Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1968 Apr;47(4):949–959. doi: 10.1172/JCI105787

Concentration dependence of active potassium transport in the human red blood cell in the presence of inhibitors

John R Sachs 1, Louis G Welt 1
PMCID: PMC297243  PMID: 5641630

Abstract

The active potassium influx in the human red blood cell is inhibited by strophanthidin, ethacrynic acid, and MK-870 (a new diuretic), and the degree of inhibition is greater at low concentrations of extracellular potassium than at high. In the case of ethacrynic acid, potassium appears to diminish the rate of combination of the drug with the transport system. The kinetic behavior of the active potassium influx in the presence of the inhibitors strophanthidin and ethacrynic acid is consistent with a model in which the binding of potassium at one of the potassium-sensitive sites in the transport system reduces the affinity of the system for the drug, and binding of a second potassium ion further reduces the affinity. It is not possible to distinguish between the sites on the basis of the studies presented here.

Full text

PDF
949

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. CANNON P. J., AMES R. P., LARAGH J. H. METHYLENEBUTYRYL PHENOXYACETIC ACID: NOVEL AND POTENT NATRIURETIC AND DIURETIC AGENT. JAMA. 1963 Sep 14;185:854–863. doi: 10.1001/jama.1963.03060110058019. [DOI] [PubMed] [Google Scholar]
  2. GLYNN I. M. The action of cardiac glycosides on sodium and potassium movements in human red cells. J Physiol. 1957 Apr 3;136(1):148–173. doi: 10.1113/jphysiol.1957.sp005749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Hoffman J. F., Kregenow F. M. The characterization of new energy dependent cation transport processes in red blood cells. Ann N Y Acad Sci. 1966 Jul 14;137(2):566–576. doi: 10.1111/j.1749-6632.1966.tb50182.x. [DOI] [PubMed] [Google Scholar]
  4. Hoffman J. F. The red cell membrane and the transport of sodium and potassium. Am J Med. 1966 Nov;41(5):666–680. doi: 10.1016/0002-9343(66)90029-5. [DOI] [PubMed] [Google Scholar]
  5. SCHATZMANN H. J. Herzglykoside als Hemmstoffe für den aktiven Kalium- und Natriumtransport durch die Erythrocytenmembran. Helv Physiol Pharmacol Acta. 1953;11(4):346–354. [PubMed] [Google Scholar]
  6. Sachs J. R. Competitive effects of some cations on active potassium transport in the human red blood cell. J Clin Invest. 1967 Sep;46(9):1433–1441. doi: 10.1172/JCI105635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Sachs J. R., Welt L. G. The concentration dependence of active potassium transport in the human red blood cell. J Clin Invest. 1967 Jan;46(1):65–76. doi: 10.1172/JCI105512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. WELT L. G., SACHS J. R., MCMANUS T. J. AN ION TRANSPORT DEFECT IN ERYTHROCYTES FROM UREMIC PATIENTS. Trans Assoc Am Physicians. 1964;77:169–181. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES