Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Nov 4;65(Pt 12):o2983. doi: 10.1107/S160053680904553X

1-(3-Chloro­benz­yloxy)urea

Xi Mai a,b, Hong-Ying Xia c, Yu-Sheng Cao a,d,*, Wei Tong b, Guo-Gang Tu b
PMCID: PMC2972183  PMID: 21578723

Abstract

The asymmetric unit of the crystal structure of the title compound, C8H9ClN2O2, contains four independent mol­ecules. The dihedral angles between the urea N—(C=O)—N planes and the benzene rings are 83.3 (3), 87.8 (1), 89.1 (1) and 17.5 (2)° in the four mol­ecules. Extensive N—H⋯O hydrogen bonding is present in the crystal structure.

Related literature

For general background to the design and synthesis of hydroxy­urea derivatives and their in vitro anti­tumor activity, see: Mai et al. (2009). For related structures, see: Armagan et al. (1976); Nielsen et al. (1993); Berman & Kim (1967); Howard et al. (1967); Larsen & Jerslev (1966); Thiessen et al. (1978); Yoshitaka et al. (1993).graphic file with name e-65-o2983-scheme1.jpg

Experimental

Crystal data

  • C8H9ClN2O2

  • M r = 200.62

  • Triclinic, Inline graphic

  • a = 10.830 (1) Å

  • b = 13.9410 (14) Å

  • c = 14.2750 (15) Å

  • α = 69.672 (1)°

  • β = 75.828 (2)°

  • γ = 70.388 (1)°

  • V = 1883.6 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 298 K

  • 0.43 × 0.40 × 0.05 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.856, T max = 0.982

  • 9908 measured reflections

  • 6533 independent reflections

  • 3124 reflections with I > 2σ(I)

  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.094

  • S = 1.01

  • 6533 reflections

  • 469 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680904553X/xu2661sup1.cif

e-65-o2983-sup1.cif (28.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680904553X/xu2661Isup2.hkl

e-65-o2983-Isup2.hkl (319.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O5i 0.90 2.20 3.096 (3) 173
N2—H2A⋯O1i 0.86 2.16 3.023 (3) 177
N2—H2B⋯O3ii 0.86 2.29 2.971 (3) 136
N4—H4A⋯O7iii 0.86 2.11 2.971 (3) 176
N4—H4B⋯O5 0.86 2.39 3.017 (3) 130
N5—H5⋯O1i 0.90 2.19 3.090 (3) 176
N6—H6A⋯O5iv 0.86 2.07 2.925 (3) 177
N7—H7⋯O7v 0.90 2.04 2.937 (3) 171
N8—H8A⋯O3ii 0.86 2.09 2.947 (3) 177
N8—H8B⋯O1i 0.86 2.25 2.976 (3) 142

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

The authors gratefully acknowledge the financial support of this study by the National Key S&T Special Project of China: Grand New Drug R&D (NO. 2009ZX09103–087) and the program of the Nanchang Department of Science and Technology, China (No. 2008368).

supplementary crystallographic information

Comment

Hydroxyurea (HU) is a substance used in cancer chemotherapy for many years, but it has several disadvantages, such as short half-life, extremely polar nature, the rapid development of resistance and so on. To obtain more potent compound, we have designed and synthesized HU derivatives, and evaluated their in vitro antitumor activities in our previous work (Mai et al., 2009). Here we report the crystal structure of the title compound, 3-chlorobenzyloxyurea.

The structure of 3-chlorobenzyloxyurea is shown in Fig. 1. The conformations of the N–O and C=O bonds are opposite to each other, similar to that observed in N-hydroxyurea (Howard et al., 1967; Thiessen et al., 1978; Armagan et al., 1976; Berman et al., 1967; Larsen & Jerslev, 1966), 1-hydroxy-1-methylurea, 1-hydroxy-3-methylurea (Nielsen et al., 1993), N-(6-phenoxy-2H-chromen-3-ylmethyl)-N-hydroxyurea (Yoshitaka et al., 1993) and 1-(2-fluorobenzyl)-1-(2-fluorobenzyloxy) urea (Mai et al., 2009). The bond parameters are similar to 1-(2-fluorobenzyl)-1-(2-fluorobenzyloxy)urea (Mai et al., 2009). The asymmetric unit of the title compound contains four independent molecules. The dihedral angles between the urea N-(C=O)–N planes and benzene ring are 83.3 (3)°, 87.8 (1)°, 89.1 (1)° and 17.5 (2)° for the four molecules. The N–O bonds are twisted out of the urea N–(C=O)–N planes by 18.4 (3)°, 17.9 (3)°, 19.2 (4)° and -17.8 (3)°, respectively in the four molecules. In the crystal structure, molecules are linked through intermolecular N–H···O hydrogen bonds, forming the zigzig chain.

Experimental

The title compound was synthesized by hydroxyurea (0.026 mol) with 3-chlorobenzyl chloride (0.034 mol) in methanol (80 ml) in the presence of potassium hydroxide (0.034 mol). After refluxing for 13 h, solvent was removed under reduced pressure at 308 K. The resulting crude solid was filtered and washed in trichloromethane, then recrystallized in acetone and trichloromethane solution (5:2), filtered and dried. Colorless platelet single crystals of the title compound were recrystallized from the mixed solvent acetone and n-hexane (5:10).

Refinement

H atoms were placed in calculated positions with N—H = 0.90 (imino), 0.86 Å (amino), C—H = 0.93 (aromatic) and 0.97 Å (methylene), and refined in riding mode with Uiso(H) = 1.2Ueq(C,N).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

The unit cell diagram showing intermolecular hydrogen bonding as dashed lines

Crystal data

C8H9ClN2O2 Z = 8
Mr = 200.62 F(000) = 832
Triclinic, P1 Dx = 1.415 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 10.830 (1) Å Cell parameters from 1978 reflections
b = 13.9410 (14) Å θ = 2.2–22.6°
c = 14.2750 (15) Å µ = 0.37 mm1
α = 69.672 (1)° T = 298 K
β = 75.828 (2)° Platelet, colourless
γ = 70.388 (1)° 0.43 × 0.40 × 0.05 mm
V = 1883.6 (3) Å3

Data collection

Bruker APEXII CCD area-detector diffractometer 6533 independent reflections
Radiation source: fine-focus sealed tube 3124 reflections with I > 2σ(I)
graphite Rint = 0.029
φ and ω scans θmax = 25.0°, θmin = 1.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −12→11
Tmin = 0.856, Tmax = 0.982 k = −16→16
9908 measured reflections l = −16→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0205P)2] where P = (Fo2 + 2Fc2)/3
6533 reflections (Δ/σ)max = 0.001
469 parameters Δρmax = 0.23 e Å3
0 restraints Δρmin = −0.24 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 1.11832 (10) 0.31531 (8) −0.02808 (6) 0.0839 (3)
Cl2 0.25832 (11) 0.58558 (9) −0.04798 (7) 0.0998 (4)
Cl3 0.39222 (11) 0.83726 (9) −0.04386 (7) 0.1020 (4)
Cl4 0.16163 (12) 1.13164 (10) 0.84040 (10) 0.1271 (5)
N1 0.8146 (2) 0.36994 (18) 0.39732 (16) 0.0401 (6)
H1 0.8418 0.3029 0.4370 0.048*
N2 0.6676 (2) 0.51825 (17) 0.44071 (16) 0.0419 (6)
H2A 0.5900 0.5522 0.4631 0.050*
H2B 0.7301 0.5491 0.4177 0.050*
N3 0.0506 (2) 0.61462 (18) 0.39981 (16) 0.0380 (6)
H3 0.0757 0.5489 0.4424 0.046*
N4 −0.0889 (2) 0.76897 (17) 0.43587 (16) 0.0453 (7)
H4A −0.1647 0.8054 0.4583 0.054*
H4B −0.0251 0.7980 0.4089 0.054*
N5 0.2948 (2) 0.86095 (18) 0.39097 (17) 0.0438 (6)
H5 0.3203 0.7948 0.4327 0.053*
N6 0.1619 (2) 1.01583 (18) 0.42966 (17) 0.0529 (7)
H6A 0.0882 1.0524 0.4549 0.063*
H6B 0.2252 1.0448 0.3991 0.063*
N7 0.4342 (2) 0.89042 (18) 0.59283 (16) 0.0422 (6)
H7 0.4119 0.9574 0.5520 0.051*
N8 0.5745 (2) 0.73892 (17) 0.55203 (16) 0.0447 (6)
H8A 0.6513 0.7025 0.5309 0.054*
H8B 0.5093 0.7111 0.5735 0.054*
O1 0.60499 (19) 0.36862 (15) 0.47386 (15) 0.0501 (6)
O2 0.91190 (18) 0.42284 (15) 0.38500 (13) 0.0421 (5)
O3 −0.15777 (19) 0.62023 (14) 0.48081 (14) 0.0462 (5)
O4 0.15349 (18) 0.66423 (15) 0.38002 (14) 0.0440 (5)
O5 0.09142 (19) 0.86693 (15) 0.48084 (15) 0.0524 (6)
O6 0.4015 (2) 0.90763 (15) 0.36655 (15) 0.0510 (6)
O7 0.64654 (19) 0.88364 (14) 0.52150 (14) 0.0469 (5)
O8 0.33178 (18) 0.84381 (15) 0.60348 (14) 0.0458 (5)
C1 0.6909 (3) 0.4182 (2) 0.4417 (2) 0.0379 (7)
C2 0.9543 (3) 0.4670 (2) 0.2794 (2) 0.0463 (8)
H2C 0.9940 0.5227 0.2714 0.056*
H2D 0.8774 0.4992 0.2444 0.056*
C3 1.0527 (3) 0.3856 (2) 0.2309 (2) 0.0400 (8)
C4 1.0418 (3) 0.3863 (2) 0.1359 (2) 0.0473 (8)
H4 0.9715 0.4348 0.1032 0.057*
C5 1.1353 (3) 0.3151 (3) 0.0903 (2) 0.0489 (8)
C6 1.2408 (3) 0.2433 (3) 0.1353 (2) 0.0573 (9)
H6 1.3038 0.1964 0.1028 0.069*
C7 1.2522 (3) 0.2418 (3) 0.2306 (3) 0.0619 (10)
H7A 1.3230 0.1931 0.2627 0.074*
C8 1.1592 (3) 0.3119 (3) 0.2776 (2) 0.0551 (9)
H8 1.1675 0.3100 0.3416 0.066*
C9 −0.0704 (3) 0.6681 (2) 0.4428 (2) 0.0373 (7)
C10 0.1852 (3) 0.7051 (2) 0.2732 (2) 0.0506 (9)
H10A 0.2443 0.7490 0.2591 0.061*
H10B 0.1045 0.7503 0.2456 0.061*
C11 0.2494 (3) 0.6202 (3) 0.2204 (2) 0.0462 (8)
C12 0.2222 (3) 0.6366 (3) 0.1247 (2) 0.0552 (9)
H12 0.1590 0.6975 0.0957 0.066*
C13 0.2892 (4) 0.5626 (3) 0.0729 (2) 0.0578 (9)
C14 0.3784 (4) 0.4728 (3) 0.1150 (3) 0.0694 (11)
H14 0.4233 0.4234 0.0795 0.083*
C15 0.4031 (4) 0.4544 (3) 0.2107 (3) 0.0804 (12)
H15 0.4632 0.3915 0.2403 0.096*
C16 0.3399 (3) 0.5278 (3) 0.2632 (2) 0.0659 (10)
H16 0.3582 0.5151 0.3275 0.079*
C17 0.1778 (3) 0.9153 (3) 0.4379 (2) 0.0424 (8)
C18 0.4308 (3) 0.9459 (3) 0.2589 (2) 0.0649 (10)
H18A 0.5039 0.9773 0.2420 0.078*
H18B 0.3544 1.0016 0.2333 0.078*
C19 0.4666 (3) 0.8607 (3) 0.2068 (2) 0.0498 (9)
C20 0.4215 (3) 0.8854 (3) 0.1150 (3) 0.0608 (10)
H20 0.3710 0.9537 0.0858 0.073*
C21 0.4533 (3) 0.8067 (3) 0.0688 (2) 0.0625 (10)
C22 0.5279 (3) 0.7067 (3) 0.1085 (3) 0.0665 (10)
H22 0.5489 0.6552 0.0754 0.080*
C23 0.5723 (3) 0.6827 (3) 0.1992 (3) 0.0687 (10)
H23 0.6225 0.6141 0.2278 0.082*
C24 0.5427 (3) 0.7592 (3) 0.2471 (2) 0.0575 (9)
H24 0.5744 0.7424 0.3074 0.069*
C25 0.5569 (3) 0.8378 (2) 0.5515 (2) 0.0364 (7)
C26 0.2837 (3) 0.8033 (2) 0.7081 (2) 0.0504 (9)
H26A 0.3582 0.7727 0.7456 0.061*
H26B 0.2461 0.7465 0.7157 0.061*
C27 0.1814 (3) 0.8842 (2) 0.7541 (2) 0.0443 (8)
C28 0.2123 (3) 0.9650 (3) 0.7696 (2) 0.0560 (9)
H28 0.2968 0.9742 0.7459 0.067*
C29 0.1197 (4) 1.0319 (3) 0.8198 (3) 0.0605 (10)
C30 −0.0046 (4) 1.0205 (3) 0.8561 (3) 0.0815 (12)
H30 −0.0658 1.0643 0.8926 0.098*
C31 −0.0373 (4) 0.9426 (3) 0.8373 (4) 0.1146 (18)
H31 −0.1230 0.9356 0.8587 0.137*
C32 0.0543 (4) 0.8753 (3) 0.7876 (3) 0.0877 (13)
H32 0.0304 0.8226 0.7763 0.105*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.1008 (8) 0.0997 (8) 0.0604 (6) −0.0235 (7) −0.0021 (6) −0.0446 (6)
Cl2 0.0901 (8) 0.1568 (11) 0.0720 (7) −0.0397 (8) −0.0086 (6) −0.0533 (7)
Cl3 0.1091 (9) 0.1371 (11) 0.0636 (6) −0.0405 (8) −0.0252 (6) −0.0189 (6)
Cl4 0.1133 (10) 0.1276 (11) 0.1915 (13) −0.0182 (8) −0.0241 (10) −0.1208 (10)
N1 0.0363 (16) 0.0381 (16) 0.0505 (15) −0.0135 (14) 0.0008 (13) −0.0199 (13)
N2 0.0341 (15) 0.0312 (16) 0.0625 (16) −0.0105 (13) 0.0005 (13) −0.0198 (13)
N3 0.0380 (16) 0.0337 (15) 0.0433 (15) −0.0127 (13) −0.0003 (13) −0.0134 (12)
N4 0.0397 (16) 0.0333 (17) 0.0641 (17) −0.0126 (13) 0.0039 (13) −0.0209 (13)
N5 0.0432 (17) 0.0370 (17) 0.0543 (16) −0.0154 (14) −0.0014 (14) −0.0168 (13)
N6 0.0454 (17) 0.0355 (17) 0.0766 (19) −0.0135 (14) 0.0034 (15) −0.0211 (14)
N7 0.0389 (16) 0.0341 (16) 0.0532 (16) −0.0117 (14) −0.0013 (14) −0.0144 (13)
N8 0.0382 (16) 0.0316 (16) 0.0665 (17) −0.0097 (13) −0.0005 (13) −0.0218 (13)
O1 0.0376 (13) 0.0378 (13) 0.0820 (16) −0.0174 (11) 0.0014 (12) −0.0260 (11)
O2 0.0374 (12) 0.0513 (14) 0.0452 (12) −0.0174 (11) 0.0006 (10) −0.0226 (10)
O3 0.0372 (13) 0.0399 (13) 0.0690 (14) −0.0186 (11) 0.0037 (11) −0.0250 (11)
O4 0.0387 (13) 0.0486 (14) 0.0505 (13) −0.0196 (11) 0.0025 (11) −0.0201 (11)
O5 0.0414 (14) 0.0408 (14) 0.0827 (16) −0.0187 (12) 0.0033 (12) −0.0283 (12)
O6 0.0466 (14) 0.0544 (15) 0.0578 (14) −0.0230 (12) 0.0024 (11) −0.0215 (11)
O7 0.0359 (13) 0.0333 (13) 0.0743 (14) −0.0120 (11) −0.0013 (11) −0.0211 (11)
O8 0.0391 (13) 0.0521 (14) 0.0522 (13) −0.0186 (11) 0.0001 (11) −0.0212 (11)
C1 0.040 (2) 0.034 (2) 0.0448 (19) −0.0074 (17) −0.0077 (17) −0.0187 (16)
C2 0.051 (2) 0.046 (2) 0.0417 (19) −0.0195 (18) 0.0019 (17) −0.0133 (16)
C3 0.042 (2) 0.039 (2) 0.0374 (18) −0.0149 (17) 0.0032 (16) −0.0115 (15)
C4 0.047 (2) 0.043 (2) 0.050 (2) −0.0110 (17) −0.0046 (17) −0.0145 (17)
C5 0.053 (2) 0.051 (2) 0.045 (2) −0.0189 (19) 0.0003 (18) −0.0179 (17)
C6 0.061 (3) 0.047 (2) 0.057 (2) −0.012 (2) 0.011 (2) −0.0221 (18)
C7 0.056 (2) 0.055 (2) 0.058 (2) 0.0005 (19) −0.004 (2) −0.0146 (19)
C8 0.054 (2) 0.060 (3) 0.047 (2) −0.012 (2) −0.0039 (19) −0.0160 (18)
C9 0.037 (2) 0.037 (2) 0.0447 (19) −0.0107 (17) −0.0061 (16) −0.0193 (16)
C10 0.051 (2) 0.042 (2) 0.050 (2) −0.0157 (17) 0.0065 (18) −0.0099 (17)
C11 0.045 (2) 0.044 (2) 0.043 (2) −0.0166 (18) 0.0088 (17) −0.0103 (17)
C12 0.046 (2) 0.053 (2) 0.059 (2) −0.0114 (18) 0.0005 (19) −0.0160 (19)
C13 0.055 (2) 0.064 (3) 0.050 (2) −0.022 (2) 0.0023 (19) −0.014 (2)
C14 0.086 (3) 0.058 (3) 0.056 (2) −0.022 (2) 0.021 (2) −0.025 (2)
C15 0.096 (3) 0.047 (3) 0.056 (3) 0.014 (2) 0.005 (2) −0.008 (2)
C16 0.076 (3) 0.053 (3) 0.045 (2) 0.004 (2) −0.002 (2) −0.0105 (19)
C17 0.041 (2) 0.038 (2) 0.053 (2) −0.0084 (18) −0.0080 (18) −0.0211 (17)
C18 0.075 (3) 0.052 (2) 0.062 (2) −0.027 (2) 0.011 (2) −0.013 (2)
C19 0.051 (2) 0.046 (2) 0.047 (2) −0.0181 (19) 0.0096 (18) −0.0128 (18)
C20 0.054 (2) 0.053 (2) 0.057 (2) −0.0084 (19) 0.001 (2) −0.006 (2)
C21 0.053 (2) 0.080 (3) 0.048 (2) −0.021 (2) 0.0020 (19) −0.015 (2)
C22 0.062 (3) 0.076 (3) 0.060 (2) −0.014 (2) 0.006 (2) −0.034 (2)
C23 0.066 (3) 0.060 (3) 0.063 (2) 0.004 (2) −0.005 (2) −0.020 (2)
C24 0.057 (2) 0.057 (3) 0.052 (2) −0.009 (2) −0.0074 (19) −0.015 (2)
C25 0.036 (2) 0.030 (2) 0.0425 (18) −0.0054 (17) −0.0067 (16) −0.0129 (15)
C26 0.054 (2) 0.041 (2) 0.054 (2) −0.0180 (18) 0.0034 (18) −0.0124 (17)
C27 0.039 (2) 0.043 (2) 0.0460 (19) −0.0100 (17) −0.0013 (16) −0.0103 (16)
C28 0.043 (2) 0.069 (3) 0.063 (2) −0.015 (2) −0.0005 (18) −0.033 (2)
C29 0.067 (3) 0.056 (3) 0.060 (2) −0.009 (2) −0.011 (2) −0.0252 (19)
C30 0.078 (3) 0.057 (3) 0.083 (3) −0.002 (2) 0.022 (2) −0.026 (2)
C31 0.061 (3) 0.078 (3) 0.195 (5) −0.027 (3) 0.048 (3) −0.067 (3)
C32 0.060 (3) 0.062 (3) 0.142 (4) −0.025 (2) 0.024 (3) −0.049 (3)

Geometric parameters (Å, °)

Cl1—C5 1.742 (3) C6—C7 1.388 (4)
Cl2—C13 1.737 (3) C6—H6 0.9300
Cl3—C21 1.750 (3) C7—C8 1.372 (4)
Cl4—C29 1.732 (3) C7—H7A 0.9300
N1—C1 1.387 (3) C8—H8 0.9300
N1—O2 1.424 (2) C10—C11 1.504 (4)
N1—H1 0.9000 C10—H10A 0.9700
N2—C1 1.327 (3) C10—H10B 0.9700
N2—H2A 0.8600 C11—C16 1.376 (4)
N2—H2B 0.8600 C11—C12 1.392 (4)
N3—C9 1.385 (3) C12—C13 1.380 (4)
N3—O4 1.424 (2) C12—H12 0.9300
N3—H3 0.9000 C13—C14 1.346 (4)
N4—C9 1.323 (3) C14—C15 1.376 (4)
N4—H4A 0.8600 C14—H14 0.9300
N4—H4B 0.8600 C15—C16 1.375 (4)
N5—C17 1.386 (3) C15—H15 0.9300
N5—O6 1.426 (3) C16—H16 0.9300
N5—H5 0.9000 C18—C19 1.510 (4)
N6—C17 1.320 (3) C18—H18A 0.9700
N6—H6A 0.8600 C18—H18B 0.9700
N6—H6B 0.8600 C19—C24 1.377 (4)
N7—C25 1.384 (3) C19—C20 1.400 (4)
N7—O8 1.417 (2) C20—C21 1.378 (4)
N7—H7 0.9000 C20—H20 0.9300
N8—C25 1.324 (3) C21—C22 1.355 (4)
N8—H8A 0.8600 C22—C23 1.383 (4)
N8—H8B 0.8600 C22—H22 0.9300
O1—C1 1.247 (3) C23—C24 1.371 (4)
O2—C2 1.439 (3) C23—H23 0.9300
O3—C9 1.247 (3) C24—H24 0.9300
O4—C10 1.428 (3) C26—C27 1.500 (4)
O5—C17 1.249 (3) C26—H26A 0.9700
O6—C18 1.432 (3) C26—H26B 0.9700
O7—C25 1.248 (3) C27—C32 1.374 (4)
O8—C26 1.432 (3) C27—C28 1.377 (4)
C2—C3 1.507 (4) C28—C29 1.369 (4)
C2—H2C 0.9700 C28—H28 0.9300
C2—H2D 0.9700 C29—C30 1.360 (4)
C3—C4 1.387 (4) C30—C31 1.372 (5)
C3—C8 1.391 (4) C30—H30 0.9300
C4—C5 1.374 (4) C31—C32 1.364 (5)
C4—H4 0.9300 C31—H31 0.9300
C5—C6 1.366 (4) C32—H32 0.9300
C1—N1—O2 113.2 (2) C13—C12—H12 120.0
C1—N1—H1 108.3 C11—C12—H12 120.0
O2—N1—H1 108.2 C14—C13—C12 120.6 (3)
C1—N2—H2A 120.0 C14—C13—Cl2 119.7 (3)
C1—N2—H2B 120.0 C12—C13—Cl2 119.7 (3)
H2A—N2—H2B 120.0 C13—C14—C15 119.8 (3)
C9—N3—O4 114.3 (2) C13—C14—H14 120.1
C9—N3—H3 108.1 C15—C14—H14 120.1
O4—N3—H3 108.1 C16—C15—C14 120.8 (3)
C9—N4—H4A 120.0 C16—C15—H15 119.6
C9—N4—H4B 120.0 C14—C15—H15 119.6
H4A—N4—H4B 120.0 C15—C16—C11 119.8 (3)
C17—N5—O6 114.9 (2) C15—C16—H16 120.1
C17—N5—H5 108.0 C11—C16—H16 120.1
O6—N5—H5 107.9 O5—C17—N6 124.3 (3)
C17—N6—H6A 120.0 O5—C17—N5 117.3 (3)
C17—N6—H6B 120.0 N6—C17—N5 118.2 (3)
H6A—N6—H6B 120.0 O6—C18—C19 113.6 (2)
C25—N7—O8 114.0 (2) O6—C18—H18A 108.8
C25—N7—H7 107.9 C19—C18—H18A 108.8
O8—N7—H7 107.9 O6—C18—H18B 108.8
C25—N8—H8A 120.0 C19—C18—H18B 108.8
C25—N8—H8B 120.0 H18A—C18—H18B 107.7
H8A—N8—H8B 120.0 C24—C19—C20 119.1 (3)
N1—O2—C2 110.04 (18) C24—C19—C18 121.7 (3)
N3—O4—C10 108.3 (2) C20—C19—C18 119.2 (3)
N5—O6—C18 108.6 (2) C21—C20—C19 118.7 (3)
N7—O8—C26 110.3 (2) C21—C20—H20 120.7
O1—C1—N2 123.4 (3) C19—C20—H20 120.7
O1—C1—N1 118.8 (3) C22—C21—C20 122.2 (3)
N2—C1—N1 117.6 (3) C22—C21—Cl3 119.4 (3)
O2—C2—C3 113.2 (2) C20—C21—Cl3 118.4 (3)
O2—C2—H2C 108.9 C21—C22—C23 118.9 (3)
C3—C2—H2C 108.9 C21—C22—H22 120.6
O2—C2—H2D 108.9 C23—C22—H22 120.6
C3—C2—H2D 108.9 C24—C23—C22 120.5 (3)
H2C—C2—H2D 107.7 C24—C23—H23 119.8
C4—C3—C8 118.5 (3) C22—C23—H23 119.8
C4—C3—C2 120.1 (3) C23—C24—C19 120.6 (3)
C8—C3—C2 121.4 (3) C23—C24—H24 119.7
C5—C4—C3 119.8 (3) C19—C24—H24 119.7
C5—C4—H4 120.1 O7—C25—N8 123.8 (3)
C3—C4—H4 120.1 O7—C25—N7 118.3 (3)
C6—C5—C4 121.9 (3) N8—C25—N7 117.8 (3)
C6—C5—Cl1 118.9 (3) O8—C26—C27 114.8 (2)
C4—C5—Cl1 119.2 (3) O8—C26—H26A 108.6
C5—C6—C7 118.7 (3) C27—C26—H26A 108.6
C5—C6—H6 120.7 O8—C26—H26B 108.6
C7—C6—H6 120.7 C27—C26—H26B 108.6
C8—C7—C6 120.2 (3) H26A—C26—H26B 107.5
C8—C7—H7A 119.9 C32—C27—C28 117.9 (3)
C6—C7—H7A 119.9 C32—C27—C26 120.1 (3)
C7—C8—C3 121.0 (3) C28—C27—C26 121.9 (3)
C7—C8—H8 119.5 C29—C28—C27 120.5 (3)
C3—C8—H8 119.5 C29—C28—H28 119.8
O3—C9—N4 123.9 (3) C27—C28—H28 119.8
O3—C9—N3 118.1 (3) C30—C29—C28 121.4 (3)
N4—C9—N3 117.9 (3) C30—C29—Cl4 118.9 (3)
O4—C10—C11 113.7 (2) C28—C29—Cl4 119.7 (3)
O4—C10—H10A 108.8 C29—C30—C31 118.2 (4)
C11—C10—H10A 108.8 C29—C30—H30 120.9
O4—C10—H10B 108.8 C31—C30—H30 120.9
C11—C10—H10B 108.8 C32—C31—C30 120.8 (4)
H10A—C10—H10B 107.7 C32—C31—H31 119.6
C16—C11—C12 119.0 (3) C30—C31—H31 119.6
C16—C11—C10 120.9 (3) C31—C32—C27 121.1 (4)
C12—C11—C10 120.0 (3) C31—C32—H32 119.5
C13—C12—C11 120.0 (3) C27—C32—H32 119.5
C1—N1—O2—C2 −114.4 (2) C12—C11—C16—C15 0.9 (5)
C9—N3—O4—C10 −110.6 (3) C10—C11—C16—C15 −176.0 (3)
C17—N5—O6—C18 −112.7 (3) O6—N5—C17—O5 −164.4 (2)
C25—N7—O8—C26 114.6 (3) O6—N5—C17—N6 19.2 (4)
O2—N1—C1—O1 −166.4 (2) N5—O6—C18—C19 −58.1 (3)
O2—N1—C1—N2 18.4 (3) O6—C18—C19—C24 −38.7 (4)
N1—O2—C2—C3 −79.1 (3) O6—C18—C19—C20 141.4 (3)
O2—C2—C3—C4 137.8 (3) C24—C19—C20—C21 0.9 (5)
O2—C2—C3—C8 −45.1 (4) C18—C19—C20—C21 −179.2 (3)
C8—C3—C4—C5 −0.1 (4) C19—C20—C21—C22 −0.8 (5)
C2—C3—C4—C5 177.0 (3) C19—C20—C21—Cl3 178.1 (2)
C3—C4—C5—C6 −0.7 (5) C20—C21—C22—C23 0.8 (5)
C3—C4—C5—Cl1 178.8 (2) Cl3—C21—C22—C23 −178.0 (3)
C4—C5—C6—C7 0.9 (5) C21—C22—C23—C24 −0.9 (5)
Cl1—C5—C6—C7 −178.5 (2) C22—C23—C24—C19 1.1 (5)
C5—C6—C7—C8 −0.5 (5) C20—C19—C24—C23 −1.1 (5)
C6—C7—C8—C3 −0.3 (5) C18—C19—C24—C23 179.0 (3)
C4—C3—C8—C7 0.5 (5) O8—N7—C25—O7 166.5 (2)
C2—C3—C8—C7 −176.5 (3) O8—N7—C25—N8 −17.8 (3)
O4—N3—C9—O3 −165.9 (2) N7—O8—C26—C27 83.7 (3)
O4—N3—C9—N4 17.9 (3) O8—C26—C27—C32 114.8 (3)
N3—O4—C10—C11 −67.9 (3) O8—C26—C27—C28 −69.1 (4)
O4—C10—C11—C16 −38.4 (4) C32—C27—C28—C29 2.0 (5)
O4—C10—C11—C12 144.7 (3) C26—C27—C28—C29 −174.2 (3)
C16—C11—C12—C13 −2.2 (5) C27—C28—C29—C30 0.3 (5)
C10—C11—C12—C13 174.7 (3) C27—C28—C29—Cl4 178.9 (2)
C11—C12—C13—C14 1.7 (5) C28—C29—C30—C31 −2.8 (6)
C11—C12—C13—Cl2 −178.1 (2) Cl4—C29—C30—C31 178.6 (3)
C12—C13—C14—C15 0.2 (5) C29—C30—C31—C32 2.9 (7)
Cl2—C13—C14—C15 180.0 (3) C30—C31—C32—C27 −0.7 (7)
C13—C14—C15—C16 −1.6 (6) C28—C27—C32—C31 −1.8 (6)
C14—C15—C16—C11 1.0 (6) C26—C27—C32—C31 174.4 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O5i 0.90 2.20 3.096 (3) 173
N2—H2A···O1i 0.86 2.16 3.023 (3) 177
N2—H2B···O3ii 0.86 2.29 2.971 (3) 136
N4—H4A···O7iii 0.86 2.11 2.971 (3) 176
N4—H4B···O5 0.86 2.39 3.017 (3) 130
N5—H5···O1i 0.90 2.19 3.090 (3) 176
N6—H6A···O5iv 0.86 2.07 2.925 (3) 177
N7—H7···O7v 0.90 2.04 2.937 (3) 171
N8—H8A···O3ii 0.86 2.09 2.947 (3) 177
N8—H8B···O1i 0.86 2.25 2.976 (3) 142

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1, y, z; (iii) x−1, y, z; (iv) −x, −y+2, −z+1; (v) −x+1, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2661).

References

  1. Armagan, N., Richards, J. P. G. & Uraz, A. A. (1976). Acta Cryst. B32, 1042–1047.
  2. Berman, H. & Kim, S. H. (1967). Acta Cryst. 23, 180–181. [DOI] [PubMed]
  3. Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Howard, W., Shields, P. J., Hamrick, J. & Welby, R. (1967). J. Chem. Phys. 46, 2510–2514.
  6. Larsen, I. K. & Jerslev, B. (1966). Acta Chem. Scand. 20, 983–991.
  7. Mai, X., Xia, H.-Y., Cao, Y.-S., Lu, X.-S. & Fang, X.-N. (2009). Acta Cryst. E65, o442. [DOI] [PMC free article] [PubMed]
  8. Nielsen, B. B., Frydenvang, K. & Larsen, I. K. (1993). Acta Cryst. C49, 1018–1022.
  9. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Thiessen, W. E., Levy, H. A. & Flaig, B. D. (1978). Acta Cryst. B34, 2495–2502.
  12. Yoshitaka, S., James, L. S., Alan, J. H., Adam, H. L., Timothy, J. K., Warren, H. L. D., Hope, W. & Earl, F. K. (1993). J. Med. Chem. 36, 3580–3594.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680904553X/xu2661sup1.cif

e-65-o2983-sup1.cif (28.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680904553X/xu2661Isup2.hkl

e-65-o2983-Isup2.hkl (319.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES