Abstract
The effect of acute hypertension on sodium reabsorption by the proximal tubule was studied in rats by means of micropuncture methods. Hypertension was induced by bilateral carotid artery ligation and cervical vagotomy. Within a few minutes after blood pressure rose (30-60 mm Hg above control levels), a moderate natriuresis and diuresis began. Proximal sodium reabsorption, measured by two independent methods, was found to be markedly suppressed, both in absolute amount per unit length and per unit of tubular volume (C/πr2). The ratio between tubular volume and glomerular filtration rate (GFR) (πr2d/V0) was found to be increased. These observations indicate that the inhibition of proximal sodium reabsorption induced by hypertension cannot be explained by the tubular geometry hypothesis of sodium regulation.
Several possible hormonal mechanisms were investigated. Intravenous d-aldosterone did not prevent the suppression of sodium transport due to acute hypertension, nor did chronic oral saline loading to reduce the renal content of renin. Constriction of the suprarenal aorta, with maintenance of a normal renal perfusion pressure, did prevent the inhibition of proximal transport during carotid artery occlusion, thus excluding an extrarenally produced natriuretic hormone as the mechanism.
The observations are compatible with the view that sodium transport was inhibited either by an intrarenal natriuretic hormone or by an increase in the interstitial volume of the kidney produced by a transient hydrostatic pressure gradient across the peritubular capillaries. The latter seems more likely to us because of the rapidity of onset of the natriuresis, and because removing the renal capsule and releasing the surface interstitial fluid prevented the effect of hypertension on proximal sodium transport.
Full text
PDF













Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BANK N. Relationship between electrical and hydrogen ion gradients across rat proximal tubule. Am J Physiol. 1962 Sep;203:577–582. doi: 10.1152/ajplegacy.1962.203.3.577. [DOI] [PubMed] [Google Scholar]
- Bank N., Aynedjian H. S. A micropuncture study of renal bicarbonate and chloride reabsorption in hypokalaemic alkalosis. Clin Sci. 1965 Aug;29(1):159–170. [PubMed] [Google Scholar]
- Bank N., Mutz B. F., Aynedjian H. S. The role of "leakage" of tubular fluid in anuria due to mercury poisoning. J Clin Invest. 1967 May;46(5):695–704. doi: 10.1172/JCI105570. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brunner F. P., Rector F. C., Jr, Seldin D. W. Mechanism of glomerulotubular balance. II. Regulation of proximal tubular reabsorption by tubular volume, as studied by stopped-flow microperfusion. J Clin Invest. 1966 Apr;45(4):603–611. doi: 10.1172/JCI105374. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Earley L. E., Friedler R. M. The effects of combined renal vasodilatation and pressor agents on renal hemodynamics and the tubular reabsorption of sodium. J Clin Invest. 1966 Apr;45(4):542–551. doi: 10.1172/JCI105368. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Earley L. E., Martino J. A., Friedler R. M. Factors affecting sodium reabsorption by the proximal tubule as determined during blockade of distal sodium reabsorption. J Clin Invest. 1966 Nov;45(11):1668–1684. doi: 10.1172/JCI105474. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GOTTSCHALK C. W., MYLLE M. Micropuncture study of pressures in proximal and distal tubules and peritubular capillaries of the rat kidney during osmotic diuresis. Am J Physiol. 1957 May;189(2):323–328. doi: 10.1152/ajplegacy.1957.189.2.323. [DOI] [PubMed] [Google Scholar]
- GOTTSCHALK C. W., MYLLE M. Micropuncture study of pressures in proximal tubules and peritubular capillaries of the rat kidney and their relation to ureteral and renal venous pressures. Am J Physiol. 1956 May;185(2):430–439. doi: 10.1152/ajplegacy.1956.185.2.430. [DOI] [PubMed] [Google Scholar]
- GROSS F., BRUNNER H., ZIEGLER M. RENIN-ANGIOTENSIN SYSTEM, ALDOSTERONE, AND SODIUM BALANCE. Recent Prog Horm Res. 1965;21:119–177. [PubMed] [Google Scholar]
- Gertz K. H., Mangos J. A., Braun G., Pagel H. D. On the glomerular tubular balance in the rat kidney. Pflugers Arch Gesamte Physiol Menschen Tiere. 1965 Sep 15;285(4):360–372. doi: 10.1007/BF00363236. [DOI] [PubMed] [Google Scholar]
- HARTROFT P. M., HARTROFT W. S. Studies on renal juxtaglomerular cells. I. Variations produced by sodium chloride and desoxycorticosterone acetate. J Exp Med. 1953 Mar;97(3):415–429. doi: 10.1084/jem.97.3.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hayslett J. P., Kashgarian M., Epstein F. H. Changes in proximal and distal tubular reabsorption produced by rapid expansion of extracellular fluid. J Clin Invest. 1967 Jul;46(7):1254–1263. doi: 10.1172/JCI105618. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnston H. H., Herzog J. P., Lauler D. P. Effect of prostaglandin E1 on renal hemodynamics, sodium and water excretion. Am J Physiol. 1967 Oct;213(4):939–946. doi: 10.1152/ajplegacy.1967.213.4.939. [DOI] [PubMed] [Google Scholar]
- Knox F. G., Davis B. B., Berliner R. W. Effect of chronic cardiac denervation on renal response to saline infusion. Am J Physiol. 1967 Jul;213(1):174–178. doi: 10.1152/ajplegacy.1967.213.1.174. [DOI] [PubMed] [Google Scholar]
- Rector F. C., Jr, Brunner F. P., Seldin D. W. Mechanism of glomerulotubular balance. I. Effect of aortic constriction and elevated ureteropelvic pressure on glomerular filtration rate, fractional reabsorption, transit time, and tubular size in the proximal tubule of the rat. J Clin Invest. 1966 Apr;45(4):590–602. doi: 10.1172/JCI105373. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SELKURT E. E. Effect of pulse pressure and mean arterial pressure modification on renal hemodynamics and electrolyte and water excretion. Circulation. 1951 Oct;4(4):541–551. doi: 10.1161/01.cir.4.4.541. [DOI] [PubMed] [Google Scholar]
- SELKURT E. E., WOMACK I., DAILEY W. N. MECHANISM OF NATRIURESIS AND DIURESIS DURING ELEVATED RENAL ARTERIAL PRESSURE. Am J Physiol. 1965 Jul;209:95–99. doi: 10.1152/ajplegacy.1965.209.1.95. [DOI] [PubMed] [Google Scholar]
- SHIPLEY R. E., STUDY R. S. Changes in renal blood flow, extraction of inulin, glomerular filtration rate, tissue pressure and urine flow with acute alterations of renal artery blood pressure. Am J Physiol. 1951 Dec;167(3):676–688. doi: 10.1152/ajplegacy.1951.167.3.676. [DOI] [PubMed] [Google Scholar]
- Smith H. W., Finkelstein N., Aliminosa L., Crawford B., Graber M. THE RENAL CLEARANCES OF SUBSTITUTED HIPPURIC ACID DERIVATIVES AND OTHER AROMATIC ACIDS IN DOG AND MAN. J Clin Invest. 1945 May;24(3):388–404. doi: 10.1172/JCI101618. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steinhausen M. Messungen des tubulären Harnstromes und der tubulären Reabsorption unter erhöhtem Ureterdruck. Intravitalmikroskopische Untersuchungen an der Nierenrinde von Ratten. Pflugers Arch Gesamte Physiol Menschen Tiere. 1967;298(2):105–130. [PubMed] [Google Scholar]
- THURAU K., WOBER E. [On the localization of autoregulative resistance changes in the kidneys. Micropuncture measurements of the pressure in the tubules and peritubular capillaries of the rat kidney in changes of arterial pressure]. Pflugers Arch Gesamte Physiol Menschen Tiere. 1962;274:553–566. [PubMed] [Google Scholar]
- Wiederholt M., Hierholzer K., Windhager E. E., Giebisch G. Microperfusion study of fluid reabsorption in proximal tubules of rat kidneys. Am J Physiol. 1967 Sep;213(3):809–818. doi: 10.1152/ajplegacy.1967.213.3.809. [DOI] [PubMed] [Google Scholar]