Abstract
The metabolism of long chain fatty acids was investigated in the failing heart of guinea pigs with chronic constriction of the ascending aorta. Homogenates prepared form failing hearts exhibited (a) a decreased capacity to oxidize palmitic acid (failure = 0.50 ± 0.06 μmole/g of protein per 20 min; control = 1.09 ± 0.10); (b) a reduced level of carnitine, a myocardial constituent which serves to control the oxidation rate of long chain fatty acids in the heart (failure = 0.91 ± 0.10 μmole/g wet weight; control = 1.69 ± 0.10); and (c) an increased rate of palmitate incorporation into triglycerides and lecithin. Exogenous carnitine effected a restoration of the defective palmitate metabolism of the homogenates towards normal. In contrast to long chain fatty acid oxidation, glucose oxidation by the failing heart was not impaired. As a consequence of this selective lesion in energy substrate utilization, the failing heart might be forced to rely on substrates other than long chain fatty acids for its major energy supply.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- AMENTA J. S. A RAPID CHEMICAL METHOD FOR QUANTIFICATION OF LIPIDS SEPARATED BY THIN-LAYER CHROMATOGRAPHY. J Lipid Res. 1964 Apr;5:270–272. [PubMed] [Google Scholar]
- BING R. J. CARDIAC METABOLISM. Physiol Rev. 1965 Apr;45:171–213. doi: 10.1152/physrev.1965.45.2.171. [DOI] [PubMed] [Google Scholar]
- BING R. J., SIEGEL A., UNGAR I., GILBERT M. Metabolism of the human heart. II. Studies on fat, ketone and amino acid metabolism. Am J Med. 1954 Apr;16(4):504–515. doi: 10.1016/0002-9343(54)90365-4. [DOI] [PubMed] [Google Scholar]
- BING R. J., WU C., GUDBJARNASON S. MECHANISM OF HEART FAILURE. Circ Res. 1964 Nov;15:SUPPL 2–2:69. [PubMed] [Google Scholar]
- BLAIN J. M., SCHAFER H., SIEGEL A. L., BING R. J. Studies on myocardial metabolism. VI. Myocardial metabolism in congestive failure. Am J Med. 1956 Jun;20(6):820–833. doi: 10.1016/0002-9343(56)90203-0. [DOI] [PubMed] [Google Scholar]
- BODE C., KLINGENBERG M. DIE VERATMUNG VON FETTSAEUREN IN ISOLIERTEN MITOCHONDRIEN. Biochem Z. 1965 Feb 24;341:271–299. [PubMed] [Google Scholar]
- BREMER J. Carnitine in intermediary metabolism. The metabolism of fatty acid esters of carnitine by mitochondria. J Biol Chem. 1962 Dec;237:3628–3632. [PubMed] [Google Scholar]
- BRESSLER R., FRIEDBERG S. J. THE EFFECT OF CARNITINE ON THE RATE OF PALMITATE INCOPORATION INTO MITOCHONDRIAL PHOSPHOLIPIDS. J Biol Chem. 1964 May;239:1364–1368. [PubMed] [Google Scholar]
- Brendel K., Bressler R. The resolution of (plus or minus)-carnitine and the synthesis of acylcarnitines. Biochim Biophys Acta. 1967 Feb 14;137(1):98–106. doi: 10.1016/0005-2760(67)90012-4. [DOI] [PubMed] [Google Scholar]
- Bressler R., Wittels B. The effect of thyroxine on lipid and carbohdrate metabolism in the heart. J Clin Invest. 1966 Aug;45(8):1326–1333. doi: 10.1172/JCI105439. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CARLSTEN A., HALLGREN B., JAGENBURG R., SVANBORG A., WERKO L. Myocardial metabolism of glucose, lactic acid, amino acids and fatty acids in healthy human individuals at rest and at different work loads. Scand J Clin Lab Invest. 1961;13:418–428. [PubMed] [Google Scholar]
- CERIOTTI G. Determination of nucleic acids in animal tissues. J Biol Chem. 1955 May;214(1):59–70. [PubMed] [Google Scholar]
- CHASE J. F., PEARSON D. J., TUBBS P. K. THE PREPARATION OF CRYSTALLIN CARNITINE ACETYLTRANSFERASE. Biochim Biophys Acta. 1965 Jan;96:162–165. doi: 10.1016/0005-2787(65)90622-2. [DOI] [PubMed] [Google Scholar]
- CHIDSEY C. A., BRAUNWALD E., MORROW A. G. CATECHOLAMINE EXCRETION AND CARDIAC STORES OF NOREPINEPHRINE IN CONGESTIVE HEART FAILURE. Am J Med. 1965 Sep;39:442–451. doi: 10.1016/0002-9343(65)90211-1. [DOI] [PubMed] [Google Scholar]
- CHIDSEY C. A., KAISER G. A., SONNENBLICK E. H., SPANN J. F., BRAUNWALD E. CARDIAC NOREPHINEPHRINE STORES IN EXPERIMENTAL HEART FAILURE IN THE DOG. J Clin Invest. 1964 Dec;43:2386–2393. doi: 10.1172/JCI105113. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chidsey C. A., Weinbach E. C., Pool P. E., Morrow A. G. Biochemical studies of energy production in the failing human heart. J Clin Invest. 1966 Jan;45(1):40–50. doi: 10.1172/JCI105322. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FEINSTEIN M. B. Effects of experimental congestive heart failure, ouabain, and asphyxia on the high-energy phosphate and creatine content of the guinea pig heart. Circ Res. 1962 Mar;10:333–346. doi: 10.1161/01.res.10.3.333. [DOI] [PubMed] [Google Scholar]
- FOX A. C., WIKLER N. S., REED G. E. HIGH ENERGY PHOSPHATE COMPOUNDS IN THE MYOCARDIUM DURING EXPERIMENTAL CONGESTIVE HEART FAILURE. PURINE AND PYRIMIDINE NUCLEOTIDES, CREATINE, AND CREATINE PHOSPHATE IN NORMAL AND IN FAILING HEARTS. J Clin Invest. 1965 Feb;44:202–218. doi: 10.1172/JCI105135. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FRIEDBERG S. J., BRESSLER R. THE FORMATION AND ISOLATION OF LONG-CHAIN ACYL CARNITINES IN MITOCHONDRIA. Biochim Biophys Acta. 1965 Apr 5;98:335–343. doi: 10.1016/0005-2760(65)90125-6. [DOI] [PubMed] [Google Scholar]
- FRITZ I. B. CARNITINE EFFECTS ON PALMITATE-I-C-14 CONVERSION TO CO2 AND GLYCERIDES BY VARIOUS TISSUES. Am J Physiol. 1964 Jun;206:1217–1222. doi: 10.1152/ajplegacy.1964.206.6.1217. [DOI] [PubMed] [Google Scholar]
- FRITZ I. B., YUE K. T. LONG-CHAIN CARNITINE ACYLTRANSFERASE AND THE ROLE OF ACYLCARNITINE DERIVATIVES IN THE CATALYTIC INCREASE OF FATTY ACID OXIDATION INDUCED BY CARNITINE. J Lipid Res. 1963 Jul;4:279–288. [PubMed] [Google Scholar]
- Fritz I. B., Marquis N. R. The role of acylcarnitine esters and carnitine palmityltransferase in the transport of fatty acyl groups across mitochondrial membranes. Proc Natl Acad Sci U S A. 1965 Oct;54(4):1226–1233. doi: 10.1073/pnas.54.4.1226. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GERTLER M. M. Production of experimental congestive heart failure in the guinea pig. Proc Soc Exp Biol Med. 1959 Nov;102:396–397. doi: 10.3181/00379727-102-25262. [DOI] [PubMed] [Google Scholar]
- GOLDMAN P., VAGELOS P. R. The specificity of triglyceride synthesis from diglycerides in chicken adipose tissue. J Biol Chem. 1961 Oct;236:2620–2623. [PubMed] [Google Scholar]
- GORDON R. S., Jr, CHERKES A. Unesterified fatty acid in human blood plasma. J Clin Invest. 1956 Feb;35(2):206–212. doi: 10.1172/JCI103265. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KORNBERG A., PRICER W. E., Jr Enzymatic synthesis of the coenzyme A derivatives of long chain fatty acids. J Biol Chem. 1953 Sep;204(1):329–343. [PubMed] [Google Scholar]
- MARQUIS N. R., FRITZ I. B. ENZYMOLOGICAL DETERMINATION OF FREE CARNITINE CONCENTRATIONS IN RAT TISSUES. J Lipid Res. 1964 Apr;5:184–187. [PubMed] [Google Scholar]
- Norum K. R. Activation of palmityl-coA: carnitine palmityltransferase in livers from fasted, fat-fed, or diabetic rats. Biochim Biophys Acta. 1965 Jun 1;98(3):652–654. doi: 10.1016/0005-2760(65)90166-9. [DOI] [PubMed] [Google Scholar]
- OLSON R. E. ABNORMALITIES OF MYOCARDIAL METABOLISM. Circ Res. 1964 Nov;15:SUPPL 2–2:119. [PubMed] [Google Scholar]
- OLSON R. E. Myocardial metabolism in congestive heart failure. J Chronic Dis. 1959 May;9(5):442–464. doi: 10.1016/0021-9681(59)90172-9. [DOI] [PubMed] [Google Scholar]
- PEARSON D. J., TUBBS P. K. TISSUE LEVELS OF ACID-INSOLUBLE CARNITINE IN RAT HEART. Biochim Biophys Acta. 1964 Dec 2;84:772–773. doi: 10.1016/0926-6542(64)90042-3. [DOI] [PubMed] [Google Scholar]
- Pool P. E., Spann J. F., Jr, Buccino R. A., Sonnenblick E. H., Braunwald E. Myocardial high energy phosphate stores in cardiac hypertrophy and heart failure. Circ Res. 1967 Sep;21(3):365–375. [PubMed] [Google Scholar]
- Spann J. F., Jr, Chidsey C. A., Pool P. E., Braunwald E. Mechanism of norepinephrine depletion in experimental heart failure produced by aortic constriction in the guinea pig. Circ Res. 1965 Oct;17(4):312–321. doi: 10.1161/01.res.17.4.312. [DOI] [PubMed] [Google Scholar]
- WASHKO M. E., RICE E. W. Determination of glucose by an improved enzymatic procedure. Clin Chem. 1961 Oct;7:542–545. [PubMed] [Google Scholar]
- WEBB J. M., LEVY H. B. A sensitive method for the determination of deoxyribonucleic acid in tissues and microorganisms. J Biol Chem. 1955 Mar;213(1):107–117. [PubMed] [Google Scholar]
- WITTELS B., BRESSLER R. BIOCHEMICAL LESION OF DIPHTHERIA TOXIN IN THE HEART. J Clin Invest. 1964 Apr;43:630–637. doi: 10.1172/JCI104948. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WITTELS B., BRESSLER R. LIPID METABOLISM IN THE HEART DURING FASTING. Lab Invest. 1964 Jul;13:794–799. [PubMed] [Google Scholar]
- WITTELS B., BRESSLER R. TWO-DIMENSIONAL THIN-LAYER CHROMATOGRAPHIC ISOLATION OF FATTY ACYL CARNITINES. J Lipid Res. 1965 Apr;6:313–314. [PubMed] [Google Scholar]
- WOLLENBERGER A., SCHULZE W. Mitochondrial alterations in the myocardium of dogs with aortic stenosis. J Biophys Biochem Cytol. 1961 Jun;10:285–288. doi: 10.1083/jcb.10.2.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wittels B., Bressler R. Lipid metabolism in the newborn heart. J Clin Invest. 1965 Oct;44(10):1639–1646. doi: 10.1172/JCI105270. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zierler K. L. THEORY OF THE USE OF ARTERIOVENOUS CONCENTRATION DIFFERENCES FOR MEASURING METABOLISM IN STEADY AND NON-STEADY STATES. J Clin Invest. 1961 Dec;40(12):2111–2125. doi: 10.1172/JCI104437. [DOI] [PMC free article] [PubMed] [Google Scholar]