonato ligand, a P atom from the triphenyl­phosphine unit and a C atom from the carbonyl group. The asymmetric unit also contains a disordered half-mol­ecule, lying about an inversion center, of the acetone solvate. Inter­molecular C—H⋯O hydrogen bonds are observed between a C—H group of the triphenyl­phosphine unit and a carbonyl O atom and between the methyl group of the enamino­ketonato backbone and the solvent O atom. In addition, an intra­molecular inter­action is observed between a C—H group of the triphenyl­phosphine unit and the O atom of the enamino­ketonato ligand.

Related literature

For synthetic background, see: Shaheen et al. (2006); Cornils & Hermann (1996); Bonati & Wilkinson (1964). For appplications of rhodium(I) dicarbonyl complexes, see: Cornils & Herrmann (1996); Trzeciak & Ziolkowski (1994); Van Rooy et al. (1995). For related structures, see: Damoense et al. (1994); Varshavsky et al. (2001); Venter et al. (2009).graphic file with name e-65-m1606-scheme1.jpg

Experimental

Crystal data

  • [Rh(C13H16NO)(C18H15P)(CO)]·0.5C3H6O

  • M r = 624.5

  • Monoclinic, Inline graphic

  • a = 16.8558 (8) Å

  • b = 11.4028 (5) Å

  • c = 16.4059 (8) Å

  • β = 108.733 (1)°

  • V = 2986.2 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.66 mm−1

  • T = 100 K

  • 0.31 × 0.15 × 0.11 mm

Data collection

  • Bruker X8 APEXII 4K Kappa CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004) T min = 0.822, T max = 0.931

  • 23158 measured reflections

  • 7425 independent reflections

  • 6081 reflections with > 2σI)

  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.112

  • S = 1.09

  • 7425 reflections

  • 354 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 1.54 e Å−3

  • Δρmin = −1.32 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680904817X/pv2227sup1.cif

e-65-m1606-sup1.cif (26.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680904817X/pv2227Isup2.hkl

e-65-m1606-Isup2.hkl (356KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C332—H332⋯O12 0.95 2.38 3.201 (3) 144
C334—H334⋯O14i 0.95 2.51 3.201 (4) 130
C1—H1B⋯O01ii 0.98 2.54 3.372 (9) 142

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Table 2. Comparative geometrical parameters (Å, °) for similar [Rh(N,O-bid)(CO)(PPh3)] complexes.

Parameters (I)a (II)b (III)c (IV)d
Rh1—N11 2.077 (2) 2.069 (2) 2.045 (4) 2.045 (3)
Rh1—O12 2.027 (2) 2.028 (2) 2.044 (3) 2.045 (2)
Rh1—P13 2.2704 (7) 2.2635 (6) 2.275 (1) 2.281 (2)
Rh1—C14 1.812 (3) 1.807 (2) 1.784 (5) 1.804 (3)
C14—O14 1.147 (3) 1.152 (3) 1.142 (7) 1.148 (4)
N11⋯O12 2.885 (3) 2.885 (3) 2.826 (6) 2.841 (3)
N11—Rh1—O12 89.31 (9) 89.54 (8) 87.4 (1) 87.95 (8)
O12—Rh1—P13 85.95 (6) 84.97 (5) 89.7 (1) 89.91 (5)
P13—Rh1—C14 91.57 (9) 91.87 (7) 90.3 (2) 89.48 (9)
N11—Rh1—C14 93.1 (1) 93.6 (1) 92.6 (2) 92.6 (1)
N11—C2—C4—O12 −2.6 (2) 4.1 (2) 1.2 (4) 1.5 (2)
θE e 155.77 (2) 156.39 (3) 156.0 (2) 156.23 (4)

Notes: (a) This work; (b) N,O-bid = 4-(2,3-dimethyl phenylamino)pent-3-en-2-onato (Venter et al., 2009); (c) N,O-bid = 4-amino-pent-3-en-2-onato (Damoense et al., 1994); (d) N,O-bid = 4-amino-1,1,1-trifluoro-pent-3-en-2-onato (Varshavsky et al., 2001); (e) cone angle (Tolman, 1977).

Acknowledgments

Financial assistance from the University of the Free State is gratefully acknowledged, while Mr Leo Kirsten is thanked for the data collection. We also express our gratitude to SASOL and the South African National Research Foundation (SA-NRF/THRIP) for financial support of this project. Part of this material is based on work supported by the SA-NRF/THRIP under grant No. GUN 2068915. Opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the SA-NRF.

supplementary crystallographic information

Comment

Rhodium(I) dicarbonyl complexes of the type [Rh(L,L')(CO)2] containing chelating mono-anionic bidentate (L,L') ligands coordinated to rhodium via (O,O) donor atoms have been studied as catalyst precursors (Cornils & Herrmann, 1996; Trzeciak et al., 1994; Van Rooy et al., 1995). The investigation of these complexes is followed by complexes containing bidentate β-enaminoketonato ligands such as 4-(phenylamino)pent-3-en-2-onato (Phony) (Shaheen et al., 2006) coordinated to rhodium via (N,O) donor atoms. It was suggested that only one CO-group in a [Rh(N,O-bid)(CO)2]-type complex will be substituted by triphenyl phosphine, with the product being one of two possible isomers (Bonati & Wilkinson, 1964). Since the N-donor atom has a larger trans-influence than the O-atom, the CO-group trans to the N-atom will be substituted. This is evident in the title compound, (I), where [Rh(2,6-diMe-Phony)(CO)(PPh3)] is formed by the substitution of the carbonyl ligand in the dicarbonyl rhodium(I) complex [Rh(2,6-diMe-Phony)(CO)2] by PPh3.

In the title complex (Fig. 1), the bond distances involving rhodium differ significantly from the distances in related complexes, with the exception of [Rh(2,3-diMe-Phony)(CO)(PPh3)] (Venter et al., 2009), wherein all angles and distances are comparable to (I) (Table 2). The distance, Rh—N, in (I) is longer than in similar complexes while the Rh—O bond distance is shorter. This is due to the steric influence of the phenyl group connected to nitrogen in the title compound, as opposed to the hydrogen in the related complexes. The Rh—C and the carbonyl C—O distances are comparable with those distances in the related complexes (Table 2). The N—Rh—O bite angle is slightly larger than that observed in similar complexes found in the literature. The effective cone angle, θE, (Tolman, 1977) of 155.77 (2)° is similar to the angles in the related compounds. The acetone solvate was disordered and was located about an inversion center. Intermolecular and intramolecular hydrogen bonds of the type C—H···O are observed in the structure.

Experimental

To a 5 ml acetone solution of [Rh(2,6-diMe-Phony)(CO)2] (0.0302 g, 83.61 µmol) was added PPh3 (0.0219 g, 83.50 µmol) resulting in an immediate evolution of gas with the formation of the title compound. Crystallization from acetone produced yellow crystals of (I) in quantitative (0.0516 g, 100%) yield. IR (KBr): νCO 1971.1 s cm-1.

Refinement

The methyl and aromatic H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.95 and 0.98 Å and Uiso(H) = 1.5Ueq(C) and 1.2Ueq(C), respectively. The methyl groups were generated to fit the difference electron density and the groups were then refined as rigid rotors. The acetone solvate was disordered about inversion center. The highest residual electron- density peak in the final difference map was located 0.65Å from H316 and was essentially meaningless.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability displacement level. H atoms and disordered solvate molecule have been omitted for clarity.

Fig. 2.

Fig. 2.

A view of the unit cell of (I) illustrating the C—H···O interactions; hydrogen atoms have been omitted for clarity.

Crystal data

[Rh(C13H16NO)(C18H15P)(CO)]·0.5C3H6O F(000) = 1288
Mr = 624.5 Dx = 1.389 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 6670 reflections
a = 16.8558 (8) Å θ = 2.5–28.2°
b = 11.4028 (5) Å µ = 0.66 mm1
c = 16.4059 (8) Å T = 100 K
β = 108.733 (1)° Cuboid, yellow
V = 2986.2 (2) Å3 0.31 × 0.15 × 0.11 mm
Z = 4

Data collection

Bruker X8 APEXII 4K Kappa CCD diffractometer 7425 independent reflections
Radiation source: fine-focus sealed tube 6081 reflections with > 2σI)
graphite Rint = 0.042
ω and φ scans θmax = 28.3°, θmin = 1.3°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = −21→22
Tmin = 0.822, Tmax = 0.931 k = −15→11
23158 measured reflections l = −21→21

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112 H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0577P)2 + 1.4787P] where P = (Fo2 + 2Fc2)/3
7425 reflections (Δ/σ)max = 0.002
354 parameters Δρmax = 1.54 e Å3
1 restraint Δρmin = −1.32 e Å3

Special details

Experimental. The intensity data was collected on a Bruker X8 ApexII 4 K Kappa CCD diffractometer using an exposure time of 60 s/frame. A total of 688 frames were collected with a frame width of 0.5° covering up to θ = 28.24° with 99.8% completeness accomplished.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.7144 (2) 0.7625 (3) 0.4744 (2) 0.0257 (7)
H1A 0.7697 0.7807 0.5152 0.039*
H1B 0.6712 0.7804 0.5007 0.039*
H1C 0.7048 0.8097 0.4222 0.039*
C2 0.71032 (17) 0.6337 (2) 0.45128 (18) 0.0168 (5)
C3 0.65757 (17) 0.5637 (2) 0.48382 (18) 0.0183 (6)
H3 0.6324 0.6017 0.5209 0.022*
C4 0.63880 (17) 0.4461 (2) 0.46740 (19) 0.0180 (6)
C5 0.57863 (19) 0.3856 (3) 0.5045 (2) 0.0265 (7)
H5A 0.5288 0.3609 0.4577 0.04*
H5B 0.5621 0.4399 0.5425 0.04*
H5C 0.6058 0.3167 0.5375 0.04*
C14 0.84522 (17) 0.4446 (2) 0.32802 (17) 0.0166 (5)
C111 0.80357 (17) 0.6734 (2) 0.37352 (18) 0.0164 (5)
C112 0.76869 (19) 0.7250 (2) 0.2919 (2) 0.0223 (6)
C113 0.8183 (2) 0.8000 (3) 0.2624 (2) 0.0271 (7)
H113 0.7952 0.8365 0.2078 0.033*
C114 0.9008 (2) 0.8226 (2) 0.3109 (2) 0.0292 (7)
H114 0.9338 0.8746 0.2897 0.035*
C115 0.93503 (19) 0.7690 (2) 0.3902 (2) 0.0242 (6)
H115 0.9919 0.7836 0.4228 0.029*
C116 0.88743 (18) 0.6938 (2) 0.42310 (19) 0.0194 (6)
C117 0.6798 (2) 0.6980 (3) 0.2380 (2) 0.0318 (7)
H11A 0.6667 0.7385 0.1826 0.048*
H11B 0.6414 0.7247 0.2682 0.048*
H11C 0.6734 0.6132 0.2283 0.048*
C118 0.92484 (19) 0.6332 (3) 0.5082 (2) 0.0257 (7)
H11D 0.9859 0.6413 0.5269 0.039*
H11E 0.9099 0.5499 0.5021 0.039*
H11F 0.9031 0.6689 0.551 0.039*
C311 0.82259 (17) 0.1691 (2) 0.27715 (17) 0.0149 (5)
C312 0.90839 (17) 0.1910 (2) 0.30147 (18) 0.0168 (5)
H312 0.9352 0.2308 0.354 0.02*
C313 0.95533 (17) 0.1553 (2) 0.24967 (19) 0.0193 (6)
H313 1.0138 0.1707 0.267 0.023*
C314 0.91660 (18) 0.0976 (2) 0.17315 (19) 0.0212 (6)
H314 0.9483 0.0736 0.1375 0.025*
C315 0.83113 (18) 0.0749 (2) 0.14845 (19) 0.0190 (6)
H315 0.8045 0.035 0.0959 0.023*
C316 0.78449 (17) 0.1103 (2) 0.20019 (18) 0.0168 (5)
H316 0.7261 0.0943 0.1829 0.02*
C321 0.66208 (17) 0.1553 (2) 0.30122 (17) 0.0153 (5)
C322 0.59944 (17) 0.2176 (2) 0.24164 (19) 0.0202 (6)
H322 0.6093 0.296 0.2279 0.024*
C323 0.52197 (18) 0.1657 (3) 0.2017 (2) 0.0243 (6)
H323 0.4799 0.208 0.1594 0.029*
C324 0.50573 (19) 0.0534 (3) 0.2231 (2) 0.0260 (7)
H324 0.4523 0.019 0.1966 0.031*
C325 0.5676 (2) −0.0085 (3) 0.2829 (2) 0.0386 (9)
H325 0.557 −0.086 0.2979 0.046*
C326 0.6459 (2) 0.0424 (3) 0.3217 (2) 0.0335 (8)
H326 0.6884 −0.001 0.3627 0.04*
C331 0.81170 (17) 0.1399 (2) 0.44688 (17) 0.0156 (5)
C332 0.7927 (2) 0.1752 (3) 0.51929 (19) 0.0266 (7)
H332 0.7579 0.2416 0.5163 0.032*
C333 0.8240 (2) 0.1144 (3) 0.5959 (2) 0.0334 (8)
H333 0.8091 0.1378 0.6447 0.04*
C334 0.8770 (2) 0.0196 (3) 0.60188 (19) 0.0263 (7)
H334 0.8999 −0.0205 0.655 0.032*
C335 0.89635 (18) −0.0163 (2) 0.53013 (19) 0.0222 (6)
H335 0.932 −0.082 0.5339 0.027*
C336 0.86407 (18) 0.0429 (2) 0.45242 (19) 0.0196 (6)
H336 0.8775 0.0176 0.4032 0.024*
N11 0.75420 (14) 0.59212 (18) 0.40401 (15) 0.0148 (5)
O12 0.66821 (11) 0.37910 (16) 0.42069 (13) 0.0174 (4)
O14 0.90058 (13) 0.46375 (18) 0.30306 (13) 0.0225 (4)
P13 0.76530 (4) 0.22182 (6) 0.34722 (4) 0.01315 (15)
Rh1 0.761010 (12) 0.417429 (17) 0.371227 (13) 0.01263 (8)
O01 0.4759 (6) 0.3631 (7) 0.0331 (6) 0.0963 (16) 0.5
C01 0.4182 (4) 0.5252 (5) −0.0389 (4) 0.0963 (16)
H01A 0.366 0.4813 −0.0482 0.144*
H01B 0.4236 0.5472 −0.0946 0.144*
H01C 0.4173 0.5961 −0.0055 0.144*
C02 0.4899 (9) 0.4513 (10) 0.0086 (9) 0.0963 (16) 0.5

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0290 (16) 0.0158 (14) 0.0378 (18) 0.0010 (12) 0.0183 (14) −0.0024 (13)
C2 0.0145 (13) 0.0149 (13) 0.0204 (14) 0.0019 (10) 0.0049 (11) 0.0014 (10)
C3 0.0165 (13) 0.0185 (13) 0.0215 (14) 0.0041 (11) 0.0082 (11) 0.0009 (11)
C4 0.0127 (13) 0.0192 (13) 0.0220 (14) 0.0039 (10) 0.0056 (11) 0.0037 (11)
C5 0.0233 (15) 0.0239 (15) 0.0378 (18) −0.0002 (12) 0.0176 (14) 0.0045 (13)
C14 0.0190 (14) 0.0134 (12) 0.0157 (13) −0.0017 (10) 0.0032 (11) −0.0036 (10)
C111 0.0206 (14) 0.0097 (12) 0.0224 (14) −0.0009 (10) 0.0118 (12) −0.0016 (10)
C112 0.0273 (15) 0.0152 (13) 0.0279 (16) 0.0027 (11) 0.0137 (13) 0.0022 (11)
C113 0.0408 (19) 0.0149 (13) 0.0312 (17) 0.0020 (13) 0.0193 (15) 0.0041 (12)
C114 0.0410 (19) 0.0138 (14) 0.043 (2) −0.0063 (13) 0.0286 (16) −0.0043 (13)
C115 0.0243 (15) 0.0173 (14) 0.0375 (18) −0.0055 (11) 0.0189 (14) −0.0117 (12)
C116 0.0220 (14) 0.0136 (12) 0.0242 (15) −0.0014 (11) 0.0099 (12) −0.0038 (11)
C117 0.0293 (17) 0.0335 (17) 0.0289 (17) 0.0046 (14) 0.0043 (14) 0.0104 (14)
C118 0.0217 (15) 0.0267 (16) 0.0243 (16) −0.0035 (12) 0.0013 (13) −0.0047 (12)
C311 0.0186 (13) 0.0098 (12) 0.0171 (13) 0.0012 (10) 0.0066 (11) 0.0014 (10)
C312 0.0165 (13) 0.0147 (12) 0.0180 (13) −0.0017 (10) 0.0037 (11) −0.0003 (10)
C313 0.0138 (13) 0.0189 (13) 0.0249 (15) 0.0030 (11) 0.0059 (11) 0.0037 (11)
C314 0.0225 (15) 0.0196 (14) 0.0242 (15) 0.0043 (11) 0.0112 (13) 0.0025 (11)
C315 0.0211 (14) 0.0176 (13) 0.0180 (14) −0.0002 (11) 0.0060 (12) −0.0023 (10)
C316 0.0165 (13) 0.0143 (12) 0.0187 (14) −0.0012 (10) 0.0041 (11) −0.0001 (10)
C321 0.0159 (13) 0.0149 (12) 0.0163 (13) −0.0011 (10) 0.0067 (11) −0.0025 (10)
C322 0.0173 (14) 0.0168 (13) 0.0251 (15) −0.0012 (11) 0.0049 (12) −0.0008 (11)
C323 0.0155 (14) 0.0265 (16) 0.0261 (16) 0.0030 (12) 0.0001 (12) 0.0001 (12)
C324 0.0166 (14) 0.0312 (16) 0.0283 (16) −0.0067 (12) 0.0045 (13) −0.0052 (13)
C325 0.0317 (18) 0.0261 (17) 0.048 (2) −0.0167 (14) −0.0006 (16) 0.0098 (15)
C326 0.0249 (16) 0.0237 (16) 0.041 (2) −0.0047 (13) −0.0047 (15) 0.0129 (14)
C331 0.0162 (13) 0.0134 (12) 0.0147 (13) −0.0016 (10) 0.0014 (11) −0.0017 (10)
C332 0.0368 (18) 0.0224 (15) 0.0195 (15) 0.0132 (13) 0.0077 (13) 0.0011 (12)
C333 0.054 (2) 0.0313 (17) 0.0153 (15) 0.0234 (16) 0.0113 (15) 0.0034 (13)
C334 0.0340 (17) 0.0214 (15) 0.0188 (15) 0.0074 (13) 0.0022 (13) 0.0031 (12)
C335 0.0246 (15) 0.0168 (14) 0.0233 (15) 0.0049 (11) 0.0052 (12) 0.0005 (11)
C336 0.0220 (14) 0.0160 (13) 0.0213 (14) 0.0013 (11) 0.0075 (12) −0.0017 (11)
N11 0.0142 (11) 0.0107 (10) 0.0191 (12) −0.0009 (8) 0.0049 (9) 0.0012 (8)
O12 0.0152 (9) 0.0148 (9) 0.0242 (10) −0.0008 (8) 0.0091 (8) 0.0014 (8)
O14 0.0261 (11) 0.0180 (10) 0.0280 (11) −0.0059 (8) 0.0152 (9) −0.0034 (8)
P13 0.0123 (3) 0.0117 (3) 0.0142 (3) −0.0008 (2) 0.0027 (3) −0.0002 (2)
Rh1 0.01250 (12) 0.01060 (11) 0.01490 (12) −0.00047 (7) 0.00457 (8) 0.00021 (7)
O01 0.139 (5) 0.057 (3) 0.104 (4) −0.010 (3) 0.054 (4) 0.007 (2)
C01 0.139 (5) 0.057 (3) 0.104 (4) −0.010 (3) 0.054 (4) 0.007 (2)
C02 0.139 (5) 0.057 (3) 0.104 (4) −0.010 (3) 0.054 (4) 0.007 (2)

Geometric parameters (Å, °)

C1—C2 1.513 (4) C313—H313 0.95
C1—H1A 0.98 C314—C315 1.390 (4)
C1—H1B 0.98 C314—H314 0.95
C1—H1C 0.98 C315—C316 1.389 (4)
C2—N11 1.320 (4) C315—H315 0.95
C2—C3 1.420 (4) C316—H316 0.95
C3—C4 1.384 (4) C321—C326 1.380 (4)
C3—H3 0.95 C321—C322 1.383 (4)
C4—O12 1.289 (3) C321—P13 1.824 (3)
C4—C5 1.507 (4) C322—C323 1.391 (4)
C5—H5A 0.98 C322—H322 0.95
C5—H5B 0.98 C323—C324 1.378 (4)
C5—H5C 0.98 C323—H323 0.95
C14—O14 1.154 (3) C324—C325 1.375 (4)
C14—Rh1 1.805 (3) C324—H324 0.95
C111—C116 1.405 (4) C325—C326 1.394 (4)
C111—C112 1.406 (4) C325—H325 0.95
C111—N11 1.439 (3) C326—H326 0.95
C112—C113 1.387 (4) C331—C332 1.385 (4)
C112—C117 1.507 (4) C331—C336 1.400 (4)
C113—C114 1.388 (5) C331—P13 1.827 (3)
C113—H113 0.95 C332—C333 1.383 (4)
C114—C115 1.385 (5) C332—H332 0.95
C114—H114 0.95 C333—C334 1.386 (4)
C115—C116 1.396 (4) C333—H333 0.95
C115—H115 0.95 C334—C335 1.380 (4)
C116—C118 1.503 (4) C334—H334 0.95
C117—H11A 0.98 C335—C336 1.390 (4)
C117—H11B 0.98 C335—H335 0.95
C117—H11C 0.98 C336—H336 0.95
C118—H11D 0.98 N11—Rh1 2.076 (2)
C118—H11E 0.98 O12—Rh1 2.0277 (19)
C118—H11F 0.98 P13—Rh1 2.2701 (7)
C311—C316 1.391 (4) O01—C02 1.135 (12)
C311—C312 1.394 (4) C01—C02 1.474 (13)
C311—P13 1.825 (3) C01—H01A 0.98
C312—C313 1.395 (4) C01—H01B 0.98
C312—H312 0.95 C01—H01C 0.98
C313—C314 1.382 (4) C02—C01i 1.492 (16)
C2—C1—H1A 109.5 C314—C315—H315 119.8
C2—C1—H1B 109.5 C315—C316—C311 120.5 (3)
H1A—C1—H1B 109.5 C315—C316—H316 119.7
C2—C1—H1C 109.5 C311—C316—H316 119.7
H1A—C1—H1C 109.5 C326—C321—C322 119.0 (3)
H1B—C1—H1C 109.5 C326—C321—P13 121.6 (2)
N11—C2—C3 123.8 (2) C322—C321—P13 119.3 (2)
N11—C2—C1 120.5 (2) C321—C322—C323 120.2 (3)
C3—C2—C1 115.8 (2) C321—C322—H322 119.9
C4—C3—C2 127.1 (3) C323—C322—H322 119.9
C4—C3—H3 116.5 C324—C323—C322 120.6 (3)
C2—C3—H3 116.5 C324—C323—H323 119.7
O12—C4—C3 125.6 (3) C322—C323—H323 119.7
O12—C4—C5 113.9 (2) C325—C324—C323 119.4 (3)
C3—C4—C5 120.4 (3) C325—C324—H324 120.3
C4—C5—H5A 109.5 C323—C324—H324 120.3
C4—C5—H5B 109.5 C324—C325—C326 120.1 (3)
H5A—C5—H5B 109.5 C324—C325—H325 119.9
C4—C5—H5C 109.5 C326—C325—H325 119.9
H5A—C5—H5C 109.5 C321—C326—C325 120.6 (3)
H5B—C5—H5C 109.5 C321—C326—H326 119.7
O14—C14—Rh1 177.7 (2) C325—C326—H326 119.7
C116—C111—C112 121.1 (3) C332—C331—C336 119.2 (3)
C116—C111—N11 119.5 (2) C332—C331—P13 117.9 (2)
C112—C111—N11 119.3 (2) C336—C331—P13 122.8 (2)
C113—C112—C111 118.4 (3) C333—C332—C331 120.5 (3)
C113—C112—C117 121.2 (3) C333—C332—H332 119.7
C111—C112—C117 120.4 (3) C331—C332—H332 119.7
C112—C113—C114 121.3 (3) C332—C333—C334 120.3 (3)
C112—C113—H113 119.3 C332—C333—H333 119.9
C114—C113—H113 119.3 C334—C333—H333 119.9
C115—C114—C113 119.6 (3) C335—C334—C333 119.6 (3)
C115—C114—H114 120.2 C335—C334—H334 120.2
C113—C114—H114 120.2 C333—C334—H334 120.2
C114—C115—C116 121.2 (3) C334—C335—C336 120.5 (3)
C114—C115—H115 119.4 C334—C335—H335 119.7
C116—C115—H115 119.4 C336—C335—H335 119.7
C115—C116—C111 118.3 (3) C335—C336—C331 119.8 (3)
C115—C116—C118 121.3 (3) C335—C336—H336 120.1
C111—C116—C118 120.4 (3) C331—C336—H336 120.1
C112—C117—H11A 109.5 C2—N11—C111 118.0 (2)
C112—C117—H11B 109.5 C2—N11—Rh1 125.79 (18)
H11A—C117—H11B 109.5 C111—N11—Rh1 116.24 (17)
C112—C117—H11C 109.5 C4—O12—Rh1 127.13 (18)
H11A—C117—H11C 109.5 C311—P13—C321 103.27 (12)
H11B—C117—H11C 109.5 C311—P13—C331 103.55 (12)
C116—C118—H11D 109.5 C321—P13—C331 103.59 (12)
C116—C118—H11E 109.5 C311—P13—Rh1 119.08 (9)
H11D—C118—H11E 109.5 C321—P13—Rh1 113.64 (9)
C116—C118—H11F 109.5 C331—P13—Rh1 112.06 (9)
H11D—C118—H11F 109.5 C14—Rh1—O12 177.36 (10)
H11E—C118—H11F 109.5 C14—Rh1—N11 93.02 (11)
C316—C311—C312 118.7 (3) O12—Rh1—N11 89.38 (8)
C316—C311—P13 123.2 (2) C14—Rh1—P13 91.59 (9)
C312—C311—P13 118.1 (2) O12—Rh1—P13 85.95 (6)
C311—C312—C313 120.8 (3) N11—Rh1—P13 174.36 (7)
C311—C312—H312 119.6 C02—C01—H01A 109.5
C313—C312—H312 119.6 C02—C01—H01B 109.5
C314—C313—C312 119.8 (3) H01A—C01—H01B 109.5
C314—C313—H313 120.1 C02—C01—H01C 109.5
C312—C313—H313 120.1 H01A—C01—H01C 109.5
C313—C314—C315 119.8 (3) H01B—C01—H01C 109.5
C313—C314—H314 120.1 O01—C02—C01 117.7 (13)
C315—C314—H314 120.1 O01—C02—C01i 110.6 (12)
C316—C315—C314 120.3 (3) C01—C02—C01i 131.4 (9)
C316—C315—H315 119.8
N11—C2—C3—C4 −4.8 (5) P13—C331—C336—C335 −179.2 (2)
C1—C2—C3—C4 175.4 (3) C3—C2—N11—C111 178.5 (3)
C2—C3—C4—O12 1.8 (5) C1—C2—N11—C111 −1.7 (4)
C2—C3—C4—C5 −177.6 (3) C3—C2—N11—Rh1 −3.0 (4)
C116—C111—C112—C113 −2.1 (4) C1—C2—N11—Rh1 176.8 (2)
N11—C111—C112—C113 −177.7 (3) C116—C111—N11—C2 91.5 (3)
C116—C111—C112—C117 177.3 (3) C112—C111—N11—C2 −92.9 (3)
N11—C111—C112—C117 1.7 (4) C116—C111—N11—Rh1 −87.2 (3)
C111—C112—C113—C114 1.2 (4) C112—C111—N11—Rh1 88.5 (3)
C117—C112—C113—C114 −178.3 (3) C3—C4—O12—Rh1 9.0 (4)
C112—C113—C114—C115 0.4 (5) C5—C4—O12—Rh1 −171.64 (18)
C113—C114—C115—C116 −1.1 (4) C316—C311—P13—C321 9.9 (3)
C114—C115—C116—C111 0.1 (4) C312—C311—P13—C321 −171.4 (2)
C114—C115—C116—C118 178.5 (3) C316—C311—P13—C331 117.7 (2)
C112—C111—C116—C115 1.5 (4) C312—C311—P13—C331 −63.6 (2)
N11—C111—C116—C115 177.1 (2) C316—C311—P13—Rh1 −117.1 (2)
C112—C111—C116—C118 −176.9 (3) C312—C311—P13—Rh1 61.6 (2)
N11—C111—C116—C118 −1.3 (4) C326—C321—P13—C311 83.9 (3)
C316—C311—C312—C313 0.3 (4) C322—C321—P13—C311 −93.4 (2)
P13—C311—C312—C313 −178.5 (2) C326—C321—P13—C331 −23.8 (3)
C311—C312—C313—C314 0.1 (4) C322—C321—P13—C331 158.9 (2)
C312—C313—C314—C315 −0.3 (4) C326—C321—P13—Rh1 −145.7 (2)
C313—C314—C315—C316 0.2 (4) C322—C321—P13—Rh1 37.0 (2)
C314—C315—C316—C311 0.1 (4) C332—C331—P13—C311 168.3 (2)
C312—C311—C316—C315 −0.4 (4) C336—C331—P13—C311 −12.7 (3)
P13—C311—C316—C315 178.3 (2) C332—C331—P13—C321 −84.2 (2)
C326—C321—C322—C323 −1.5 (4) C336—C331—P13—C321 94.8 (3)
P13—C321—C322—C323 175.9 (2) C332—C331—P13—Rh1 38.7 (3)
C321—C322—C323—C324 2.2 (5) C336—C331—P13—Rh1 −142.3 (2)
C322—C323—C324—C325 −1.5 (5) C4—O12—Rh1—N11 −11.8 (2)
C323—C324—C325—C326 0.2 (6) C4—O12—Rh1—P13 165.0 (2)
C322—C321—C326—C325 0.2 (5) C2—N11—Rh1—C14 −170.1 (2)
P13—C321—C326—C325 −177.2 (3) C111—N11—Rh1—C14 8.5 (2)
C324—C325—C326—C321 0.5 (6) C2—N11—Rh1—O12 8.8 (2)
C336—C331—C332—C333 −0.9 (5) C111—N11—Rh1—O12 −172.62 (19)
P13—C331—C332—C333 178.1 (3) C311—P13—Rh1—C14 −14.40 (13)
C331—C332—C333—C334 2.0 (5) C321—P13—Rh1—C14 −136.42 (13)
C332—C333—C334—C335 −2.0 (5) C331—P13—Rh1—C14 106.57 (13)
C333—C334—C335—C336 0.9 (5) C311—P13—Rh1—O12 166.55 (12)
C334—C335—C336—C331 0.2 (4) C321—P13—Rh1—O12 44.53 (11)
C332—C331—C336—C335 −0.2 (4) C331—P13—Rh1—O12 −72.48 (11)

Symmetry codes: (i) −x+1, −y+1, −z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C332—H332···O12 0.95 2.38 3.201 (3) 144
C334—H334···O14ii 0.95 2.51 3.201 (4) 130
C1—H1B···O01iii 0.98 2.54 3.372 (9) 142

Symmetry codes: (ii) x, −y+1/2, z+1/2; (iii) −x+1, y+1/2, −z+1/2.

Table 2 Comparative geometrical parameters (Å, °) for similar [Rh(N,O-bid)(CO)(PPh3)] complexes

Parameters (I)a (II)b (III)c (IV)d
Rh1—N11 2.077 (2) 2.069 (2) 2.045 (4) 2.045 (3)
Rh1—O12 2.027 (2) 2.028 (2) 2.044 (3) 2.045 (2)
Rh1—P13 2.2704 (7) 2.2635 (6) 2.275 (1) 2.281 (2)
Rh1—C14 1.812 (3) 1.807 (2) 1.784 (5) 1.804 (3)
C14—O14 1.147 (3) 1.152 (3) 1.142 (7) 1.148 (4)
N11···O12 2.885 (3) 2.885 (3) 2.826 (6) 2.841 (3)
N11—Rh1—O12 89.31 (9) 89.54 (8) 87.4 (1) 87.95 (8)
O12—Rh1—P13 85.95 (6) 84.97 (5) 89.7 (1) 89.91 (5)
P13—Rh1—C14 91.57 (9) 91.87 (7) 90.3 (2) 89.48 (9)
N11—Rh1—C14 93.1 (1) 93.6 (1) 92.6 (2) 92.6 (1)
N11—C2—C4—O12 -2.6 (2) 4.1 (2) 1.2 (4) 1.5 (2)
θEe 155.77 (2) 156.39 (3) 156.0 (2) 156.23 (4)

Notes: (a) This work; (b) N,O-bid = 4-(2,3-dimethyl phenylamino)pent-3-en-2-onato (Venter et al., 2009); (c) N,O-bid = 4-amino-pent-3-en-2-onato (Damoense et al., 1994); (d) N,O-bid = 4-amino-1,1,1-trifluoro-pent-3-en-2-onato (Varshavsky et al., 2001); (e) Tolman (1977).

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2227).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  2. Bonati, F. & Wilkinson, G. (1964). J. Chem. Soc. pp. 3156–3160.
  3. Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  4. Bruker (2004). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Cornils, B. & Herrmann, W. A. (1996). Applied Homogeneous Catalysis with Organometallic Compounds. A Comprehensive Handbook, pp. 412–413. Weinheim: VCH.
  7. Damoense, L. J., Purcell, W., Roodt, A. & Leipoldt, J. G. (1994). Rhodium Express, 5, 10–13.
  8. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  9. Shaheen, F., Marchio, L., Badshah, A. & Khosa, M. K. (2006). Acta Cryst. E62, o873–o874.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Tolman, C. A. (1977). Chem. Rev. 77, 313–348.
  12. Trzeciak, A. M. & Ziolkowski, J. J. (1994). J. Organomet. Chem. 464, 107–111.
  13. Van Rooy, A., Orji, E. N., Kramer, P. G. J. & Van Leeuwen, P. W. M. N. (1995). Organometallics 14, 34–43.
  14. Varshavsky, Y. S., Galding, M. R., Cherkasova, T. G., Podkorytov, I. S., Nikol’skii, A. B., Trzeciak, A. M., Olejnik, Z., Lis, T. & Ziolkowski, J. J. (2001). J. Organomet. Chem. 628, 195–210.
  15. Venter, G. J. S., Steyl, G. & Roodt, A. (2009). Acta Cryst. E65, m1321–m1322. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680904817X/pv2227sup1.cif

e-65-m1606-sup1.cif (26.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680904817X/pv2227Isup2.hkl

e-65-m1606-Isup2.hkl (356KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES